{ "cells": [ { "cell_type": "markdown", "id": "f4a1399a-f23d-4060-a07e-bce5a5c7ddac", "metadata": {}, "source": [ "# Klasifikasi Teks menggunakan ANN (TF-IDF + FNN)\n", "\n", "**Nama:** Fatah Sabila Rosyad \n", "**NIM:** 202210715288 \n", "**Kelas:** F7B2 \n", "**MK:** NLP \n", "\n", "**Tujuan praktikum:**\n", "Menerapkan klasifikasi teks sentimen sederhana menggunakan TF-IDF dan Feedforward Neural Network (MLPClassifier), dengan:\n", "- Mengubah contoh teks (menggunakan kalimat yang dibuat sendiri)\n", "- Mengubah parameter TF-IDF (`max_features`, `ngram_range`)\n", "- Mengubah arsitektur dan parameter model ANN (`hidden_layer_sizes`, `max_iter`, `learning_rate_init`)\n" ] }, { "cell_type": "code", "execution_count": 2, "id": "4c395092-326a-4abc-b308-067392277cfa", "metadata": {}, "outputs": [], "source": [ "# ---------------------------------------------------------\n", "# Klasifikasi Teks dengan TF-IDF + Feedforward Neural Network\n", "# ---------------------------------------------------------\n", "\n", "import pandas as pd\n", "from sklearn.model_selection import train_test_split\n", "from sklearn.feature_extraction.text import TfidfVectorizer\n", "from sklearn.neural_network import MLPClassifier\n", "from sklearn.metrics import classification_report, confusion_matrix" ] }, { "cell_type": "code", "execution_count": 3, "id": "4ac91b0c-e6af-4766-8933-db10ebf69140", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
| \n", " | text | \n", "label | \n", "
|---|---|---|
| 0 | \n", "Saya Fatah Sabila Rosyad merasa sangat puas de... | \n", "positive | \n", "
| 1 | \n", "Sebagai pelanggan, Fatah kecewa karena pelayan... | \n", "negative | \n", "
| 2 | \n", "Pengalaman belanja Fatah kali ini menyenangkan... | \n", "positive | \n", "
| 3 | \n", "Fatah benci produk ini karena mudah rusak dan ... | \n", "negative | \n", "
| 4 | \n", "Menurut Fatah kualitas produk ini sangat bagus... | \n", "positive | \n", "
| 5 | \n", "Fatah tidak akan membeli lagi di sini karena p... | \n", "negative | \n", "