29 lines
829 B
Python

import streamlit as st
import joblib
import re
# Load model & vectorizer
model = joblib.load("model_nb.pkl")
vectorizer = joblib.load("tfidf_vectorizer.pkl")
st.title("📰 Klasifikasi Topik Berita (NLP)")
st.write("Masukkan teks berita berbahasa Indonesia")
text = st.text_area("Teks Berita", height=200)
def preprocess_text(text):
text = text.lower()
text = re.sub(r"http\S+", "", text)
text = re.sub(r"[^a-zA-Z\s]", " ", text)
text = re.sub(r"\s+", " ", text).strip()
return text
if st.button("Klasifikasikan"):
if text.strip() == "":
st.warning("Teks tidak boleh kosong!")
else:
clean_text = preprocess_text(text)
text_tfidf = vectorizer.transform([clean_text])
prediction = model.predict(text_tfidf)[0]
st.success(f"Prediksi Topik: **{prediction}**")