diff --git a/Klasifikasi Teks FNN (1).ipynb b/Klasifikasi Teks FNN (1).ipynb new file mode 100644 index 0000000..143f91e --- /dev/null +++ b/Klasifikasi Teks FNN (1).ipynb @@ -0,0 +1,169 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "f4a1399a-f23d-4060-a07e-bce5a5c7ddac", + "metadata": {}, + "source": [ + "# Klasifikasi Teks menggunakan ANN\n", + "## Arif R Dwiyanto\n" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "53a214ae-c9cf-4d46-925d-068f1685537b", + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "ename": "ValueError", + "evalue": "All arrays must be of the same length", + "output_type": "error", + "traceback": [ + "\u001b[31m---------------------------------------------------------------------------\u001b[39m", + "\u001b[31mValueError\u001b[39m Traceback (most recent call last)", + "\u001b[36mCell\u001b[39m\u001b[36m \u001b[39m\u001b[32mIn[1]\u001b[39m\u001b[32m, line 28\u001b[39m\n\u001b[32m 11\u001b[39m \u001b[38;5;66;03m# -----------------------------------------\u001b[39;00m\n\u001b[32m 12\u001b[39m \u001b[38;5;66;03m# 1. Contoh Dataset\u001b[39;00m\n\u001b[32m 13\u001b[39m \u001b[38;5;66;03m# -----------------------------------------\u001b[39;00m\n\u001b[32m 14\u001b[39m \u001b[38;5;66;03m# Anda bisa mengganti dataset ini dengan dataset lain (CSV, JSON, dll)\u001b[39;00m\n\u001b[32m 16\u001b[39m data = {\n\u001b[32m 17\u001b[39m \u001b[33m\"\u001b[39m\u001b[33mtext\u001b[39m\u001b[33m\"\u001b[39m: [\n\u001b[32m 18\u001b[39m \u001b[33m\"\u001b[39m\u001b[33mTempat ini sangat nyaman dan bersih.\u001b[39m\u001b[33m\"\u001b[39m\n\u001b[32m (...)\u001b[39m\u001b[32m 25\u001b[39m \u001b[33m\"\u001b[39m\u001b[33mlabel\u001b[39m\u001b[33m\"\u001b[39m: [\u001b[33m\"\u001b[39m\u001b[33mpositive\u001b[39m\u001b[33m\"\u001b[39m, \u001b[33m\"\u001b[39m\u001b[33mnegative\u001b[39m\u001b[33m\"\u001b[39m, \u001b[33m\"\u001b[39m\u001b[33mpositive\u001b[39m\u001b[33m\"\u001b[39m, \u001b[33m\"\u001b[39m\u001b[33mnegative\u001b[39m\u001b[33m\"\u001b[39m, \u001b[33m\"\u001b[39m\u001b[33mpositive\u001b[39m\u001b[33m\"\u001b[39m, \u001b[33m\"\u001b[39m\u001b[33mnegative\u001b[39m\u001b[33m\"\u001b[39m]\n\u001b[32m 26\u001b[39m }\n\u001b[32m---> \u001b[39m\u001b[32m28\u001b[39m df = \u001b[43mpd\u001b[49m\u001b[43m.\u001b[49m\u001b[43mDataFrame\u001b[49m\u001b[43m(\u001b[49m\u001b[43mdata\u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 30\u001b[39m \u001b[38;5;66;03m# -----------------------------------------\u001b[39;00m\n\u001b[32m 31\u001b[39m \u001b[38;5;66;03m# 2. Split Train & Test\u001b[39;00m\n\u001b[32m 32\u001b[39m \u001b[38;5;66;03m# -----------------------------------------\u001b[39;00m\n\u001b[32m 33\u001b[39m X_train, X_test, y_train, y_test = train_test_split(\n\u001b[32m 34\u001b[39m df[\u001b[33m\"\u001b[39m\u001b[33mtext\u001b[39m\u001b[33m\"\u001b[39m], df[\u001b[33m\"\u001b[39m\u001b[33mlabel\u001b[39m\u001b[33m\"\u001b[39m], test_size=\u001b[32m0.3\u001b[39m, random_state=\u001b[32m42\u001b[39m\n\u001b[32m 35\u001b[39m )\n", + "\u001b[36mFile \u001b[39m\u001b[32m~\\miniforge3\\Lib\\site-packages\\pandas\\core\\frame.py:782\u001b[39m, in \u001b[36mDataFrame.__init__\u001b[39m\u001b[34m(self, data, index, columns, dtype, copy)\u001b[39m\n\u001b[32m 776\u001b[39m mgr = \u001b[38;5;28mself\u001b[39m._init_mgr(\n\u001b[32m 777\u001b[39m data, axes={\u001b[33m\"\u001b[39m\u001b[33mindex\u001b[39m\u001b[33m\"\u001b[39m: index, \u001b[33m\"\u001b[39m\u001b[33mcolumns\u001b[39m\u001b[33m\"\u001b[39m: columns}, dtype=dtype, copy=copy\n\u001b[32m 778\u001b[39m )\n\u001b[32m 780\u001b[39m \u001b[38;5;28;01melif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(data, \u001b[38;5;28mdict\u001b[39m):\n\u001b[32m 781\u001b[39m \u001b[38;5;66;03m# GH#38939 de facto copy defaults to False only in non-dict cases\u001b[39;00m\n\u001b[32m--> \u001b[39m\u001b[32m782\u001b[39m mgr = \u001b[43mdict_to_mgr\u001b[49m\u001b[43m(\u001b[49m\u001b[43mdata\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mindex\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcolumns\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdtype\u001b[49m\u001b[43m=\u001b[49m\u001b[43mdtype\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcopy\u001b[49m\u001b[43m=\u001b[49m\u001b[43mcopy\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtyp\u001b[49m\u001b[43m=\u001b[49m\u001b[43mmanager\u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 783\u001b[39m \u001b[38;5;28;01melif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(data, ma.MaskedArray):\n\u001b[32m 784\u001b[39m \u001b[38;5;28;01mfrom\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[34;01mnumpy\u001b[39;00m\u001b[34;01m.\u001b[39;00m\u001b[34;01mma\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[38;5;28;01mimport\u001b[39;00m mrecords\n", + "\u001b[36mFile \u001b[39m\u001b[32m~\\miniforge3\\Lib\\site-packages\\pandas\\core\\internals\\construction.py:503\u001b[39m, in \u001b[36mdict_to_mgr\u001b[39m\u001b[34m(data, index, columns, dtype, typ, copy)\u001b[39m\n\u001b[32m 499\u001b[39m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[32m 500\u001b[39m \u001b[38;5;66;03m# dtype check to exclude e.g. range objects, scalars\u001b[39;00m\n\u001b[32m 501\u001b[39m arrays = [x.copy() \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mhasattr\u001b[39m(x, \u001b[33m\"\u001b[39m\u001b[33mdtype\u001b[39m\u001b[33m\"\u001b[39m) \u001b[38;5;28;01melse\u001b[39;00m x \u001b[38;5;28;01mfor\u001b[39;00m x \u001b[38;5;129;01min\u001b[39;00m arrays]\n\u001b[32m--> \u001b[39m\u001b[32m503\u001b[39m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43marrays_to_mgr\u001b[49m\u001b[43m(\u001b[49m\u001b[43marrays\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcolumns\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mindex\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdtype\u001b[49m\u001b[43m=\u001b[49m\u001b[43mdtype\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtyp\u001b[49m\u001b[43m=\u001b[49m\u001b[43mtyp\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mconsolidate\u001b[49m\u001b[43m=\u001b[49m\u001b[43mcopy\u001b[49m\u001b[43m)\u001b[49m\n", + "\u001b[36mFile \u001b[39m\u001b[32m~\\miniforge3\\Lib\\site-packages\\pandas\\core\\internals\\construction.py:114\u001b[39m, in \u001b[36marrays_to_mgr\u001b[39m\u001b[34m(arrays, columns, index, dtype, verify_integrity, typ, consolidate)\u001b[39m\n\u001b[32m 111\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m verify_integrity:\n\u001b[32m 112\u001b[39m \u001b[38;5;66;03m# figure out the index, if necessary\u001b[39;00m\n\u001b[32m 113\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m index \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[32m--> \u001b[39m\u001b[32m114\u001b[39m index = \u001b[43m_extract_index\u001b[49m\u001b[43m(\u001b[49m\u001b[43marrays\u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 115\u001b[39m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[32m 116\u001b[39m index = ensure_index(index)\n", + "\u001b[36mFile \u001b[39m\u001b[32m~\\miniforge3\\Lib\\site-packages\\pandas\\core\\internals\\construction.py:677\u001b[39m, in \u001b[36m_extract_index\u001b[39m\u001b[34m(data)\u001b[39m\n\u001b[32m 675\u001b[39m lengths = \u001b[38;5;28mlist\u001b[39m(\u001b[38;5;28mset\u001b[39m(raw_lengths))\n\u001b[32m 676\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mlen\u001b[39m(lengths) > \u001b[32m1\u001b[39m:\n\u001b[32m--> \u001b[39m\u001b[32m677\u001b[39m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\u001b[33m\"\u001b[39m\u001b[33mAll arrays must be of the same length\u001b[39m\u001b[33m\"\u001b[39m)\n\u001b[32m 679\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m have_dicts:\n\u001b[32m 680\u001b[39m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\n\u001b[32m 681\u001b[39m \u001b[33m\"\u001b[39m\u001b[33mMixing dicts with non-Series may lead to ambiguous ordering.\u001b[39m\u001b[33m\"\u001b[39m\n\u001b[32m 682\u001b[39m )\n", + "\u001b[31mValueError\u001b[39m: All arrays must be of the same length" + ] + } + ], + "source": [ + "# ---------------------------------------------------------\n", + "# Klasifikasi Teks dengan TF-IDF + Feedforward Neural Network\n", + "# ---------------------------------------------------------\n", + "\n", + "import pandas as pd\n", + "from sklearn.model_selection import train_test_split\n", + "from sklearn.feature_extraction.text import TfidfVectorizer\n", + "from sklearn.neural_network import MLPClassifier\n", + "from sklearn.metrics import classification_report, confusion_matrix\n", + "\n", + "# -----------------------------------------\n", + "# 1. Contoh Dataset\n", + "# -----------------------------------------\n", + "# Anda bisa mengganti dataset ini dengan dataset lain (CSV, JSON, dll)\n", + "\n", + "data = {\n", + " \"text\": [\n", + " \"Tempat ini sangat nyaman dan bersih.\"\n", + " \"Akses menuju ke sana cukup sulit dan membingungkan.\"\n", + " \"Pelayanan staf di sini juga sangat ramah dan cepat tanggap.\"\n", + " \"Lokasi kafe ini strategis dan mudah ditemukan.\"\n", + " \"Suasananya kadang terlalu bising karena sering ada keramaian.\"\n", + " \"Pilihan menu minumannya sangat beragam dan lezat.\"\n", + " ],\n", + " \"label\": [\"positive\", \"negative\", \"positive\", \"negative\", \"positive\", \"negative\"]\n", + "}\n", + "\n", + "df = pd.DataFrame(data)\n", + "\n", + "# -----------------------------------------\n", + "# 2. Split Train & Test\n", + "# -----------------------------------------\n", + "X_train, X_test, y_train, y_test = train_test_split(\n", + " df[\"text\"], df[\"label\"], test_size=0.3, random_state=42\n", + ")\n", + "\n", + "# -----------------------------------------\n", + "# 3. TF-IDF Vectorization\n", + "# -----------------------------------------\n", + "tfidf = TfidfVectorizer(max_features=5000)\n", + "X_train_tfidf = tfidf.fit_transform(X_train)\n", + "X_test_tfidf = tfidf.transform(X_test)\n", + "\n", + "# -----------------------------------------\n", + "# 4. Feedforward ANN (MLPClassifier)\n", + "# -----------------------------------------\n", + "model = MLPClassifier(\n", + " hidden_layer_sizes=(256, 64),\n", + " activation='relu',\n", + " solver='adam',\n", + " max_iter=500,\n", + " random_state=42\n", + ")\n", + "\n", + "model.fit(X_train_tfidf, y_train)\n", + "\n", + "# -----------------------------------------\n", + "# 5. Evaluasi Model\n", + "# -----------------------------------------\n", + "y_pred = model.predict(X_test_tfidf)\n", + "\n", + "print(\"=== Classification Report ===\")\n", + "print(classification_report(y_test, y_pred))\n", + "\n", + "print(\"=== Confusion Matrix ===\")\n", + "print(confusion_matrix(y_test, y_pred))\n", + "\n", + "# -----------------------------------------\n", + "# 6. Prediksi Teks Baru\n", + "# -----------------------------------------\n", + "#sample_text = [\"barang bagus luar biasa\"]\n", + "sample_text = [\"Tempat nyaman, saya suka\"]\n", + "sample_vec = tfidf.transform(sample_text)\n", + "prediction = model.predict(sample_vec)\n", + "\n", + "print(\"\\nPrediksi untuk:\", sample_text[0])\n", + "print(\"Hasil:\", prediction[0])\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "9f7d90fe-4af4-446c-9547-c9312bfa6fc7", + "metadata": {}, + "outputs": [], + "source": [ + "#sample_text = [\"barang bagus luar biasa\"]\n", + "sample_text = [\"Tempat bising saya tidak suka\"]\n", + "sample_vec = tfidf.transform(sample_text)\n", + "prediction = model.predict(sample_vec)\n", + "print(\"\\nPrediksi untuk:\", sample_text[0])\n", + "print(\"Hasil:\", prediction[0])\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "0413b4bf-beb1-483b-a081-b540fce1b21c", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "d714bd96-09a0-4439-8286-0cb39e2fb4df", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.12" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +}