{ "cells": [ { "cell_type": "markdown", "metadata": { "id": "JVPdWpz3hhbj" }, "source": [ "\n" ] }, { "cell_type": "markdown", "metadata": { "id": "4Mvva3v65h1v" }, "source": [ "# **UNIGRAM**" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "1cub_VJnUJMl", "outputId": "1889eb61-4f3f-4780-f42e-02368076cce3" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Corpus: Saya sangat mencintai pacar saya\n", "Tokens (5): ['saya', 'sangat', 'mencintai', 'pacar', 'saya']\n", "\n", "Frekuensi Unigram dalam kalimat\n", " ('saya'): 2\n", " ('sangat'): 1\n", " ('mencintai'): 1\n", " ('pacar'): 1\n", "\n", "Total unigram dalam 1 kalimat: 5\n", "\n", "Probabilitas masing-masing unigram:\n", " P(saya) = 0.40 (40.00%)\n", " P(sangat) = 0.20 (20.00%)\n", " P(mencintai) = 0.20 (20.00%)\n", " P(pacar) = 0.20 (20.00%)\n", "\n", "Probabilitas Keseluruhan Kalimat (Model Unigram):\n", " P(saya sangat mencintai pacar saya) = P(saya)=0.40 x P(sangat)=0.20 x P(mencintai)=0.20 x P(pacar)=0.20 x P(saya)=0.40 = 0.0013 (0.13%)\n" ] } ], "source": [ "from collections import Counter\n", "from IPython.display import clear_output\n", "import math\n", "\n", "# 1. Input Kalimat dan Tokenisasi\n", "kalimat = input(\"Masukkan kalimat: \").strip()\n", "\n", "# Bersihkan output (khusus lingkungan notebook)\n", "try:\n", " clear_output()\n", "except:\n", " pass\n", "\n", "print(f\"Corpus: {kalimat}\")\n", "\n", "# Tokenize\n", "tokens = kalimat.lower().split()\n", "print(f\"Tokens ({len(tokens)}): {tokens}\")\n", "\n", "# 2. Hitung Frekuensi Unigram\n", "unigram_counts = Counter(tokens)\n", "total_tokens = sum(unigram_counts.values())\n", "\n", "print(\"\\nFrekuensi Unigram dalam kalimat\")\n", "for pair, count in unigram_counts.items():\n", " print(f\" ('{pair}'): {count}\")\n", "print(f\"\\nTotal unigram dalam 1 kalimat: {total_tokens}\")\n", "\n", "# 3. Hitung Probabilitas Unigram: P(wi) = Count(wi) / Total Kata\n", "unigram_probabilities = {}\n", "for word, count in unigram_counts.items():\n", " prob = count / total_tokens\n", " unigram_probabilities[word] = prob\n", "\n", "print(\"\\nProbabilitas masing-masing unigram:\")\n", "for word, prob in unigram_probabilities.items():\n", " print(f\" P({word}) = {prob:.2f} ({prob*100:.2f}%)\")\n", "\n", "# 4. Hitung Probabilitas Kalimat Keseluruhan (P(kalimat) = P(w1) * P(w2) * ...)\n", "p_kalimat = 1\n", "prob_parts = []\n", "\n", "# Loop untuk menghitung probabilitas total dan membangun string rumus detail\n", "for word in tokens:\n", " prob_value = unigram_probabilities[word]\n", " p_kalimat *= prob_value\n", " # Format: P(word)=prob_value\n", " prob_parts.append(f\"P({word})={prob_value:.2f}\")\n", "\n", "# Gabungkan bagian-bagian rumus untuk mendapatkan prob_str detail\n", "prob_str = \" x \".join(prob_parts)\n", "\n", "print(\"\\nProbabilitas Keseluruhan Kalimat (Model Unigram):\")\n", "print(f\" P({' '.join(tokens)}) = {prob_str} = {p_kalimat:.4f} ({p_kalimat*100:.2f}%)\")" ] }, { "cell_type": "markdown", "metadata": { "id": "Vstwt996-FrS" }, "source": [ "# **BIGRAM**" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "XRIY4qgTVbjl", "outputId": "ea6e62ce-45a0-40c9-ca98-1fcc30558479" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Corpus: Saya adalah pemain liga sepak bola terbaik di dunia\n", "Tokens (9): ['saya', 'adalah', 'pemain', 'liga', 'sepak', 'bola', 'terbaik', 'di', 'dunia']\n", "\n", "Frekuensi Bigram dalam kalimat:\n", " ('saya', 'adalah'): 1\n", " ('adalah', 'pemain'): 1\n", " ('pemain', 'liga'): 1\n", " ('liga', 'sepak'): 1\n", " ('sepak', 'bola'): 1\n", " ('bola', 'terbaik'): 1\n", " ('terbaik', 'di'): 1\n", " ('di', 'dunia'): 1\n", "\n", "Total bigram dalam 1 kalimat: 8\n", "\n", "Probabilitas masing-masing bigram:\n", " P(adalah|saya) = 1.00 (100.00%)\n", " P(pemain|adalah) = 1.00 (100.00%)\n", " P(liga|pemain) = 1.00 (100.00%)\n", " P(sepak|liga) = 1.00 (100.00%)\n", " P(bola|sepak) = 1.00 (100.00%)\n", " P(terbaik|bola) = 1.00 (100.00%)\n", " P(di|terbaik) = 1.00 (100.00%)\n", " P(dunia|di) = 1.00 (100.00%)\n", "\n", "Probabilitas Keseluruhan Kalimat (Model Bigram):\n", " P(saya adalah pemain liga sepak bola terbaik di dunia) = P(saya)=0.11 x P(adalah|saya)=1.00 x P(pemain|adalah)=1.00 x P(liga|pemain)=1.00 x P(sepak|liga)=1.00 x P(bola|sepak)=1.00 x P(terbaik|bola)=1.00 x P(di|terbaik)=1.00 x P(dunia|di)=1.00 = 0.111111 (11.11%)\n" ] } ], "source": [ "from collections import Counter\n", "from IPython.display import clear_output\n", "import math\n", "\n", "# 1. Input Kalimat dan Tokenisasi\n", "kalimat = input(\"Masukkan kalimat: \").strip()\n", "\n", "# Bersihkan output (khusus lingkungan notebook)\n", "try:\n", " clear_output()\n", "except:\n", " pass\n", "\n", "print(f\"Corpus: {kalimat}\")\n", "\n", "# Tokenisasi\n", "tokens = kalimat.lower().split()\n", "print(f\"Tokens ({len(tokens)}): {tokens}\")\n", "\n", "# 2. Hitung Frekuensi Unigram dan Bigram\n", "unigram_counts = Counter(tokens)\n", "bigrams = [(tokens[i], tokens[i+1]) for i in range(len(tokens) - 1)]\n", "bigram_counts = Counter(bigrams)\n", "\n", "print(\"\\nFrekuensi Bigram dalam kalimat:\")\n", "for pair, count in bigram_counts.items():\n", " print(f\" {pair}: {count}\")\n", "print(f\"\\nTotal bigram dalam 1 kalimat: {sum(bigram_counts.values())}\")\n", "\n", "# 3. Hitung Probabilitas Bigram: P(w2 | w1) = Count(w1,w2) / Count(w1)\n", "bigram_probabilities = {}\n", "for (w1, w2), count in bigram_counts.items():\n", " prob = count / unigram_counts[w1]\n", " bigram_probabilities[(w1, w2)] = prob\n", "\n", "print(\"\\nProbabilitas masing-masing bigram:\")\n", "for (w1, w2), prob in bigram_probabilities.items():\n", " print(f\" P({w2}|{w1}) = {prob:.2f} ({prob*100:.2f}%)\")\n", "\n", "# 4. Hitung Probabilitas Kalimat Keseluruhan (Model Bigram)\n", "# P(kalimat) = P(w1) * P(w2|w1) * P(w3|w2) * ...\n", "total_tokens = sum(unigram_counts.values())\n", "p_w1 = unigram_counts.get(tokens[0], 0) / total_tokens # P(w1)\n", "p_kalimat = p_w1 # Inisialisasi dengan P(w1)\n", "\n", "prob_str_parts = [f\"P({tokens[0]})={p_w1:.2f}\"] # Tambahkan P(w1) ke rumus\n", "\n", "for i in range(1, len(tokens)):\n", " pair = (tokens[i-1], tokens[i])\n", " p = bigram_probabilities.get(pair, 0)\n", " p_kalimat *= p\n", " prob_str_parts.append(f\"P({pair[1]}|{pair[0]})={p:.2f}\")\n", "\n", "# Gabungkan rumus perkalian untuk ditampilkan\n", "prob_str = \" x \".join(prob_str_parts)\n", "\n", "print(\"\\nProbabilitas Keseluruhan Kalimat (Model Bigram):\")\n", "print(f\" P({' '.join(tokens)}) = {prob_str} = {p_kalimat:.6f} ({p_kalimat*100:.2f}%)\")" ] }, { "cell_type": "markdown", "metadata": { "id": "E6n1IU8X-G9S" }, "source": [ "# **TRIGRAM**" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "BIRARsj2FHJg", "outputId": "968d420e-9370-40e5-e7e1-148e1d351d62" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Corpus: Saya adalah anak dari ibu dan bapak saya\n", "Tokens (8): ['saya', 'adalah', 'anak', 'dari', 'ibu', 'dan', 'bapak', 'saya']\n", "\n", "Frekuensi Trigram dalam kalimat:\n", " ('saya', 'adalah', 'anak'): 1\n", " ('adalah', 'anak', 'dari'): 1\n", " ('anak', 'dari', 'ibu'): 1\n", " ('dari', 'ibu', 'dan'): 1\n", " ('ibu', 'dan', 'bapak'): 1\n", " ('dan', 'bapak', 'saya'): 1\n", "\n", "Total trigram dalam 1 kalimat: 6\n", "\n", "Probabilitas masing-masing trigram:\n", " P(anak|saya,adalah) = 1.00 (100.00%)\n", " P(dari|adalah,anak) = 1.00 (100.00%)\n", " P(ibu|anak,dari) = 1.00 (100.00%)\n", " P(dan|dari,ibu) = 1.00 (100.00%)\n", " P(bapak|ibu,dan) = 1.00 (100.00%)\n", " P(saya|dan,bapak) = 1.00 (100.00%)\n", "\n", "Probabilitas Keseluruhan Kalimat (Model Trigram):\n", " P(saya adalah anak dari ibu dan bapak saya) = P(saya)=0.25 x P(adalah|saya)=0.50 x P(anak|saya,adalah)=1.00 x P(dari|adalah,anak)=1.00 x P(ibu|anak,dari)=1.00 x P(dan|dari,ibu)=1.00 x P(bapak|ibu,dan)=1.00 x P(saya|dan,bapak)=1.00 = 0.125000 (12.50%)\n" ] } ], "source": [ "from collections import Counter\n", "from IPython.display import clear_output\n", "import math\n", "\n", "# 1. Input Kalimat dan Tokenisasi\n", "kalimat = input(\"Masukkan kalimat: \").strip()\n", "\n", "# Bersihkan output (khusus lingkungan notebook)\n", "try:\n", " clear_output()\n", "except:\n", " pass\n", "\n", "print(f\"Corpus: {kalimat}\")\n", "\n", "# Tokenisasi\n", "tokens = kalimat.lower().split()\n", "print(f\"Tokens ({len(tokens)}): {tokens}\")\n", "\n", "# 2. Hitung Frekuensi Bigram dan Trigram\n", "bigrams = [(tokens[i], tokens[i+1]) for i in range(len(tokens) - 1)]\n", "trigrams = [(tokens[i], tokens[i+1], tokens[i+2]) for i in range(len(tokens) - 2)]\n", "\n", "bigram_counts = Counter(bigrams)\n", "trigram_counts = Counter(trigrams)\n", "\n", "print(\"\\nFrekuensi Trigram dalam kalimat:\")\n", "for tg, count in trigram_counts.items():\n", " print(f\" {tg}: {count}\")\n", "print(f\"\\nTotal trigram dalam 1 kalimat: {sum(trigram_counts.values())}\")\n", "\n", "# 3. Hitung Probabilitas Trigram: P(w3 | w1, w2) = Count(w1,w2,w3) / Count(w1,w2)\n", "trigram_probabilities = {}\n", "for (w1, w2, w3), count in trigram_counts.items():\n", " # Hindari pembagian dengan nol (jika ada bigram yang tidak muncul)\n", " if bigram_counts[(w1, w2)] > 0:\n", " prob = count / bigram_counts[(w1, w2)]\n", " else:\n", " prob = 0\n", " trigram_probabilities[(w1, w2, w3)] = prob\n", "\n", "print(\"\\nProbabilitas masing-masing trigram:\")\n", "for (w1, w2, w3), prob in trigram_probabilities.items():\n", " print(f\" P({w3}|{w1},{w2}) = {prob:.2f} ({prob*100:.2f}%)\")\n", "\n", "# Tambahkan perhitungan Unigram Count (dibutuhkan untuk P(w1) dan P(w2|w1))\n", "unigram_counts = Counter(tokens)\n", "total_tokens = sum(unigram_counts.values())\n", "\n", "# 4. Hitung Probabilitas Kalimat Keseluruhan (Model Trigram)\n", "# P(kalimat) = P(w1) * P(w2|w1) * P(w3|w1,w2) * ...\n", "\n", "# a. P(w1)\n", "p_w1 = unigram_counts.get(tokens[0], 0) / total_tokens if total_tokens > 0 else 0\n", "\n", "# b. P(w2|w1) (Menggunakan Bigram tanpa smoothing)\n", "if len(tokens) > 1:\n", " count_w1 = unigram_counts.get(tokens[0], 1) # Hindari pembagian dengan 0\n", " p_w2_w1 = bigram_counts.get((tokens[0], tokens[1]), 0) / count_w1\n", "else:\n", " p_w2_w1 = 1.0 # Jika hanya 1 kata\n", "\n", "p_kalimat = p_w1 * p_w2_w1 # Inisialisasi dengan P(w1) * P(w2|w1)\n", "\n", "# Daftar bagian rumus untuk ditampilkan\n", "prob_str_parts = [f\"P({tokens[0]})={p_w1:.2f}\"]\n", "if len(tokens) > 1:\n", " prob_str_parts.append(f\"P({tokens[1]}|{tokens[0]})={p_w2_w1:.2f}\")\n", "\n", "# c. Perkalian Trigram P(wi | wi-2, wi-1) untuk i >= 3\n", "for i in range(len(tokens) - 2):\n", " triplet = (tokens[i], tokens[i+1], tokens[i+2])\n", " p = trigram_probabilities.get(triplet, 0)\n", " p_kalimat *= p\n", " prob_str_parts.append(f\"P({triplet[2]}|{triplet[0]},{triplet[1]})={p:.2f}\")\n", "\n", "prob_str = \" x \".join(prob_str_parts)\n", "\n", "print(\"\\nProbabilitas Keseluruhan Kalimat (Model Trigram):\")\n", "print(f\" P({' '.join(tokens)}) = {prob_str} = {p_kalimat:.6f} ({p_kalimat*100:.2f}%)\")\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "colab": { "provenance": [] }, "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.12" } }, "nbformat": 4, "nbformat_minor": 4 }