diff --git a/N-Gram-checkpoint.ipynb b/N-Gram-checkpoint.ipynb new file mode 100644 index 0000000..0d8cf40 --- /dev/null +++ b/N-Gram-checkpoint.ipynb @@ -0,0 +1,380 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "JVPdWpz3hhbj" + }, + "source": [ + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "4Mvva3v65h1v" + }, + "source": [ + "# **UNIGRAM**" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "1cub_VJnUJMl", + "outputId": "1889eb61-4f3f-4780-f42e-02368076cce3" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Corpus: saya suka makan nasi\n", + "Tokens (4): ['saya', 'suka', 'makan', 'nasi']\n", + "\n", + "Frekuensi Unigram dalam kalimat\n", + " ('saya'): 1\n", + " ('suka'): 1\n", + " ('makan'): 1\n", + " ('nasi'): 1\n", + "\n", + "Total unigram dalam 1 kalimat: 4\n", + "\n", + "Probabilitas masing-masing unigram:\n", + " P(saya) = 0.25 (25.00%)\n", + " P(suka) = 0.25 (25.00%)\n", + " P(makan) = 0.25 (25.00%)\n", + " P(nasi) = 0.25 (25.00%)\n", + "\n", + "Probabilitas Keseluruhan Kalimat (Model Unigram):\n", + " P(saya suka makan nasi) = P(saya)=0.25 x P(suka)=0.25 x P(makan)=0.25 x P(nasi)=0.25 = 0.0039 (0.39%)\n" + ] + } + ], + "source": [ + "from collections import Counter\n", + "from IPython.display import clear_output\n", + "import math\n", + "\n", + "# 1. Input Kalimat dan Tokenisasi\n", + "kalimat = input(\"Masukkan kalimat: \").strip()\n", + "\n", + "# Bersihkan output (khusus lingkungan notebook)\n", + "try:\n", + " clear_output()\n", + "except:\n", + " pass\n", + "\n", + "print(f\"Corpus: {kalimat}\")\n", + "\n", + "# Tokenize\n", + "tokens = kalimat.lower().split()\n", + "print(f\"Tokens ({len(tokens)}): {tokens}\")\n", + "\n", + "# 2. Hitung Frekuensi Unigram\n", + "unigram_counts = Counter(tokens)\n", + "total_tokens = sum(unigram_counts.values())\n", + "\n", + "print(\"\\nFrekuensi Unigram dalam kalimat\")\n", + "for pair, count in unigram_counts.items():\n", + " print(f\" ('{pair}'): {count}\")\n", + "print(f\"\\nTotal unigram dalam 1 kalimat: {total_tokens}\")\n", + "\n", + "# 3. Hitung Probabilitas Unigram: P(wi) = Count(wi) / Total Kata\n", + "unigram_probabilities = {}\n", + "for word, count in unigram_counts.items():\n", + " prob = count / total_tokens\n", + " unigram_probabilities[word] = prob\n", + "\n", + "print(\"\\nProbabilitas masing-masing unigram:\")\n", + "for word, prob in unigram_probabilities.items():\n", + " print(f\" P({word}) = {prob:.2f} ({prob*100:.2f}%)\")\n", + "\n", + "# 4. Hitung Probabilitas Kalimat Keseluruhan (P(kalimat) = P(w1) * P(w2) * ...)\n", + "p_kalimat = 1\n", + "prob_parts = []\n", + "\n", + "# Loop untuk menghitung probabilitas total dan membangun string rumus detail\n", + "for word in tokens:\n", + " prob_value = unigram_probabilities[word]\n", + " p_kalimat *= prob_value\n", + " # Format: P(word)=prob_value\n", + " prob_parts.append(f\"P({word})={prob_value:.2f}\")\n", + "\n", + "# Gabungkan bagian-bagian rumus untuk mendapatkan prob_str detail\n", + "prob_str = \" x \".join(prob_parts)\n", + "\n", + "print(\"\\nProbabilitas Keseluruhan Kalimat (Model Unigram):\")\n", + "print(f\" P({' '.join(tokens)}) = {prob_str} = {p_kalimat:.4f} ({p_kalimat*100:.2f}%)\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Vstwt996-FrS" + }, + "source": [ + "# **BIGRAM**" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "XRIY4qgTVbjl", + "outputId": "ea6e62ce-45a0-40c9-ca98-1fcc30558479" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Corpus: saya makan nasi dan saya makan roti\n", + "Tokens (7): ['saya', 'makan', 'nasi', 'dan', 'saya', 'makan', 'roti']\n", + "\n", + "Frekuensi Bigram dalam kalimat:\n", + " ('saya', 'makan'): 2\n", + " ('makan', 'nasi'): 1\n", + " ('nasi', 'dan'): 1\n", + " ('dan', 'saya'): 1\n", + " ('makan', 'roti'): 1\n", + "\n", + "Total bigram dalam 1 kalimat: 6\n", + "\n", + "Probabilitas masing-masing bigram:\n", + " P(makan|saya) = 1.00 (100.00%)\n", + " P(nasi|makan) = 0.50 (50.00%)\n", + " P(dan|nasi) = 1.00 (100.00%)\n", + " P(saya|dan) = 1.00 (100.00%)\n", + " P(roti|makan) = 0.50 (50.00%)\n", + "\n", + "Probabilitas Keseluruhan Kalimat (Model Bigram):\n", + " P(saya makan nasi dan saya makan roti) = P(saya)=0.29 x P(makan|saya)=1.00 x P(nasi|makan)=0.50 x P(dan|nasi)=1.00 x P(saya|dan)=1.00 x P(makan|saya)=1.00 x P(roti|makan)=0.50 = 0.071429 (7.14%)\n" + ] + } + ], + "source": [ + "from collections import Counter\n", + "from IPython.display import clear_output\n", + "import math\n", + "\n", + "# 1. Input Kalimat dan Tokenisasi\n", + "kalimat = input(\"Masukkan kalimat: \").strip()\n", + "\n", + "# Bersihkan output (khusus lingkungan notebook)\n", + "try:\n", + " clear_output()\n", + "except:\n", + " pass\n", + "\n", + "print(f\"Corpus: {kalimat}\")\n", + "\n", + "# Tokenisasi\n", + "tokens = kalimat.lower().split()\n", + "print(f\"Tokens ({len(tokens)}): {tokens}\")\n", + "\n", + "# 2. Hitung Frekuensi Unigram dan Bigram\n", + "unigram_counts = Counter(tokens)\n", + "bigrams = [(tokens[i], tokens[i+1]) for i in range(len(tokens) - 1)]\n", + "bigram_counts = Counter(bigrams)\n", + "\n", + "print(\"\\nFrekuensi Bigram dalam kalimat:\")\n", + "for pair, count in bigram_counts.items():\n", + " print(f\" {pair}: {count}\")\n", + "print(f\"\\nTotal bigram dalam 1 kalimat: {sum(bigram_counts.values())}\")\n", + "\n", + "# 3. Hitung Probabilitas Bigram: P(w2 | w1) = Count(w1,w2) / Count(w1)\n", + "bigram_probabilities = {}\n", + "for (w1, w2), count in bigram_counts.items():\n", + " prob = count / unigram_counts[w1]\n", + " bigram_probabilities[(w1, w2)] = prob\n", + "\n", + "print(\"\\nProbabilitas masing-masing bigram:\")\n", + "for (w1, w2), prob in bigram_probabilities.items():\n", + " print(f\" P({w2}|{w1}) = {prob:.2f} ({prob*100:.2f}%)\")\n", + "\n", + "# 4. Hitung Probabilitas Kalimat Keseluruhan (Model Bigram)\n", + "# P(kalimat) = P(w1) * P(w2|w1) * P(w3|w2) * ...\n", + "total_tokens = sum(unigram_counts.values())\n", + "p_w1 = unigram_counts.get(tokens[0], 0) / total_tokens # P(w1)\n", + "p_kalimat = p_w1 # Inisialisasi dengan P(w1)\n", + "\n", + "prob_str_parts = [f\"P({tokens[0]})={p_w1:.2f}\"] # Tambahkan P(w1) ke rumus\n", + "\n", + "for i in range(1, len(tokens)):\n", + " pair = (tokens[i-1], tokens[i])\n", + " p = bigram_probabilities.get(pair, 0)\n", + " p_kalimat *= p\n", + " prob_str_parts.append(f\"P({pair[1]}|{pair[0]})={p:.2f}\")\n", + "\n", + "# Gabungkan rumus perkalian untuk ditampilkan\n", + "prob_str = \" x \".join(prob_str_parts)\n", + "\n", + "print(\"\\nProbabilitas Keseluruhan Kalimat (Model Bigram):\")\n", + "print(f\" P({' '.join(tokens)}) = {prob_str} = {p_kalimat:.6f} ({p_kalimat*100:.2f}%)\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "E6n1IU8X-G9S" + }, + "source": [ + "# **TRIGRAM**" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "BIRARsj2FHJg", + "outputId": "968d420e-9370-40e5-e7e1-148e1d351d62" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Corpus: mahasiswa mengerjakan tugas kemudian mahasiswa upload e-learning\n", + "Tokens (7): ['mahasiswa', 'mengerjakan', 'tugas', 'kemudian', 'mahasiswa', 'upload', 'e-learning']\n", + "\n", + "Frekuensi Trigram dalam kalimat:\n", + " ('mahasiswa', 'mengerjakan', 'tugas'): 1\n", + " ('mengerjakan', 'tugas', 'kemudian'): 1\n", + " ('tugas', 'kemudian', 'mahasiswa'): 1\n", + " ('kemudian', 'mahasiswa', 'upload'): 1\n", + " ('mahasiswa', 'upload', 'e-learning'): 1\n", + "\n", + "Total trigram dalam 1 kalimat: 5\n", + "\n", + "Probabilitas masing-masing trigram:\n", + " P(tugas|mahasiswa,mengerjakan) = 1.00 (100.00%)\n", + " P(kemudian|mengerjakan,tugas) = 1.00 (100.00%)\n", + " P(mahasiswa|tugas,kemudian) = 1.00 (100.00%)\n", + " P(upload|kemudian,mahasiswa) = 1.00 (100.00%)\n", + " P(e-learning|mahasiswa,upload) = 1.00 (100.00%)\n", + "\n", + "Probabilitas Keseluruhan Kalimat (Model Trigram):\n", + " P(mahasiswa mengerjakan tugas kemudian mahasiswa upload e-learning) = P(mahasiswa)=0.29 x P(mengerjakan|mahasiswa)=0.50 x P(tugas|mahasiswa,mengerjakan)=1.00 x P(kemudian|mengerjakan,tugas)=1.00 x P(mahasiswa|tugas,kemudian)=1.00 x P(upload|kemudian,mahasiswa)=1.00 x P(e-learning|mahasiswa,upload)=1.00 = 0.142857 (14.29%)\n" + ] + } + ], + "source": [ + "from collections import Counter\n", + "from IPython.display import clear_output\n", + "import math\n", + "\n", + "# 1. Input Kalimat dan Tokenisasi\n", + "kalimat = input(\"Masukkan kalimat: \").strip()\n", + "\n", + "# Bersihkan output (khusus lingkungan notebook)\n", + "try:\n", + " clear_output()\n", + "except:\n", + " pass\n", + "\n", + "print(f\"Corpus: {kalimat}\")\n", + "\n", + "# Tokenisasi\n", + "tokens = kalimat.lower().split()\n", + "print(f\"Tokens ({len(tokens)}): {tokens}\")\n", + "\n", + "# 2. Hitung Frekuensi Bigram dan Trigram\n", + "bigrams = [(tokens[i], tokens[i+1]) for i in range(len(tokens) - 1)]\n", + "trigrams = [(tokens[i], tokens[i+1], tokens[i+2]) for i in range(len(tokens) - 2)]\n", + "\n", + "bigram_counts = Counter(bigrams)\n", + "trigram_counts = Counter(trigrams)\n", + "\n", + "print(\"\\nFrekuensi Trigram dalam kalimat:\")\n", + "for tg, count in trigram_counts.items():\n", + " print(f\" {tg}: {count}\")\n", + "print(f\"\\nTotal trigram dalam 1 kalimat: {sum(trigram_counts.values())}\")\n", + "\n", + "# 3. Hitung Probabilitas Trigram: P(w3 | w1, w2) = Count(w1,w2,w3) / Count(w1,w2)\n", + "trigram_probabilities = {}\n", + "for (w1, w2, w3), count in trigram_counts.items():\n", + " # Hindari pembagian dengan nol (jika ada bigram yang tidak muncul)\n", + " if bigram_counts[(w1, w2)] > 0:\n", + " prob = count / bigram_counts[(w1, w2)]\n", + " else:\n", + " prob = 0\n", + " trigram_probabilities[(w1, w2, w3)] = prob\n", + "\n", + "print(\"\\nProbabilitas masing-masing trigram:\")\n", + "for (w1, w2, w3), prob in trigram_probabilities.items():\n", + " print(f\" P({w3}|{w1},{w2}) = {prob:.2f} ({prob*100:.2f}%)\")\n", + "\n", + "# Tambahkan perhitungan Unigram Count (dibutuhkan untuk P(w1) dan P(w2|w1))\n", + "unigram_counts = Counter(tokens)\n", + "total_tokens = sum(unigram_counts.values())\n", + "\n", + "# 4. Hitung Probabilitas Kalimat Keseluruhan (Model Trigram)\n", + "# P(kalimat) = P(w1) * P(w2|w1) * P(w3|w1,w2) * ...\n", + "\n", + "# a. P(w1)\n", + "p_w1 = unigram_counts.get(tokens[0], 0) / total_tokens if total_tokens > 0 else 0\n", + "\n", + "# b. P(w2|w1) (Menggunakan Bigram tanpa smoothing)\n", + "if len(tokens) > 1:\n", + " count_w1 = unigram_counts.get(tokens[0], 1) # Hindari pembagian dengan 0\n", + " p_w2_w1 = bigram_counts.get((tokens[0], tokens[1]), 0) / count_w1\n", + "else:\n", + " p_w2_w1 = 1.0 # Jika hanya 1 kata\n", + "\n", + "p_kalimat = p_w1 * p_w2_w1 # Inisialisasi dengan P(w1) * P(w2|w1)\n", + "\n", + "# Daftar bagian rumus untuk ditampilkan\n", + "prob_str_parts = [f\"P({tokens[0]})={p_w1:.2f}\"]\n", + "if len(tokens) > 1:\n", + " prob_str_parts.append(f\"P({tokens[1]}|{tokens[0]})={p_w2_w1:.2f}\")\n", + "\n", + "# c. Perkalian Trigram P(wi | wi-2, wi-1) untuk i >= 3\n", + "for i in range(len(tokens) - 2):\n", + " triplet = (tokens[i], tokens[i+1], tokens[i+2])\n", + " p = trigram_probabilities.get(triplet, 0)\n", + " p_kalimat *= p\n", + " prob_str_parts.append(f\"P({triplet[2]}|{triplet[0]},{triplet[1]})={p:.2f}\")\n", + "\n", + "prob_str = \" x \".join(prob_str_parts)\n", + "\n", + "print(\"\\nProbabilitas Keseluruhan Kalimat (Model Trigram):\")\n", + "print(f\" P({' '.join(tokens)}) = {prob_str} = {p_kalimat:.6f} ({p_kalimat*100:.2f}%)\")\n" + ] + } + ], + "metadata": { + "colab": { + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.13.5" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +}