\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Sometimes, the trend of data is not really linear, and looks curvy. In this case we can use Polynomial regression methods. In fact, many different regressions exist that can be used to fit whatever the dataset looks like, such as quadratic, cubic, and so on, and it can go on and on to infinite degrees.\n",
+ "\n",
+ "In essence, we can call all of these, polynomial regression, where the relationship between the independent variable x and the dependent variable y is modeled as an nth degree polynomial in x. Lets say you want to have a polynomial regression (let's make 2 degree polynomial):\n",
+ "\n",
+ "\n",
+ "$$y = b + \\theta_1 x + \\theta_2 x^2$$\n",
+ "\n",
+ "\n",
+ "\n",
+ "Now, the question is: how we can fit our data on this equation while we have only x values, such as __Engine Size__? \n",
+ "Well, we can create a few additional features: 1, $x$, and $x^2$.\n",
+ "\n",
+ "\n",
+ "\n",
+ "__PolynomialFeatures()__ function in Scikit-learn library, drives a new feature sets from the original feature set. That is, a matrix will be generated consisting of all polynomial combinations of the features with degree less than or equal to the specified degree. For example, lets say the original feature set has only one feature, _ENGINESIZE_. Now, if we select the degree of the polynomial to be 2, then it generates 3 features, degree=0, degree=1 and degree=2: \n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "tags": []
+ },
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "/home/jupyterlab/conda/envs/python/lib/python3.7/site-packages/sklearn/utils/validation.py:37: DeprecationWarning: distutils Version classes are deprecated. Use packaging.version instead.\n",
+ " LARGE_SPARSE_SUPPORTED = LooseVersion(scipy_version) >= '0.14.0'\n",
+ "/home/jupyterlab/conda/envs/python/lib/python3.7/site-packages/sklearn/linear_model/least_angle.py:35: DeprecationWarning: `np.float` is a deprecated alias for the builtin `float`. To silence this warning, use `float` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.float64` here.\n",
+ "Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations\n",
+ " eps=np.finfo(np.float).eps,\n",
+ "/home/jupyterlab/conda/envs/python/lib/python3.7/site-packages/sklearn/linear_model/least_angle.py:597: DeprecationWarning: `np.float` is a deprecated alias for the builtin `float`. To silence this warning, use `float` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.float64` here.\n",
+ "Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations\n",
+ " eps=np.finfo(np.float).eps, copy_X=True, fit_path=True,\n",
+ "/home/jupyterlab/conda/envs/python/lib/python3.7/site-packages/sklearn/linear_model/least_angle.py:836: DeprecationWarning: `np.float` is a deprecated alias for the builtin `float`. To silence this warning, use `float` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.float64` here.\n",
+ "Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations\n",
+ " eps=np.finfo(np.float).eps, copy_X=True, fit_path=True,\n",
+ "/home/jupyterlab/conda/envs/python/lib/python3.7/site-packages/sklearn/linear_model/least_angle.py:862: DeprecationWarning: `np.float` is a deprecated alias for the builtin `float`. To silence this warning, use `float` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.float64` here.\n",
+ "Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations\n",
+ " eps=np.finfo(np.float).eps, positive=False):\n",
+ "/home/jupyterlab/conda/envs/python/lib/python3.7/site-packages/sklearn/linear_model/least_angle.py:1097: DeprecationWarning: `np.float` is a deprecated alias for the builtin `float`. To silence this warning, use `float` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.float64` here.\n",
+ "Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations\n",
+ " max_n_alphas=1000, n_jobs=None, eps=np.finfo(np.float).eps,\n",
+ "/home/jupyterlab/conda/envs/python/lib/python3.7/site-packages/sklearn/linear_model/least_angle.py:1344: DeprecationWarning: `np.float` is a deprecated alias for the builtin `float`. To silence this warning, use `float` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.float64` here.\n",
+ "Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations\n",
+ " max_n_alphas=1000, n_jobs=None, eps=np.finfo(np.float).eps,\n",
+ "/home/jupyterlab/conda/envs/python/lib/python3.7/site-packages/sklearn/linear_model/least_angle.py:1480: DeprecationWarning: `np.float` is a deprecated alias for the builtin `float`. To silence this warning, use `float` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.float64` here.\n",
+ "Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations\n",
+ " eps=np.finfo(np.float).eps, copy_X=True, positive=False):\n",
+ "/home/jupyterlab/conda/envs/python/lib/python3.7/site-packages/sklearn/linear_model/randomized_l1.py:152: DeprecationWarning: `np.float` is a deprecated alias for the builtin `float`. To silence this warning, use `float` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.float64` here.\n",
+ "Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations\n",
+ " precompute=False, eps=np.finfo(np.float).eps,\n",
+ "/home/jupyterlab/conda/envs/python/lib/python3.7/site-packages/sklearn/linear_model/randomized_l1.py:320: DeprecationWarning: `np.float` is a deprecated alias for the builtin `float`. To silence this warning, use `float` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.float64` here.\n",
+ "Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations\n",
+ " eps=np.finfo(np.float).eps, random_state=None,\n",
+ "/home/jupyterlab/conda/envs/python/lib/python3.7/site-packages/sklearn/linear_model/randomized_l1.py:580: DeprecationWarning: `np.float` is a deprecated alias for the builtin `float`. To silence this warning, use `float` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.float64` here.\n",
+ "Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations\n",
+ " eps=4 * np.finfo(np.float).eps, n_jobs=None,\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ "array([[ 1. , 2. , 4. ],\n",
+ " [ 1. , 2.4 , 5.76],\n",
+ " [ 1. , 1.5 , 2.25],\n",
+ " ...,\n",
+ " [ 1. , 3.2 , 10.24],\n",
+ " [ 1. , 3.2 , 10.24],\n",
+ " [ 1. , 3.2 , 10.24]])"
+ ]
+ },
+ "execution_count": 7,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "from sklearn.preprocessing import PolynomialFeatures\n",
+ "from sklearn import linear_model\n",
+ "train_x = np.asanyarray(train[['ENGINESIZE']])\n",
+ "train_y = np.asanyarray(train[['CO2EMISSIONS']])\n",
+ "\n",
+ "test_x = np.asanyarray(test[['ENGINESIZE']])\n",
+ "test_y = np.asanyarray(test[['CO2EMISSIONS']])\n",
+ "\n",
+ "\n",
+ "poly = PolynomialFeatures(degree=2)\n",
+ "train_x_poly = poly.fit_transform(train_x)\n",
+ "train_x_poly"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "**fit_transform** takes our x values, and output a list of our data raised from power of 0 to power of 2 (since we set the degree of our polynomial to 2). \n",
+ "\n",
+ "The equation and the sample example is displayed below. \n",
+ "\n",
+ "\n",
+ "$$\n",
+ "\\begin{bmatrix}\n",
+ " v_1\\\\\\\\\\\\\n",
+ " v_2\\\\\\\\\n",
+ " \\vdots\\\\\\\\\n",
+ " v_n\n",
+ "\\end{bmatrix}\\longrightarrow \\begin{bmatrix}\n",
+ " [ 1 & v_1 & v_1^2]\\\\\\\\\n",
+ " [ 1 & v_2 & v_2^2]\\\\\\\\\n",
+ " \\vdots & \\vdots & \\vdots\\\\\\\\\n",
+ " [ 1 & v_n & v_n^2]\n",
+ "\\end{bmatrix}\n",
+ "$$\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "$$\n",
+ "\\begin{bmatrix}\n",
+ " 2.\\\\\\\\\n",
+ " 2.4\\\\\\\\\n",
+ " 1.5\\\\\\\\\n",
+ " \\vdots\n",
+ "\\end{bmatrix} \\longrightarrow \\begin{bmatrix}\n",
+ " [ 1 & 2. & 4.]\\\\\\\\\n",
+ " [ 1 & 2.4 & 5.76]\\\\\\\\\n",
+ " [ 1 & 1.5 & 2.25]\\\\\\\\\n",
+ " \\vdots & \\vdots & \\vdots\\\\\\\\\n",
+ "\\end{bmatrix}\n",
+ "$$\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "It looks like feature sets for multiple linear regression analysis, right? Yes. It Does. \n",
+ "Indeed, Polynomial regression is a special case of linear regression, with the main idea of how do you select your features. Just consider replacing the $x$ with $x_1$, $x_1^2$ with $x_2$, and so on. Then the 2nd degree equation would be turn into:\n",
+ "\n",
+ "$$y = b + \\theta_1 x_1 + \\theta_2 x_2$$\n",
+ "\n",
+ "Now, we can deal with it as a 'linear regression' problem. Therefore, this polynomial regression is considered to be a special case of traditional multiple linear regression. So, you can use the same mechanism as linear regression to solve such problems. \n",
+ "\n",
+ "\n",
+ "\n",
+ "so we can use __LinearRegression()__ function to solve it:\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "tags": []
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Coefficients: [[ 0. 52.15079093 -1.72242874]]\n",
+ "Intercept: [105.04586083]\n"
+ ]
+ }
+ ],
+ "source": [
+ "clf = linear_model.LinearRegression()\n",
+ "train_y_ = clf.fit(train_x_poly, train_y)\n",
+ "# The coefficients\n",
+ "print ('Coefficients: ', clf.coef_)\n",
+ "print ('Intercept: ',clf.intercept_)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "As mentioned before, __Coefficient__ and __Intercept__ , are the parameters of the fit curvy line. \n",
+ "Given that it is a typical multiple linear regression, with 3 parameters, and knowing that the parameters are the intercept and coefficients of hyperplane, sklearn has estimated them from our new set of feature sets. Lets plot it:\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "tags": []
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "Text(0, 0.5, 'Emission')"
+ ]
+ },
+ "execution_count": 9,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAGwCAYAAABPSaTdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAACCXklEQVR4nO3deViUVfsH8O8wAioiIiqL4FLpzxKzUjNNczfNBSWztEXLtzKXxLVs1V5Ts9IW07J6NS2lUjSzMnfSbEF8fcMWs8JEBSkXFkWQ4fz+OM3ADLOcGZ5ZGL6f65pr5JnzPM+ZoZzbs9y3TgghQEREROSnArzdASIiIiJ3YrBDREREfo3BDhEREfk1BjtERETk1xjsEBERkV9jsENERER+jcEOERER+bVa3u6ALygrK8OpU6cQGhoKnU7n7e4QERGRAiEECgoKEBMTg4AA2+M3DHYAnDp1CnFxcd7uBhEREbkgKysLsbGxNl9nsAMgNDQUgPyw6tev7+XeEBERkYr8/HzExcWZvsdtYbADmKau6tevz2CHiIiomnG0BMWrC5TnzJkDnU5n9oiKijK9LoTAnDlzEBMTgzp16qBnz5748ccfza5RXFyMyZMno1GjRggJCcHQoUNx4sQJT78VIiIi8lFe343Vtm1bZGdnmx4ZGRmm1xYtWoTFixdj6dKlSEtLQ1RUFPr164eCggJTm6SkJGzcuBHJycnYt28fCgsLMXjwYBgMBm+8HSIiIvIxXp/GqlWrltlojpEQAq+88gqefPJJJCYmAgDee+89REZGYu3atXj44YeRl5eHd999F2vWrEHfvn0BAO+//z7i4uKwY8cO3HrrrVbvWVxcjOLiYtPP+fn5bnhnRERE5Au8PrJz9OhRxMTEoGXLlrjrrrvwxx9/AAAyMzORk5OD/v37m9oGBwejR48e2L9/PwAgPT0dly9fNmsTExOD+Ph4UxtrFixYgLCwMNODO7GIiIj8l1eDnc6dO2P16tX48ssv8fbbbyMnJwddu3bFmTNnkJOTAwCIjIw0OycyMtL0Wk5ODoKCghAeHm6zjTWzZ89GXl6e6ZGVlaXxOyMiIiJf4dVprIEDB5r+3K5dO3Tp0gVXXnkl3nvvPdx0000AKq+wFkI4XHXtqE1wcDCCg4Or0HMiIiKqLrw+jVVRSEgI2rVrh6NHj5rW8ViO0OTm5ppGe6KiolBSUoJz587ZbENEREQ1m08FO8XFxfj5558RHR2Nli1bIioqCtu3bze9XlJSgtTUVHTt2hUA0KFDBwQGBpq1yc7OxuHDh01tiIiIqGbz6jTWjBkzMGTIEDRr1gy5ubmYN28e8vPzMWbMGOh0OiQlJWH+/Plo1aoVWrVqhfnz56Nu3boYPXo0ACAsLAzjxo3D9OnTERERgYYNG2LGjBlo166daXcWERER1WxeDXZOnDiBUaNG4e+//0bjxo1x00034dtvv0Xz5s0BALNmzUJRUREmTJiAc+fOoXPnzti2bZtZWuglS5agVq1aGDlyJIqKitCnTx+sWrUKer3eW2+LiMgvGQzA3r1AdjYQHQ107w7wr1qqDnRCCOHtTnhbfn4+wsLCkJeXx3IRRERWpKQAU6YAFRPUx8YCr74K/JMKjcjjVL+/fWrNDhER+Z6UFGDECPNABwBOnpTHU1K80y8iVQx2iIjIJoNBjuhYmwMwHktKku2IfBWDHSIismnv3sojOhUJAWRlyXZEvorBDhER2ZSdrW07Im9gsENERDZFR2vbjsgbGOwQEZFN3bvLXVe2KvDodEBcnGxH5KsY7BARkU16vdxeDlQOeIw/v/IK8+2Qb2OwQ0REdiUmAuvXA02bmh+PjZXHmWeHfJ1XMygTEVH1kJgIJCQwgzJVTwx2iIhIiV4P9Ozp7V4QOY/TWEREROTXGOwQERGRX2OwQ0RERH6NwQ4RERH5NQY7RERE5NcY7BAREZFfY7BDREREfo3BDhEREfk1BjtERETk1xjsEBERkV9jsENERER+jcEOERER+TUGO0REROTXGOwQERGRX2OwQ0RERH6NwQ4RERH5NQY7RERE5NcY7BAREZFfY7BDREREfo3BDhEREfk1BjtERETk1xjsEBERkV9jsENERETulZUFlJZ67fY+E+wsWLAAOp0OSUlJpmNjx46FTqcze9x0001m5xUXF2Py5Mlo1KgRQkJCMHToUJw4ccLDvSciIiIzf/8NvPkmcMstQLNmwJ49XuuKTwQ7aWlpWLFiBa699tpKrw0YMADZ2dmmx+eff272elJSEjZu3Ijk5GTs27cPhYWFGDx4MAwGg6e6T0RERABw4QLwwQfAoEFAdDTwyCPA3r3ytQMHvNatWl678z8KCwtx99134+2338a8efMqvR4cHIyoqCir5+bl5eHdd9/FmjVr0LdvXwDA+++/j7i4OOzYsQO33nqr1fOKi4tRXFxs+jk/P1+Dd0JERFQDlZYCO3YA778PbNwIXLxY/toNNwCjRgF33gnExXmti14f2Zk4cSIGDRpkClYs7dmzB02aNEHr1q3x4IMPIjc31/Raeno6Ll++jP79+5uOxcTEID4+Hvv377d5zwULFiAsLMz0iPPiL4CIiKjaEQJITweSkoCmTYGBA+WIzsWLwJVXAk8/Dfz8s2wzY4ZXAx3AyyM7ycnJOHjwINLS0qy+PnDgQNxxxx1o3rw5MjMz8fTTT6N3795IT09HcHAwcnJyEBQUhPDwcLPzIiMjkZOTY/O+s2fPxrRp00w/5+fnM+AhIiJyJCtLBjWrV8tgxqhRIzl6c889QOfOgE7nvT5a4bVgJysrC1OmTMG2bdtQu3Ztq23uvPNO05/j4+PRsWNHNG/eHJ999hkSExNtXlsIAZ2dDzo4OBjBwcGud56IiKimKCwEUlKA994Ddu+WozoAEBwMJCQA994L3HorEBjo3X7a4bVgJz09Hbm5uejQoYPpmMFgwFdffYWlS5eiuLgYer3e7Jzo6Gg0b94cR48eBQBERUWhpKQE586dMxvdyc3NRdeuXT3zRoiIiPxNWRnw1VfAqlXA+vVy4bHRLbcA990HjBgBhIV5rYvO8Fqw06dPH2RkZJgdu//++9GmTRs89thjlQIdADhz5gyysrIQHR0NAOjQoQMCAwOxfft2jBw5EgCQnZ2Nw4cPY9GiRe5/E0RERP7k2DE5gvPee0BmZvnxK68ExoyRozgtWnirdy7zWrATGhqK+Ph4s2MhISGIiIhAfHw8CgsLMWfOHNx+++2Ijo7GsWPH8MQTT6BRo0YYPnw4ACAsLAzjxo3D9OnTERERgYYNG2LGjBlo166dzQXPREREVEFRkZym+s9/gF27yo+Hhsp1OGPHAl27+tw6HGd4feu5LXq9HhkZGVi9ejXOnz+P6Oho9OrVCx9++CFCQ0NN7ZYsWYJatWph5MiRKCoqQp8+fbBq1SqrI0NEREQEue7mwAEZ4KxbB+TlyeM6HdCnjwxwhg8H6tb1aje1ohPCuNKo5srPz0dYWBjy8vJQv359b3eHiMgnGQwyP1x2tswX1707wH9XVjNnz8p8OO+8A1RcStKiBXD//TLIadbMW71zmur3t8+O7BAR1XQlJcCyZcDvv8slExMmAEFB3ulLSgowZQpQsRpPbCzw6quAnc2x5AvKymSphnfekb9IY1Ld4GDg9tuBceOAnj2BAK+n3nMbjuyAIztE5HtmzQIWL5ajKUZ6PTBtGuDp/RcpKXLjjeW3hXEJx/r1DHh8Uk6O3E31zjsyYjZq3x548EFg9GjAIk9ddaP6/c1gBwx2iMi3zJoFvPii7ddnzvRcwGMwyBkOW/WVdTo5wpOZySktn1BWJks3rFgBfPJJeaXx0FDg7ruBf/1LlnCoxouNK2Kw4wQGO0TkK0pK5JpQe7WM9XqZld8TU1p79gC9ejlut3u3nAkhLzl9Gli5Enj7beCPP8qP33QT8NBDwMiRQEiI9/rnJlyzQ0RUDS1bZj/QAeTry5bJskTulp2tbTvSkBBAairw5ptyrvHyZXk8LEzmw3noIaBdO+/20Ucw2CEi8iEVl1Zo0a6q/snhqlk70sD587I21Ztvmten6twZePhhmRvHT7aMa4XBDhGRD1Hd9eup3cHdu8s1OSdPVl6gDJSv2ene3TP9qdEOHQLeeANYu1bOYwJyauqee4Dx44HrrvNm73wagx0iIrJJr5fby0eMkIFNxYDHuMb1lVe4ONltiovldrc33gC++ab8eHw88MgjMtDhWlOH/HdTPRFRNXT8uLbttJCYKL9vmzY1Px4by23nbnPiBPDkk0BcnAxovvlGVhW/6y5ZoPOHH2TiJQY6SjiyQ0TkQ668Utt2WklMBBISmEHZrYSQgczrrwObNpWvVI+NlWtx/vUvICrKq12srrj1HNx6TkS+w9e2npMHXLwIfPCBDHIqlnDo1QuYOFFGmbU4NmENt54TEVVDQUEyS7K9pILTpjHQ8QvHj8u1OG+/DZw7J4/VrQvcd58McuLjvds/P8Jgh4jIxxizI/tKuQjSkBDA11/LVd0bN8qMxwDQsiUwaRLwwANAgwbe7KFf4jQWOI1FRGo8XfXbXYVAWb3cC0pKgI8+kkFOenr58d69gUcfBQYP5i/BBZzGIqIawVOVwW1V/V68GGjc2D2BQ1CQ9lmSWb3cw86ckcn/3nijPM10cLDMcPzoo8xw7CEc2QFHdoiqK09VBrdV9dsaXw4cWL3cg44ckaM4770HFBXJY9HRci3OQw/JCJmqjIVAncBgh6j68VRlcEdVvy35auDA6uUeIISsnPryy8Bnn5Ufv/56GYGPHMmV5RpjsOMEBjtE1Ysnt2erVv2uyBcDB1Yvd6PLl4GPP5ZBzsGD8phOBwwZIoOcW24pj4JJU6rf38ygTETVjjOVwavKlWreQgBZWXIRsK9g9XI3yM+XAc6VVwJ33y0DnTp1ZBmHX34BPvkE6NGDgY4P4AJlIqp2PFkZvCrVvD0ROKjurGL1cg2dOiUXZr31FpCXJ49FRsqt4+PHA40aebd/VAmDHSKqdjxZUsFR1W97qho4OApknNlZxerlGvjpJ+Cll4D335dTVwDQpg0wfbqsX1W7tnf7RzZxGouIqp0JE4AAB397BQTIdlVlrPoNqM9G6HSyfmNVAoeUFLmguFcvYPRo+dyihTxufH3EiMoLjk+elMeN7VTeB6uXO/D118DQoUDbtsDKlTLQ6dYN2LwZ+PFHWbOKgY5PY7BDRNWOXi8XKNtTt652X9y2qn5bo0XgkJIC3H575UDmxAl5fP16OaJjbYTGeCwpqfK6JlYvd4IQckdV9+4ysPn0U/nLHT4c2L9fDrkNGeI46iafwN1Y4G4sourGHTuLVNa+WLb5+29g6lTzoCQuTgY6rgYOBoNc/nHmjO029evLtbGO2Hr/zKBsR2kp8OGHwAsvlBflDAqSSQBnzgT+7/+82z8ywwzKROS3tN5ZpLr2Ra+vHDwMH65t4LBnj/1AB1ALdADb79/a+6jxiorkFNWLLwLHjslj9erJnVVJSUBMjDd7R1XEYIeINOfuEg5a7iyylVXYuPbF0fSO1oHDnj3aXYs7qxTk58tyDosXA6dPy2ONG8vod8IEIDzcu/0jTTDYISJNWSvhMGOGtiUctNpZZDDYX/ui08l/1Cck+N40T2goUFjInVUuO3NGDt29/jpw/rw81qyZnKp64AHHi8KoWuHKKiLSjLGEg+XCWINBHp81S5v7aLWzaO9e+2UgvJEcUHWUaNo0+cydVU7KyZEBTfPmwL//LQOdNm2AVauA336TuXIY6PgdBjtEpImSEjmiY8/ixbKdFrTYWeSLWYV79gQiIuy3iYgAnn6aO6uccvy4DGRatJC5ci5ckDWr1q+X28fHjAECA73dS3ITTmMRkSacKeGQlKTNPRMT5RSTqwuEfTGrsF4PrFght5jbsmKFbJeYCAwe7N71UdXeH38ACxbIkZvSUnmsSxcZLQ4YwFIONQSDHSLShCdLOFRUlQXCvppVODER2LABePRR2Tcjyx1i1naRvfyy9QzKNc6vvwLz58tsx8YovFcvGeT07Mkgp4bhNBYRacKTJRy0UnHtjy3eWvuSmAj8+afMlbN2rXw+dsw80HEmg3KN8csvsnTD1VcD770nA51bbwX27QN27ZIBDwOdGodJBcGkgkRaKCmR6zrtTWXp9cDFi743zWJtB5ler+0OMi0ZDHLpia3F1cYRqczMGrRI+eef5YLj5OTyYbrBg+VIzo03erdv5Daq398+M7KzYMEC6HQ6JFWYzBdCYM6cOYiJiUGdOnXQs2dP/Pjjj2bnFRcXY/LkyWjUqBFCQkIwdOhQnLC3vYKI3CIoqHyHkC3TpvleoJOSIterWgZpZWXyuCsjJAaDzJezbp18drSWyVm+uIvMa376CRg1StatWrdOvvmEBCA9XZZ4YKBD8JFgJy0tDStWrMC1115rdnzRokVYvHgxli5dirS0NERFRaFfv34oKCgwtUlKSsLGjRuRnJyMffv2obCwEIMHD4ZB679diMihRYvkrl7L0QS9Xh73tVESR3l2AOs1puxxVMBTC764i8zjfv5ZBjnx8eWjOcOHA//9L7BpE3DDDd7uIfkS4WUFBQWiVatWYvv27aJHjx5iypQpQgghysrKRFRUlFi4cKGp7aVLl0RYWJh48803hRBCnD9/XgQGBork5GRTm5MnT4qAgACxdetWm/e8dOmSyMvLMz2ysrIEAJGXl+eeN0lUwxQXC7FkiRCTJsnn4mJv98i63buFkN+S9h+7d8v2paXyz2vXyufSUvPrbdgghE5X+XydTj42bPBOv/3KL78IMXq0+QedmCjEf//r7Z6RF+Tl5Sl9f3t9ZGfixIkYNGgQ+vbta3Y8MzMTOTk56N+/v+lYcHAwevTogf379wMA0tPTcfnyZbM2MTExiI+PN7WxZsGCBQgLCzM94uLiNH5XRDVbUJAcEXn9dfnsa1NXRs6MkDgasXHHKJEtxl1kttbZ6nSyIKlfZVD+/XeZC+eaa+SKbSGAYcPkSM6GDcB113m7h+TDvBrsJCcn4+DBg1iwYEGl13JycgAAkZGRZscjIyNNr+Xk5CAoKAjhFrVLKraxZvbs2cjLyzM9srKyqvpWiKgaUs2fc/So451PnlxHo1UGaUcKC+XM0LXXyufCwqpdzyV//gn861+y2vjq1XIx1ZAhwMGDwMaNDHJIideCnaysLEyZMgXvv/8+ateubbOdzuL/ZCFEpWOWHLUJDg5G/fr1zR5EVPOojJDExsokfo5GbCrmw7FHq3U0WmSQtufGG2X9rU2bgIwM+Rwa6sH1vqdOARMnAq1aAe++K4fEBg4E0tKAzZtl9mMiRV4LdtLT05Gbm4sOHTqgVq1aqFWrFlJTU/Haa6+hVq1aphEdyxGa3Nxc02tRUVEoKSnBuXPnbLYhIrJFZYTkwQftBzLGEZu//lK7p5bZmBMTZe6dirl4MjO1CXTS0qy/lpbm5oAnNxeYPl0mZFq2DLh8GejbF9i/H/j8c6BjRzfenPyV14KdPn36ICMjA4cOHTI9OnbsiLvvvhuHDh3CFVdcgaioKGzfvt10TklJCVJTU9G1a1cAQIcOHRAYGGjWJjs7G4cPHza1ISKyx9EISatWatdp3Ng762iMGaRHjZLPWkxd2Qp0jNLS3DCldf488NRTwBVXyKRHly4BN98s9+5v3y5LPBC5yGvlIkJDQxEfH292LCQkBBEREabjSUlJmD9/Plq1aoVWrVph/vz5qFu3LkaPHg0ACAsLw7hx4zB9+nRERESgYcOGmDFjBtq1a1dpwTMRkS32amzt2aN2jaZN5SjRiBEysKk47VWdKpHfe696u40bNbjhhQtyJfsLL8iABwA6dADmzZOZj6tZtuOSEtYq80U+XRtr1qxZKCoqwoQJE3Du3Dl07twZ27ZtQ2hoqKnNkiVLUKtWLYwcORJFRUXo06cPVq1aBb2v/41CRD7FVo0tZ+pn6fVyNMiyXlVsrAx0qkO9Ko/VOCsuBt5+WwY1p0/LY23byizIw4ZVuyAHsJ6Je8YM383EXZOwXARYLoLIVxkMrlc015KxDhVgfcTGckGwr/TbFcOHy8XIjgwb5uLIjsEAfPAB8MwzcqcVIKeu5s6Vc3HV5YOyMGsW8OKLtl/3xaSa/kD1+5vBDhjsEPkiaxW9Lat+e7s/cXHVZ8RGVWGh3HXlSEEBUK+eExcWQu6ievJJwFj2JzpaBj0PPFCt53qqc1246q7a1cYiIjLyxYreVdn55O5aWVqqVw/o1Ml+m06dnAx0vvpKLjYeNkwGOg0ayDU6v/0GjB9f7SOAZcsc/04NBtmOvMOn1+wQUc3jKBOxTifz2iQkeH7Gw9a6Hnt8bYRKxfff295+3qmTfF3JDz8As2fLLeMAUKeO/OXNnAlYJIOtzjy2zolcxpEdIvIp/lTR2xMjVO7Kcvz993KqatgwoF07+VxQoBjo/PmnLO1w3XUy0NHr5QjO778D8+f7VaADyF1XWrYj7XHNDrhmh8iXrFsna085snatXM/qqwwGWTvLVuBm3MWVmen6CJUmoy9aOnsWeP55YOlSuZAFAO64Q+64at3aCx3yDK7Z8R6u2SGiakk1w7CWmYhtOXkSaNgQCAyUz6olIQwGmTqmqiNUJSVyAfTkyfLZGD8AXs5ybKmoSG41uvJKufe6pERWSv3+e+Cjj/w60AFkADNtmv0206Yx0PEqN1dfrxZUS8QTkfuVlgoRGyuETieEDAnMHzqdEHFxsp07BQVZv39QkP3zNmyQ/bd2rrXH2rXWrzNzphB6vXlbvV4eLyhQu3ZBgfafi5nSUiFWrTJ/w9deK8QXXwhRVubmm/see78zcg/V72+O7BCRT/FURW97goPNR1EqKimRr1tja42OPdZGqIw5WyynRQwGeVy10LdqNmSXbN8uMx2PHSvfcFwcsGqVrEY+YEC1TApYVYsWyamqJUuASZPk88WLzK/jC7hmB1yzQ+SLvJXX5uRJuZbGkRMnzOtpOVqjY8nWmh2V9R+q2rWTG6I09cMPMhr78kv5c1gY8MQTcq6tTh2Nb0Zkn+r3N7eeE5FPslevyp3atVNvd/Zs+c+OdpFVZG+ESiVniypNd/+cOgU8/TSwcqWcoQkMlIWfnn4aiIjQ8EZE2mOwQ0Q+y5W8NlVVUOBau+xs9XvYq5WlZS6WVas0uMiFC8BLL5XP0QByh9WCBdxLTdUG1+wQEVWgUirBWjvV3WETJ8rEwbam4rSMH/773yqcbDDIUZxWrYA5c2Sg06ULsH+/3GHFQIeqEQY7REQVZGS41s5YHd3Rutw33pBxgq2EghMmOJ6qU13768xok5ldu4COHWXNquxsWajz44+Br7+WAQ9RNcNgh4i8wlfrRTVt6jgfSlCQ+eJkwP4uMkv2Miir5GwZOdL+60ZO5yL69Ve5UKpPH+DQIbn4+OWXgZ9+kh2ugTusyD8w2CEij0tJkTuXevWS2ZJ79ZI/e6PApzXFxbYDnqAg+bo1iYnA+vWVAyFLxj2wSUnWg7xFi2T5KMsRHr1eHv/gA/ujSDqd3LnWvbv9fpicOwdMnQq0bSsrk+v1cnfVb7/JyMvWXnuiaoJbz8Gt50SeZMxFY/k3j/GLe/368vUsBoPnd2NVdPKk3HVVUCDX6Bw6BPzxh+P+GDMoT53q+B67d9tehF1SIndn/f67nPqaMKE8CDN+joD5Z2ntc7Tp8mXgrbeAZ581bS073HwQ0ke9hFFz2zDjL/k85e9vDyQ49HnMoEzkGcbsyLYy/lbMjmwtE3FsrDzuDc72Z+3aqmVQdrVPcXGKn9HWrUJcfbXpxAy0Ff3wJTP/UrXCDMpE5HNUK5o//7z7q4WrMK4rmjoVuP125/rjiRpfiYly1Kdixl57O70AyHU5Q4bILMc//4wLdSLwCJbhOhzCdvQ3NTNma541y/X+EfkKTmOB01hEnqJa0bxhQ/OEfRVpUS1chbUMzs70x5hR+eTJylN29s6rah9jY+VC6UoBT14e8O9/A6+9JqevatWCYcJkRC59GmfKwm3eg9W6yZex6jkR+RzVUQxbgQ6gVi28qpypcWWrP+6u8WWrj5VGm8rKgHfflflyXn5ZBjq33QZkZOD1lovtBjqADNqWLXOtj0S+gsEOEXmMo1w0Op0c1VHhcg4ZBwwGOVri7Jj3hg2Vt9Db2p0VG6u4gNiFPprt9Nq7H7jxRuBf/wL++gv50a3xw4LPYNj8GdCmjXK2Zi2zOhN5A4MdIvIYldGOKVPUrlWVtS7WGNfnzJnjXNVyo6VLrW+hT0wEjh2Tu67WrpXPmZlVK2bqaO1TlDiF57Puhf6Wm4H0dOTr6mMaXkaj7Ay0n32bqY+qSZCZLJmqO67ZAdfsEHmavYrmCQnuX+ui0h9XObX120W21j4FogRJeAVP498IRSHKoMNK3I8nMB+5iKzUx3XrgLvvtp/QkWt2yJdxzQ4R+Sx7ox2ORn+EkLMyH32kTeZlZ9bnqDDu5R4/Xib/U+1jUZHcUXXrrfK5qMh2W2ujWgPwBTLQDovwGEJRiG9wE27E9/gX3jULdIx9BGSCQke5gKZNY6BD1R9HdsCRHSJfZG20JSJCPp85U37M5u4jBcYdU1oFOrY46uOwYcAnn1Q+npAAbNpU+XhREVC3rvxzS/yBJZiKBGwGAOQgEo/hBazBvRAK/57dvVuOqDlzfyJfwZEdIqrWLEd/5s6Vu7QqBjpA1XLvOFr7ohV7fbQV6ADy+LBhlY+/9RZQG0V4FnPwE65BAjbjMmrhJUzH/+EIVmOMUqBjvMfmzZWP63TyuK+U8CCqCo7sgCM7RL7O0QiMq+t4VPP+aKVhQzn91rOn7GfFERp7Vq0Cmjf/pzxFgMBbQz5Fv8+ScAUyAQA70AeT8Tp+wdVO96lxY+Cvv6y/5qmcRkSuUv3+ruXBPhERuUQ18/LevdbrTNmqMaX1ji5Hzp4F+vYtn9batUvtvLFj5fPNUb9jfcyjePjg5wCALMRiGhZjPUYAcK4iuU4HNGpkO9ABHH+uRNUFp7GIyOep5tSx1m7WLDl6MnWq3B4+dar8edas8rw/nnbihCw/sW+fWnvjlNWOnLaIOvg5DPpALNTNRhv8gvW4A64EOoDciaXCXTmNiDyFwQ4R+TxX60zNmiXrO1nuhjLWfZo9Gxg1Sps+uuLIEcdtbsNnOIx4zMFc1EYxtqEfejc+jA0d5uMiQly6rzGpYUKCWntPj4ARaY1rdsA1O0S+TnVty8WLQJ068s8lJfIcRzlkIiOBU6dst6ldW65rycpyrs9V1Qx/4hUkYTg2AQBOoCmS8Ao24HYAOgQEyEoQjsTFySoRjRvLEZro6H/W/ug9U7+LyJ24G4uIqj1jVuOHH1Zr/9Zb5X9etsxxfhuDwX6gAwCXLgGrV8tyEO6Y8mrd2vznQJTgMSzEz7gaw7EJl1ELizATbfALNlRYm6MS6EycKAOVO+6Qa25GjSpfHA24v34Xka/warCzfPlyXHvttahfvz7q16+PLl264IsvvjC9PnbsWOh0OrPHTTfdZHaN4uJiTJ48GY0aNUJISAiGDh2KE57YS0pEbpWSIkcdevUC1qxRO+fo0fI/a1nPKTvbfCv8U09pd+2RI8unk3pgD/6H9liI2aiLIqTiFlyHQ3gMi3AB9Zy+thCOAxV31e8i8iVeDXZiY2OxcOFCHDhwAAcOHEDv3r2RkJCAH3/80dRmwIAByM7ONj0+//xzs2skJSVh48aNSE5Oxr59+1BYWIjBgwfDUNW0qkTkNa5mNa44OqFlPSfjmhW9Xo6MzJljv6ApAKjOiPfsCWxakYvLo+/DHvTC1fgFuWiC+7AaPbEHP6GtWXudDghRXKpjr38VuaN+F5FPET4mPDxcvPPOO0IIIcaMGSMSEhJstj1//rwIDAwUycnJpmMnT54UAQEBYuvWrcr3zMvLEwBEXl6ey/0mItuKi4VYskSISZPkc3Gx7balpULExhqLLjj3WLXK/J56vf32er0QMTFC6HTWX9fphIiLk32ytGGDfN3yXOOxjz4SIiLC/v0bNTQIw/K3hAgPLz/5kUfE5vfO2r325Mlqn8fq1Vr/Jol8i+r3t8+s2TEYDEhOTsaFCxfQpUsX0/E9e/agSZMmaN26NR588EHk5uaaXktPT8fly5fRv39/07GYmBjEx8dj//79Nu9VXFyM/Px8swcRuYe9rd/WVCWr8blz5X8OCpJ1neyZNg14/XX5Z5U1KyUl8ufJk4Hjx4HkZOvTPx99JBcE33uv7Xu3ww/4pXE3BDzysOz49dcD334LLFuGIfeFazK1FBen1o7I33k9qWBGRga6dOmCS5cuoV69eti4cSOuueYaAMDAgQNxxx13oHnz5sjMzMTTTz+N3r17Iz09HcHBwcjJyUFQUBDCw8PNrhkZGYmcnByb91ywYAHmzp3r1vdFROVbvy0Zt34DwKJF5q9VJadL48bmP1ss8avkppvK16xY1uGKjQX+/W/g2WeBBx+Uwc+5c+YLg/V6ICkJGDy4fKfTX3/JgK7itSrunKqLC3ip3lw8fHExAo4YgNBQeaOJE4Fa5X8lJybKtTx791rfRRURUbl0RkUREbI9EcH701jFxcXi6NGjIi0tTTz++OOiUaNG4scff7Ta9tSpUyIwMFBs2LBBCCHEBx98IIKCgiq169u3r3j44Ydt3vPSpUsiLy/P9MjKyuI0FpHGVKeRLKe0duxwbQoLkOcalZY6nkaKiCifoiotFWL3biHWrpXPkZHq9505U17DOLVlq92KoZ+Kosjm5Qduv12IEyec/mydfW9E/qraTGMFBQXhqquuQseOHbFgwQK0b98erxr3QlqIjo5G8+bNcfSfLRdRUVEoKSnBuYpj1wByc3MRGRlp857BwcGmHWDGBxFpS3Xr97Jl7rn/nj32Rz4A+fqePfLPxsXHo0YBd90FnD6tfq/Fi2UuoClTrOericYpfIQ78ODmIah9+k+gWTPg00+tb4NSsHev2nvbu9fpSxP5Ja8HO5aEECguLrb62pkzZ5CVlYXof7ZGdOjQAYGBgdi+fbupTXZ2Ng4fPoyuXbt6pL9EZJ3q1m/LdhWW5Tmt4rnGIMYRy3ZnzzoX6AAyaJs5s/JaIx3KMB7L8TOuxh1Yj1LocfzOmcBPP8m5LxdVpXwGUU3k1TU7TzzxBAYOHIi4uDgUFBQgOTkZe/bswdatW1FYWIg5c+bg9ttvR3R0NI4dO4YnnngCjRo1wvDhwwEAYWFhGDduHKZPn46IiAg0bNgQM2bMQLt27dC3b19vvjWiGk9167dlu6qUJqh4rkrSPWvtevRw7d4Vc/wAQFscxgo8hK74BgDwPTrhIazAkFbXYU5toCp5+lwtn0FUU3l1ZOf06dO499578X//93/o06cPvvvuO2zduhX9+vWDXq9HRkYGEhIS0Lp1a4wZMwatW7fGN998g9DQUNM1lixZgmHDhmHkyJG4+eabUbduXXz66afQM+UnkVdNmOA4oZ1eL9tVZCzOqZojBpBt4+LMF+Sqzk5btnOUUdmWVq3kczAuYR6exH9xPbriGxSgHibjNXTBN/gfrsO8eTJZYkqKa/cB1AqYWn4eRDWaZ5YQ+Tbm2SFyj5kz7S+iveoqIdq1E2LYMCEKCsrPs5XDxlYuHJ1OnlPR3XerLS6++27z8+LjnV8YrdcLcfGiEHc02iWOoJXphRQME02RpdxnZyQk2O+TnRRlRH6j2ixQJiL/Y8xHU1Qkyz0E2Pib5rffgIwMYNMmuQP7xhvlcVslDIxFPisSAhg6tHLumcJCtb5atktNVTuvoicfOYs6k8bho797ozWO4hSiMRwpSMRGnETlIRjjIuakJMeLuK0pKQG2bLHfZssW2Y6IfHCBMhFVb5ZJBHfvll/uvXoBkybZT3SXlmYe8FQsYXDnnTJ4suaTTyonKXR1XUvDhrISugp9gMDqoR9j7sfXAP/5DwDgj/7j0TfmZ2zCcLvnCiErqbuyY8rbO92IqhsGO0ReYqzovW6dfPaFcm5V7ZMxiaDleULIoEWnk1/w9qSllY+2GLeD3367HOmxZ/Fi85EMRwkF7bXLybEd8ISGyqBtxbMnUTJoOO7dPFJu32rTBti7F1d8uRwZx8OUi4W6smPKcjF0VdsR+TsGO0ReULGi9+jR8rmqi1a93aeSEhlw2GMszeCIZZkFV0Yy/vpL7V622t13n/Xjjzxchtfj38KDS65BwKefyKzHTz8NHDoEdOsGQAZpffqo3d+VHVOqi7edWeRN5M8Y7BB5mK2K3idPyuPeCHi06JNKQKLKMveOKzl7Dh1SO8daO1tlLq7CUQx8qTcwfjyQny/n3A4eBJ57DggONmvraFeZtR1kqjp31rYdkb9jsEPkQQaD7Sy7VV206u0+qQYkKixz77iSs8fVBcrWRqj0KMUMvIgfcC16IhUXUBelLy4B9u8H2rWzel29HjAmg1cpMuoM1QKfLARKJDHYIfIgRxW9q7Jo1dt9Ug1IVKxZY/6zKzl7YmLU7mXZznKEqh1+wDfoghcxC3VwCdvRF/E4jKW1khx2ytauMmerl1tinh0i5zDYIfIgX0zzr1WfVAOSjh3tt+nUCahXz/xYUBAwbZr986ZNk+2MunSx395WO+MIVSBKMAfPIh0d0AkHcA4NcD/+g/7YhmNoqTySZbmrbPduIDPT9UAHMB81ssXVUSMif8Rgh8iDfDHNv7N9srVjSzUgSUuTAY01nToB339v/bVFi2T9KcucPQEB8viiRebHXR3ZufJKoCPSkI4OeBbPIRClSMFwXIOfsAr3A9CZ2qmqWGS0Z0/1IMTe7rhvv7V/rqPXiWoUDyU59GnMoEyeUloqRGys7czAOp0QcXGynS/2acMG2bbi67Gx5pmAZ86UGYUtMwzPnGl+34ICmTnZWgZlWzZsEKJpU/NrN21qPRPxjh1q2Y937Khw0sWLonT6LFGKACEAcRqNxQh8JICySu+nuNilj1uZvc+6uLjyZ2wtq7O7+0jkbarf3wx2BIMd8ixbpRC0KCHgzj4Z26iUPiguFmLJEiEmTZLPWnzpOnN/IYRYu1Yt2Fm79p8Tvv5aiNatTS+8j9EiAn9ZPccycNOao/d6//1q723JEvf2k8jbGOw4gcEOeZq1EQrLERJv9MlyJCEuTh43jv7Y+lJ1ZUSqtFSI3btlsLF7t/1zXbn/7t1qAUHqFxeEmDq1PLqIjhbik0+UR6i88V7r1VN7b5MmOd9XoupE9fu7ljen0IhqMl9L+JaYCCQkyF1X2dlyjU737nJ9yZ496ju2evZ0fK+UFLndveI1Y2PloltrC3ed2TFmvL9xx9LJk/J1SzodkNh4L7pPfkAW6QKAsWPlvvPwcCwaCsybJ3dn/f67XKMzYYL5ImgV7nivqtvqtdwhR1SdcYEykYf5YlJBR7TcRebK+3fl/vby3NTFRSwRSfj4rx7Q/fab3Bv+2WfAypVAeLipXVCQzDH0+uvy2ZVAx13v1RGdznwrPlFN5vLIzvnz5/H9998jNzcXZWVlZq/dZyvPOlEN5yiBn04nv1QTEjy/bdjeCIRWu8icff8Ggxzp+OkntfufPi3PMX52xjw3Fd/XzdiHNbXuR8vS3wAB4P775WhOgwZqN1Hk6u/aHTvxjJ+j5YgdUY3hyhzZ5s2bRWhoqAgICBBhYWGiQYMGpkd4eLhL827exDU75Cmq60h27/ZsvxwtiP34YyEiIuz3OSLC8ZodZ96/tTVEKg9ra59KS+XanJ8HThVlxjfatKkQn3/uro/U5d+1yu64Bg3UFyir7KAjqq5Uv79dmsaaPn06HnjgARQUFOD8+fM4d+6c6XH27FltozEiP+KLSQVVykVMnQpcuGD/OhcvOr6X6vv65BPr0z8qrE4RffstOj50Pdp8sQQ6IVA2Zixw+DAwcKDzN1Dk6u9apczEjTeqXXvr1uo3ZUrkDi4FOydPnsSjjz6KunXrat0fIr/mi0kFVRbEnjgBXLpk/zpFRcCuXfbbNGmi1qf337cefKkwnpeUBBguFuPI8MeBbjejbtavOIVoDMIWNN+5Eim7Gji8Vk4OEBUF1K4tn3Ny1PtRld+1ozITqn/1pqbaD2I9XYeNyFtcCnZuvfVWHDhwQOu+EPk9d1bCdpWWo0iWNa1c9fffVTtfCKBxVjrOtOyA/9v0AvQowxrcg7b4EZ9jkNLIRkiIDEROnwaKi+VzdLQ8rqKqv2t7ZSZUAyl7AWrFHWxE/s6lBcqDBg3CzJkz8dNPP6Fdu3YIDAw0e33o0KGadI7I3xinKEaMkF92Ff/VXdVK2K7SchSpoMD+67m52t3Lllq4jCfxPJ7CPNTKNeA0mmA83sQmDDe1cbQYPCTE9rTcxYvydUfTelr8ro1lJiy1bm3/3s7w5JQpkde4siBIp9PZfAQEBLi0yMibuECZPM1eAj93sJfUTmVBbP36agtiX37Zfj9USzi4+rgaP4o0dDAd+AgjRCPkOrVAODtb7V7Z2WqfvTsWCKuUiwgIUHsfZuUyiKoZty5QLisrs/kwcAKYyCF3VMK2JSUFaNEC6NULGD1aPrdoUT6Fo7IgdsUKtXtNmqRFj4FGjexP/8TGAhER5ccCYMB0vISDuAEdkY6zCMf9wWsxEh/hbzS2ey/LkY3rrlPro2o7oPK6GVfXIxmpFF0dMaJq9yDyJ0wqSOQlrlbCdoZqUjtHC2KHD3ec8VklI7TqNNY991i/pvHnxYvLj7VAJnajF17CTNRGMT7HQMTjMFKCR8FYodyeCjkEAQDnz6v1UaWd8fM/edL8+KlTVd8NZawCb/nfjV4vjw8bpnYdT0wtEnmby8FOamoqhgwZgquuugqtWrXC0KFDsZcr3Yh8hsqW8oq7ceyNNi1b5ng0QgjZzh7V9UEJCfaDr8aNgTNnBB7Au/gB1+IW7EUB6uFBrMAgfIZsxCA/X+1emzeb/6yaW9DYrqRErr2ZPFk+l5TI485+/q5YtEiuIVqyRI6qLVkif160yDd3/hF5jStzZGvWrBG1atUSI0eOFK+++qp45ZVXxMiRI0VgYKD44IMPXJp38yau2SF/pGUCw0mT1K7lqPCkyvqgigU9ba01SlmeIz7BENOJqeguWuJ3l9b59O9v3kdn1uzYKxbq7QSSzn7WRNWRW6uet2nTRixevLjS8Zdfflm0adPGlUt6FYMd8jfFxULce696gOKoEveSJWrXWrJEtre3INqYrdnyS9h4zOHC3ZQUURzWSAhAXEKQmI4XRQBKXQp0ACEmTqx8i7p17Z9Tt64MaOy1GTxY7f5r1zrzm3VOlT9rIh/n1mAnKChIHD16tNLxo0ePiuDgYFcu6VUMdsifWBttUHnY2yGksvtHr5ftVHYfubQbLS9PiPvvN51wOLC9aIcfbI5aNG2q9r7Pn7d+O1sBT9262u6GcndpEE/v/CPyJLfuxoqLi8POnTsrHd+5cyfi4uKqMKlGRFUxaxbw4ouurQOxl2hPZffPtGnAli3qC6Kd2o22dy/Qvr2sSq7TAY8/jqNrvsNhXTubi5j793f0jqWVK60fv3BB7tSKjASCg+VzdrY8vmyZ48+4rEyeZ09oqPsTSHpy5x+Rr3IpqeD06dPx6KOP4tChQ+jatSt0Oh327duHVatW4VXjHlYiskvrStQlJea7lJwlhP1Ee4sWAb/+KutWWUpIABYskFvahbB+bcD82rYS5pkpKQGeeUbeXAigRQsYVq7GXnRHUTYwZw7w9tuVK7W/8or8Ulfx+++2X7NVIuLoUbVrFxfbf72wUAYgxkzK7komqfRZE/kxl4KdRx55BFFRUXj55Zfx0UcfAQCuvvpqfPjhh0hISNC0g0T+KCVF7tSx/JJ+9VXX/8WtMtrgiBDlJQQsvxxTUirvXAJkgLR5M/D8844Ld9q6tlU//QTcfTdw6JD8+YEHsLnXEky8t77ZfZo2BebOBVq1Mg8ajx9XuAeAK69Ua1eRyjZ7FUIA990n/1zV3z8R2eGhaTWfxjU75EnGRaPW1plUZdGo6o4pVxbNGnf22Gqv0wnRsKHatd9/38EbKSsT4rXXhKhdW54QESFESorTn1turlp/cnOd/6xXr9bus9bq909UE7l1zQ4RucaduVdcGaGwxTL3ikpl9LNn1a791192XszOBgYOBB59VFaxvPVWICMDhqHDnf7cVAeZXRmMjolx/hxHqvr7JyLblIOdhg0b4u9/ShGHh4ejYcOGNh9EZJ1K0OBqJeoJE6q+5sNWJW4ti0U2tlW9YdMmoF074Msvgdq1gddfB774AoiOdulz++03tf6otnOFs9NdVfn9E5Ftymt2lixZgtDQUNOfdRpMWi9fvhzLly/HsWPHAABt27bFM888g4EDBwIAhBCYO3cuVqxYgXPnzqFz585444030LZtW9M1iouLMWPGDKxbtw5FRUXo06cPli1bhtjY2Cr3j0hrqkGDK8GFccfUiy86fy5gvxK3lll2LbMi48IF2XFjAa7rrgM++AC45hpTE9XPY+fO8jU7DRo4GEX6h72MySUlci3U77/LkbMJE+TnrFpi4YYbgPR0tbYVsRI5kcY8M6tm3ebNm8Vnn30mjhw5Io4cOSKeeOIJERgYKA4fPiyEEGLhwoUiNDRUbNiwQWRkZIg777xTREdHi/z8fNM1xo8fL5o2bSq2b98uDh48KHr16iXat28vSp1IC8o1O+QpqlW/q1KJOiHBtTUj9nKvqObZiYlxfA+z/zXT0oRo3bp80crMmUJculTp/qrZiIHynD6bNqm137TJ+nu2lx152za1a0dEuPa7cHfuHSJ/4dakgunp6eKHH34w/bxp0yaRkJAgZs+eLYqLi125pEl4eLh45513RFlZmYiKihILFy40vXbp0iURFhYm3nzzTSGEEOfPnxeBgYEiOTnZ1ObkyZMiICBAbN26VfmeDHbIU9wd7NhaxGvv8dRT5VmObWU+Vg025s61X57AFEyVlgqxcKEQtWrJF5s2FWLnzkrvp7hYZmWeMEGIsDD196bTCfHxx2oBmrV/FznKjtyzp2tBjEq/WcKBSJ1bFyg//PDD+PXXXwEAf/zxB+68807UrVsXH3/8MWbNmuXSCJPBYEBycjIuXLiALl26IDMzEzk5OehfITNYcHAwevTogf379wMA0tPTcfnyZbM2MTExiI+PN7Wxpri4GPn5+WYPIk9Qnf5wpRK1vcXP9lxzjdwK/sknMk9Or17A6NHyuUULueVcdVqlVStZqNNyFjkuTh5PTIRcfNO3L/D440BpKXD77cAPPwC9e5udM2sWULcuMHWqnErKy1N/b0LImbF16+y3++ijylN2KvmK9uxR64cz7E0jElHVuBTs/Prrr7juuusAAB9//DF69OiBtWvXYtWqVdiwYYNT18rIyEC9evUQHByM8ePHY+PGjbjmmmuQ808mr8jISLP2kZGRptdycnIQFBSE8PBwm22sWbBgAcLCwkwPZn0mT3G2ErXBIL9Y162Tz/Z26ThaxGvvXikp9jMfqybRi452kLE3JQW49lr5ZkJCgHffBT7+GLDY2FCVTNBGWVlyMfSGDUCTJuavRUbK49Zy2miRr8gVxoruzLNDpD2XkgoKIVBWVgYA2LFjBwYPHgxAlpEw7thS9X//9384dOgQzp8/jw0bNmDMmDFITU01vW65EFoI4XBxtKM2s2fPxrQKue/z8/MZ8JBHdO8uv9TsBSXG3VDOJh50ZVGrXg907gy0bm191EQIOeLw5ptq17v++vLrmiUOvHBBDtG8/bb8uWNHGQm1alXpGlXNBF3RyZNAnTpyUXFFgYG2z7GXUVlrjRsDS5bIRdvuzKBMVNO5NLLTsWNHzJs3D2vWrEFqaioGDRoEAMjMzKw0EuNIUFAQrrrqKnTs2BELFixA+/bt8eqrryIqKgoAKo3Q5Obmmu4RFRWFkpISnDt3zmYba4KDg1G/fn2zB5En6PXAqFH229x1l5xSUqkxVZErO6YMBuCttxxv61YNpMaOtXLw0CEZ3Lz9toycHnsM+Ppr/NWgFVq2BOrVA1q2LN85peXIyo4dzn+OWuYrcqRFC5kkumdP1wMdZ0b/iGoql4KdV155BQcPHsSkSZPw5JNP4qqrrgIArF+/Hl27dq1Sh4QQKC4uRsuWLREVFYXt27ebXispKUFqaqrpHh06dEBgYKBZm+zsbBw+fLjK/SByB4PB8TqSdetcSzzYsaNrffpn+Z0mzEZFhJALUDp3Bn75RUZjO3YACxeiQZMgNGkip7suXJDPTZrIbeBajqxs2mT7cxTC+udoLN/gCWlpQFGR6+enpNheZ0VEFWi5KrqoqEiUlJQot589e7b46quvRGZmpvjhhx/EE088IQICAsS2bduEEHLreVhYmEhJSREZGRli1KhRVreex8bGih07doiDBw+K3r17c+s5+SxntlA7uz154kTXrtOhg3Z9Gjbsn86cPi3EbbeZXjAMGiKW//svMWlSeRUIWw9Hr2v9sPwchw3z7P0nTnTtvyV3lR0hqk5Uv79dWrOTlZUFnU5nStz3/fffY+3atbjmmmvw0EMPKV/n9OnTuPfee5GdnY2wsDBce+212Lp1K/r16wcAmDVrFoqKijBhwgRTUsFt27aZkhsCMsFhrVq1MHLkSFNSwVWrVkHPye8aResK4ka2ksq56s8/q94nI8upJdVFxJYcJb3T6eRneuqU42utWgWZ2e+ee2S58OBgbOz2Mu74YgIMn6klIr10CQgIAP5ZFuh2J0+a/+zOjMrWuPJ7c1R2xF71eqIayZVIqlu3bmL16tVCCCGys7NF/fr1RZcuXURERISYO3euK5f0Ko7sVG8bNlQuUmlMLFcV9pLKuUrLUQOtRnbsPYyjBHPnOm5bCyXi2OjHy4cbrrlGvDz2B5fuW7++/dd79dLuPS5ZYv45xsf7/siO6gghkxOSv3Nrnp3Dhw/jxhtvBAB89NFHprw2xu3nRJ7iaMu0q2sXbG19NhjkcRfTSeHCBbV2wcG26yrZql/lapkIe4zboa1smjLTApn4Creg+dqF8nv2oYdQ8nUaZq1p59J9DQZg5szKoxJ6vTw+bpxLl7XKInMFPL3cz5XfmzvLjhD5I5eCncuXLyM4OBiA3Ho+dOhQAECbNm2Qzf+7yEPcVUFcZevz4sWynbNat1Zr16uXfLYMeOwlngsKkvUztTB7tnl+HMs8NRWNwMc4hOvQBd/ickiYzNT31ltYtqquyzuDGjcGFi0CLl6UW7MnTZLPFy/K45Xqa1VBWpr5z1dfrd21HUlIkFvjneVsviaims6lYKdt27Z48803sXfvXmzfvh0DBgwAAJw6dQoRERGadpDIFndVEFfZ+mwwyHbOUv1XfEqKHFGx/FK3l3hu71653kULJ0443g5dG0VYjvH4GCMRhnzsRxd8/9Yh4I47AFRtV9X338vnoCAZsL7+unw2rpcy5iuyp149tXtZBssq1eMDAuTvpir1kBMS5G4xVxjfv7Ojf0Q1lUvBzgsvvIC33noLPXv2xKhRo9C+fXsAwObNm03TW0Tu5q6hfNUvaVe+zFUXNwcFOchEbIWWg6oFBeY/W5avuBo/4XvciPF4C2XQYT5mowdScTyghamNq/lqwsLkyA5gO4eMXi+TK9r7sv8n5nLIcorOWD3enunTgddeK7+X5b11OuD++8tHpM6fByZOBPr3l88XL7oe6ADl79/W/QGWnSAy4+qioNLSUnH27FmzY5mZmeL06dOuXtJruEC5enLXIs0lS1xb2Krik0/Urv3JJ85fW7XIqMrj5ZfNr13+WZeJ+/GuuIA6QgAiB01EX2yz+lkXFDh/37Cw8vNVFp5ba2Os3q5aqd1W7WKVBerW7h8RUbnauRYL5q2x9/6JagLV72+dENZWPNQs+fn5CAsLQ15eHrMpVyMGg6xxdOaM7TYREcDp0879C7ekRK6jsLf1OSBAJoNzdht6XJxa/arYWDkF54ydO2V9TS0UF5u/N4MBaNusAE+degT34AMAwDb0w31YjdOIgk4n+5yZWf5Zv/KKrBDhiE4nkwlmZJRP2xkXnlv+7WQctag4lWcv7YBxobktM2fKNUC2qKQeqHj/o0eBZ5+1/h4t+60Vd6VdIKoOVL+/lYOdG264ATt37kR4eDiuv/56u7WnDh486HyPvYjBTvXkrmDHYJBfvoWFttvUqyenJpz9UqlXT21HVkiI/ftbs26dzKJbVTqdXPtj9qV+6BAKbhuJ0OyjKIUeT2EeFmEWRIWZcMvCmpMnA0uXqt9Xr5fTRwsWyCzAtoJCa4GVPTfeWHkRMgB06lS+NkgLBoO2/SYix1S/v5WTCiYkJJh2YA0bNqzKHSSqqr177Qc6gHx9716LopQK13UUaBQWOn9dQAYxqsGOs7TaeSOEHM1ISvrnh+XLgWnTEFpcjCzE4i4kYz9urnTet9+aBzvOrtkxbus/flx94bmjz3/WLOuBDiCPz5plf2THGc4smHf2vxsiqhrlYOfZCmOzz1obpyXyMHctUHZnDpNBg4CVK9XaOcu4Q+fkSevb8Z1x9CiAvDzgwQeBjz8GAGzBYIzBKpyF9R2XixcD8+aVjwhNmADMmOH81v+PPlJr5+jzV00hULHPlpyZImLuGyLf5dJurIoKCwuRn59v9iDyBHflGnFnDpNz57RtV5G9HTrOivv7INChgwx0atVCasLLGILNNgMdoPJ2fJVdTdaoBmo//WS/yndVUwg4W2TTW7lvWPWcyDGXgp3MzEwMGjQIISEhCAsLQ3h4OMLDw9GgQQOEW6YjJXITd+UacWcOE+OWaq3aWUpMBIYOrcrIjsAjWIaZKV3kqtzmzYF9+7A+bhoAxxGU5Xb8RYusZ0J2pF49xwHbvHn2A5CqpBBwJTO3N3LfsOo5kRqXgp27774b586dw3/+8x/s3LkTu3btwq5du7B7927s2rVL6z4SWeWuXCPuzGHy00/atrM0axbwySeunRuKfHyIO7EME6EvLcH3UUNR+NVBoHNn5fU31tpVzITcrZvadYw5clRGqGwFIK722dXM3J7OfeOuUilEfsmVfe0hISHil19+ceVUn8Q8O9WbOwp2CuGeHCZ9+6rlm+nb1/lrq+SVsfVoj/+KX3GVEIAoQS0xFS8LoEwAQnTqVPWcNc700Xgda5+/rYdOJ383paWu3auiquZv8kTum9JS+5+Ntc+DyB+5tRBop06dkOVsEhAiN0hJAV56yXrBzpdeqtq/blUzGDuzZsJRQU2Vdrbup7JGpTKBh/AWvsVNaIXf8CeaoTv2YgnKp63S0uSIjKP1N9Om2V7oW1IiRzWmTwduuUXtOhU//6eecvAuROXSICprhqz1uaoLjZ3NfO0Kd5VKIfJbrkRSv/32m+jbt69YtWqVOHDggPjf//5n9qhuOLJTPfnCv25VsvxW9PnnaqMGn3/u/P0mTHBuNCcEBeJ9jDYd2IzBIhxnbLYvKHBtFM3aOTqdfKheZ+1atfe0dq3a/e3dy12ZubVUlc+DyJ+ofn+7FOx88803omXLlkKn05keAQEBpufqhsFO9eTtL6UNGyp/YVf8IrcW8Dz1lFqfn3rK+fsNGKAe6FyNH8WPuFoIQFyGXszEC0IHg91zhg2T/SgulqUyJk2Sz/amrmbOtN+PXr3UrlPV37UzfXYURAPenyLy9n/7RL5C9ftbOc9ORQ888ACuv/56rFu3DpGRkXazKRO5izfzmjhaxKrTyUWsCQnaLEhVud+336pd6268j7fwMEJwEScRg7uQjH1wvEXIuGvJWIncEZU8N199BWzd6rjshnGnk72pG3s7nVT7DMjfV4cO9u91ww3ezYLsKKeSMVszq54TSS6t2fnzzz/xwgsvoHPnzmjRogWaN29u9iDyBG/lNQFcXzOhmjnX2M64PmfOHMf3O3/e/jWDcQnLMR7v416E4CJ2oA+ux3+VAh3A+YzIVc1zU5FeD4waZb/NXXdpE4CUlABbtthvs2WLbOctrHpO5ByXgp3evXvjf//7n9Z9IXKK8V+39mid18TI1VGlnj1lvS57IiJku4o5VObNc6GTFbRAJr7GzRiPt1AGHebiGdyKL/EXmihfY80a5+559Kh27QwGuSDbnuRkbRLqaRmkuVNioiwsaiyeahQb656Co0TVmUvTWEOGDMHUqVORkZGBdu3aITAw0Oz1oUOHatI5Inu8Od3g6qiSXi93NtnLhWN83VrVb1cMxqdYjfsQjvP4GxG4Gx9gG2516hqdOslEf85Qnd1WaedoJA2wX3fKmbIPVUlG6GmJiXKqlFXPiexzKdgZP348AOC5556r9JpOp4OB+crJA5yZbnC0JsRZrq6ZUO3zgQNVD3T0KMW/8TRmYyEA4Ft0xh34GCcQ59R1XK0O3rkz8MYbau0cOXlS7Z7W2qWkyPVOFYOl2Fg5DWRt9KMqCRS9Qa9nYVEiR1yaxiorK7P5YKBDnuLN6QZX10yo9ln1y92WJjiNbehvCnRew2Tcgq+UA53QUGDYMKCgwLVAB5BTiFq1++svtWtZtrOVZfjECdtZhidMcDwyotfLdkRUPTgV7Nx2223Iy8sz/fz888/jfIVVkWfOnME111yjWeeI7NFyTYgrXFkzceSIe/pSURfsx0HcgN7YjUKE4C6swxS8hstQH97q3BnYuNH5qauKtFxT5UpNMXs72AB53FrZB1eTERKR73Iq2Pnyyy9RXFxs+vmFF17A2bNnTT+XlpbiiCf+NieCtmtCbHGUHdnZbLk5Oa73xTGByXgNqeiBpjiFn9EGnZCGD3GX01eyF+SoZow2jn7ZK4ypumPIMqBUaefMOh9LtgqY6vXy+KJFav0hIt/g1JodYfFPJMufiTypUydt21lSXevhzJqJqCi1dnXryuKZqkJQiLfxIEYhGQCQjDvxIN5GIULVL1LB4MHWjzu7/sU4+mV5TlycDHRUdwx17So/Z3tTgHq9bGdUlXU+gAxo5s2TU4+//y7X6EyYwBEdourIpQXKRL7g3Dlt21VkXOthGc8b13q4urVXdZdM69bAoUOKbXEEKUhEW/yEy6iFGXgJr+FRGGtbueLDD+WXe8WdPbY+E2OVbVufiRY7hvbvV1vrtH9/eeDp6jqfipxJRugtzuw0I6qpnJrG0ul0lbIlM3syeYsr6zhUuLrWQ8X116u1+/NPtXbDsBFp6IS2+AmnEI2e2IPXMAVVCXQAYPt2md+nRQsZ5DjK4AzY/0yMo1+jRslnZ7+MXclr5K7/PnxJxVxMo0eb/86IqJzT01hjx45FcHAwAODSpUsYP348QkJCAMBsPQ+Ru7myjsORwkJgwICq5XSxx9G2cyNHo1GW28pTcQvuxIc4DcV5MkXGURuVDM6ufiYqXMlr5I7/PnyJqyNtRDWRTjix8Ob+++9Xardy5UqXO+QN+fn5CAsLQ15eHurXr+/t7pAig0H+K9ZRvaTMTLWRhBtvBNLS1O+/ejVw773q7QGgd2+5iLkqGuEvrMMo9MVOAMDLmIbHsRClCHRwpusiIoAzZxy3W7vWcVkHVxh/147yGlX8XWv934cvcfTerH0eRP5I9fvbqZGd6hbEkH8z7vYZMUL+XPFL0Nn6QM4GOgDw3XfOBzuZmc61t9QBB5CCRDRDFgoRgnF4Fx/hzqpdVIFKoAO4pw4ZYP671unUftda/vfha5ypzcaEg0QuJhUk8hVa1AcqLHQ+0AFcy3Bcu7bz5xjdj/9gH7qhGbLwK1qhM77zSKBjFB5ufxu5u+qQGbnyu/bX+lGu1mYjqqm4G4uqvaru9nF2dMaoVSv57MxumFou/B8XhGK8iikYj7cAAJ9gKO7DauQjzLWOuyghAXjvPfWRFXdw5Xftj/WjXK3NRlRTObVmx19xzU7N1q4dcPiwc+fo9TIPzpYtzuWd+de/gHffdXx9Y0ARg5NYjxHogm9RBh2ewXOYjycgvDAo+/77QJ06Vc+ZQ1XnyhomIn+k+v3t1WmsBQsWoFOnTggNDUWTJk0wbNiwShmYx44da9rybnzcdNNNZm2Ki4sxefJkNGrUCCEhIRg6dChOONpOQ35FNauvNWEuDJBMmyYDHWt1l4y7Yaxt//3lF7XrCwHcjH1IRwd0wbc4hwYYhM/wPJ7ySqADyKkgZzNGk3u4WpuNqKbyarCTmpqKiRMn4ttvv8X27dtRWlqK/v3748KFC2btBgwYgOzsbNPj888/N3s9KSkJGzduRHJyMvbt24fCwkIMHjyYRUlriKrmGhk3Tv1exnIBCxa4lndGbc2OwAS8gd3ohSicxg9oh444gK0YqN5RjVXMTlzVnDmkDX9dj0TkFsKH5ObmCgAiNTXVdGzMmDEiISHB5jnnz58XgYGBIjk52XTs5MmTIiAgQGzdulXpvnl5eQKAyMvLc7nv5B0bNgih0wkhQwzzh04nX3dk927r51s+Jk4UorjYuXN27za/17Bh9tsHo0j8B2NNB9biLlEXhUr3cvfD8r2QVFoqP5u1a+VzaWnNuj+RN6l+f/vUbixjRfWGDRuaHd+zZw+aNGmC1q1b48EHH0Rubq7ptfT0dFy+fBn9+/c3HYuJiUF8fDz2799v9T7FxcXIz883e1D1o1WmY9Xq3K++Wl4XydXdMMOG2W4biyzsRXfcj1UwIADT8RJGYy0uIkTtZm6mWmuqJvGFDMYcaSNyzGeCHSEEpk2bhm7duiE+Pt50fODAgfjggw+wa9cuvPzyy0hLS0Pv3r1N2ZpzcnIQFBSE8PBws+tFRkYix0aJ6QULFiAsLMz0iIuLc98bI7epSlXrivR6x4nw7rrL/EvE1d0wzZtbb9cdX+EAOqITDuAMGuJWfInFmI6qln3QkmqtqZrCmMHYmTVbROQdPhPsTJo0CT/88APWrVtndvzOO+/EoEGDEB8fjyFDhuCLL77Ar7/+is8++8zu9YQQNut2zZ49G3l5eaZHVlaWZu+DPEe1fpSjdgaDXNhsT3Ky+QiRcTTI2bwznTtbtpTrc3aiDyKRi0Noj444gJ3oa79DXhAR4e0e+I6q1gojIs/yiWBn8uTJ2Lx5M3bv3o1YB/MJ0dHRaN68OY4ePQoAiIqKQklJCc5ZFBPKzc1FZGSk1WsEBwejfv36Zg+qfjZt0qadKyNEru6Geeut8j8HoRjv4F94A5MQiFIk407cjK9xDC3td8ZLVLMo1wTOZDAmIu/zarAjhMCkSZOQkpKCXbt2oWVLx3/JnzlzBllZWYj+Z36gQ4cOCAwMxPbt201tsrOzcfjwYXQ1bh8hv2Sxac/ldqprUSzbubIb5p8YHdE4hVT0wDj8BwYEYCYWYRTWmdbnhPjGMh0z1bk6uNaYwZioevFqsDNx4kS8//77WLt2LUJDQ5GTk4OcnBwUFRUBAAoLCzFjxgx88803OHbsGPbs2YMhQ4agUaNGGD58OAAgLCwM48aNw/Tp07Fz507897//xT333IN27dqhb1/fmwog7bRurU071bUo69cDJSXmx5zNO6PTAZ3xLQ6gI27CdziHBrgNn+MlzETF9TnG7My2XHedWp+1VF2rg7sDMxgTVTOe2BpmCwCrj5UrVwohhLh48aLo37+/aNy4sQgMDBTNmjUTY8aMEcePHze7TlFRkZg0aZJo2LChqFOnjhg8eHClNvZw63n1dOaM2pbpM2fsX+f999W3X+v1Qsyc6Xqfvx73rriEICEAkYG24koctXqfhg3t9yMmxrPbzuPiuKW5otJSIWJj7ac94GdG5H6q398sFwGWi6iuJk0C3njDcbuJE4GlS22/vmeP3DLsjJkzgUWL5J+VamNdvgxMnw68/joAIAXDMQbvoRChzt3Yw4zrj5ikrjLjbizAfKEyPzMiz6kW5SKIquLXX7Vpp5Jnx9LixXJKSynPypkzwIABpkDnpfpzMQLrbQY6FmmmvIrZeG1jBmOi6oNVz6naUl3E66idMc/Oiy+q39tgAMaPB1atqrz9+MQJ+S/+9euBxNaHgaFD5UKeevWANWvw0fxhEGm2r924MXD2rHpftHbnnbJKuD9UB3c3f6yoTuSPGOxQtTV0qNr286FD7b+ukmfHmo8/tp+9+fOHNmF48b3QFRYCLVsCmzej6Mp4pA23f90jR+Rogb1dYuHhgEW2BU106iRzCpE6YwZjIvJdnMaiauuf6iJVbqeSZ8eawkJbrwg8iXl458xwGej07g2kpQHx8Zg5U+3ajrZ5u2s3VloaMGuWe65NROQtDHbIawwGuTh43Tr57Gy22bAwbdppmUC7Di4iGXdhHp4GAPzSbzLw5Zem9MOq64x+/tn+6//7X1V6aZ9xPRIRkb9gsENeoUUBxc2b1dq9+679QOq779TvaWRtZMVYyPNOfIQSBOJfeBtLW78G1CqfLVZdZ/RP6Teb3Lmmx2AAli1z3/WJiDyNwQ55nFYFFFUzKH/9tf1ASovkCzfhG6ShEzrgIHLRGH2wE+/iX5Wuba/qubPq1dPuWpZ+/9191yYi8jQGO+RRWhZQbNFC/b72AimFKiWVVJxGuhersQc9EYXT+B+uRSekYR9kBVDLTMjObnG3J8CN//deeaX7rk1E5GkMdsijtCygWFqqfl97gdT58+rXqXg9PQxYiMewGmMQjBKkYDhuxtc4juYA5C6dCRPMz7t0Se36jRrZr6jeuDGQn+98v1VY6zcRUXXGYIc8SssCihVqvyqxFUgZq5c7IxT5+DxoGB6DTKP8bzyFEViPCyifW7rhBiAoyLV7xcTIZ1sV1e++2/k+q5o2rXK/iYiqMwY75FFaFlAsK3OtD5aB1D91Z5W1QCb2oyv6l2xBEWpjFNbiGfwbwuJ/p4MHK+9qUs2NExRkPztvQoJzfVah15uXwSAi8hcMdsijjKUZ7E3RxMXJdo40aOBaHywDqVAnylN1w158jxsRjx9xCtHogVQkY5TVttZ2NXXooHafDh3sV1R3pcSFLf37A0uWABcvMtAhIv/EYIc8Sq+XUzn2Mg+/8opaun3VUSIjW4HU7bernT8Gq7ATfdAYfyMdN6AT0pCGG+2eY7mrSXVExtjOmJ131Cj5bPxc9Hr1wMmR2bPlWiZOXRGRv2KwQ9WWMyMbxpEka4GUo51HATDgBczCKtyPIFzGxxiB7tiLU2hq/0Qr11ZdDO2oXUkJsGWL2rXsUR1FIyKqzhjskEcZt57bo7r1fNcu9fvaq0T96ae2zwtBIVKQiFmQVULn4hnciQ9RhLoO72ltV1OjRmr9ddRu2TLnM05bc8MNLFpJRP6PwQ55lEodKtWt53/9pXbPwMDytS7W2OpPHI5jH7ohAZtxCcEYhbWYg7mmhci1HJTRtbarKSNDrc+O2mmV9G/LFpaGICL/x2CHPMpeJW9n29V1PLgCQC5Atjd6YW067EZ8h+9xI67D/5CDSPTEnkoLkQMC5O4ly2vb29WkGqQ4aqdV0j+WhiCimoDBDnmU6miMSjtHlcFV2z32mPnPdyIZqehhyoh8I77Hd7ip0nnh4TKguXhR7maaNMnxriZbu9CcbTdhgnbTTywNQUT+zsFAPJG2nA1QDAY5pZWdLXdfde9e/iWvWhvLUbuLF41/Enga/8ZzeBYA8CkGYzTWohDW96YPGiSfg4LkOiMVnTsDb7yh1s6eoCA5Tfbii2r3tYelIYjI33FkhzzKMkmevXaOKqPHxaldy1G7iAggGJewBveaAp2XMQ3DsMlmoAMAbduq3d+ZvjjTbtEi69NozmBpCCKqCRjskEd17y6DC3siIoC//3ZcGX3wYLV7Omr32zd/YQf64h58gFLo8RDewgy8jDLYjyLatVO7f0UqyQCd2Q5ecRrtkUfUp8mMWBqCiGoCTmORW9ibfioutn/upUvA1Km2K6PrdHLa6Lbb1PqSlWXnxZ9/xh2LB6Mx/sB5hGEE1mMn+ipdNydHPtt7r5aMSRVHjLD+/nQ69aSKRhWn0U6dAj75xPE5er0MdJgxmYhqAgY7pLmUFJlLp+KoTGys/JIPCwMKC+2ff+GC/XU2xoKehw6p9efPP228sHMncPvtaJyfh99xBQZjC37B1WoXBfDdd0BIiO33amure2IiMGMGsHixea4cYwBi6zxHDAYgPd1+m3r1gLlz5WJqjugQUU3BaSzSVEqK/emnN9/U7l4//6zW7uBBKwfffRcYMADIy8PhsJvRGd85FegAwG+/OZ5qsyYlBXjppcpJAcvK5HFb5zmiksOosNB6NXYiIn/GYIc0Y8yObGv6CQC+/FK7+12+rNaufLcVZETx+OPAv/4FlJYCo0fjrTt24AwUUxtX8O239t+rtUzQKp+RagZpS5bV3KvajojIXzDYIc04GlkQAigoULtWo0aOK6MHKP7XW1b2zx+KioA77wReeEH+/OyzwPvvI65VbbULVRAQAOTl2X7dONVmmQla5TNSzSBtSbUwqrMFVImIqjsGO6QZ1RGD2g5ii3r1gOXL5Z8tA56KBT3DwtTuFxYGIDdX7l1fv17Wj1i9GpgzB9Dp7C9gtkF1cbTlZ+LO0RfVnW4s/ElENQ2DHdKM6ohBaan914uLgeHDZVwSE2P+WtOm5QU9mzRRu1/n+j8DN90kVxSHhwM7dgD33mt63Znq6Ua//abWzvIz4egLEZHnMdghzXTtqrZl2lGwc/kysG2b/LO9vDEqu7F6Yjfe/aWrrAR65ZVyoc0tt5i1ycx0fB1Lv/wiAxJHU22WoyjGPDvOnqdi717gzBn7bc6ccW2KjIioOmOwQ5rZv9+1hbXWPP64azudKroXq/ElbkU4zstI7NtvgdatK7VzJdgBykeE7E21WSsS+uqrzp+ngguUiYisY7BDmtHyS/Tnnx3vWLJN4FnMwWqMQRAuIxl3ypw6jazvuGrVyrU+Xrwop9QsS2DExpZPtVmTmOjaeY5wioyIyDqdENa+UmqW/Px8hIWFIS8vD/Xr1/d2d6qtPXvkGmBPueqqymtnAlGCd/Av3Ic1AIAFeBzrr3se6f+1HdcXFQF16zp///h4ICPDuQzKFbl6nr3rtWhhf7dXXJwcydKqYjoRkTepfn8zgzJpxrge5eRJ26UQ6te3v2XbGb16mQc7DXAOG3A7emM3SqHHI1iOd/Ag/vOo/evUqSOX8/z+u3P379pVPuv1QM+ezp1blfPsXW/UKPuV0O+6i4EOEdU8Xp3GWrBgATp16oTQ0FA0adIEw4YNw5EjR8zaCCEwZ84cxMTEoE6dOujZsyd+/PFHszbFxcWYPHkyGjVqhJCQEAwdOhQnHKWSJc0Z16PYGisUwtH0k3OuuKL8z83wJ77GzeiN3ShAPQzCZ3gHDwIAoqLsX6ekBDh2zPn7W1n+41UGA7Bunf02ycnarasiIqouvBrspKamYuLEifj222+xfft2lJaWon///rhQoTDSokWLsHjxYixduhRpaWmIiopCv379UFAhO11SUhI2btyI5ORk7Nu3D4WFhRg8eDAM/Fvdr+3fL59vQDq+xU24Bj/jBJqiG/ZhG241tdu82f51li1zLQBwpeq5O6mUi3A1YSERUbUmfEhubq4AIFJTU4UQQpSVlYmoqCixcOFCU5tLly6JsLAw8eabbwohhDh//rwIDAwUycnJpjYnT54UAQEBYuvWrUr3zcvLEwBEXl6ehu+m5iktFSI2Vgg5hmP9Ubeu/dedeVx9tRAD8ZkoQIgQgPgf2ommyKrUrlcv+/0eP961+69d65nPVdXatdWz30RErlL9/vap3Vh5/yzmaNiwIQAgMzMTOTk56N+/v6lNcHAwevTogf3//LM+PT0dly9fNmsTExOD+Ph4UxtLxcXFyM/PN3tQ1amMLJjVqaqi3r+twGYMRT1cwHb0RXfsxUlUzhBoMetZiaszng0auHaeu3A3FhGRdT4T7AghMG3aNHTr1g3x8fEAgJycHABAZGSkWdvIyEjTazk5OQgKCkJ4eLjNNpYWLFiAsLAw0yMuLk7rt1MjeS5/i8DzeAJLLz+MWjBgJcbiNnyOfFivH3HunP1pqrNnXeuFo+kxT3NnwkIiourMZ4KdSZMm4YcffsA6KyssdRZ/ewshKh2zZK/N7NmzkZeXZ3pkuVIciSpRLd9QFYEowRrciyewAAAwB8/iAfwHpQi0ec7ly3JLtq1EhA7+U7LJ2d1b7ubOhIVERNWZTwQ7kydPxubNm7F7927EVihUFPXPNhrLEZrc3FzTaE9UVBRKSkpw7tw5m20sBQcHo379+mYP8n31kYcvMBD34AOUQo8H8C7mYg4Ax9GKvczL/wwkOi0kxLXz3MldCQuJiKozrwY7QghMmjQJKSkp2LVrF1q2bGn2esuWLREVFYXt27ebjpWUlCA1NRVd/0ly0qFDBwQGBpq1yc7OxuHDh01tyDNyc9137aY4gb3ojj7YZdpavhIPKJ9fMfOy5ZTWzTe71qdhw1w7z8hgkIkY162Tz1ptHkxMlKNOS5YAkybJ599+Y6BDRDWYBxZL2/TII4+IsLAwsWfPHpGdnW16XLx40dRm4cKFIiwsTKSkpIiMjAwxatQoER0dLfLz801txo8fL2JjY8WOHTvEwYMHRe/evUX79u1FaWmpUj+4G0sbO3Zot9Oq4iMeP4gsNBUCEKcQJa7DQQEIERDg2vV27zbv9+7d2lzHGRs2VN65Fhsrj1fVhg1CNG1qfu2mTbW5NhGRL1H9/vZqsAPA6mPlypWmNmVlZeLZZ58VUVFRIjg4WNxyyy0iIyPD7DpFRUVi0qRJomHDhqJOnTpi8ODB4vjx48r9YLCjDS2DHZ1OPvfELnEe9YUAxI+4WjTDMVOgExiozZZxlS3zlo+ICHmeKzZsKH9/lu9Zp6taULJhg/1+M+AhIn+i+v3N2lhgbSytrFkD3HefNtcKDAQSLyfjPYxBMErwFbpjGDbhHGRagtq1ZebjsjLnr717d+UyDbNm2S+zYKlePeD8eecX+zqqX6XTyfU1rtSvMhjkdvjCQtttXO03EZEvUv3+9okFyuQfvvtOu2tNurwYyRiFYJTgY4xAf2wzBToAcOmS81/YtrZeq5RZsFRYKNfZOMtRLiIhXM9yvHOn/UAHkK/v3On8tYmIqjMGO6QZLcYIdSjDYkzFYkwHALyKR3EXklGM2pXaVqyN5fC6drZeqyRDtMaVYEc1F5ErOYvWrNG2HRGRv2CwQ5pp1apq5wehGOswClPxCgBgBl5EEl5BGawP4TRqpH5te1uvPZcM0b1Zjh2N6jjbjojIXzDYIc08/LDr59ZHHrZiAO7ERyhBIEbjA7yMGbCXQ2fgQLVrz58v18DY2nrtavmEW25x/hx3Zjnu1k3bdkRE/oLBDmnG1TU7MTiJveiOXtiDfIRiIL7AhqDRds+pXVuubVFx/Lj99T3GAMRZAS783+POLMeTJzvuU0CAbEdEVJMw2CHNuFJ1ow1+xn50xbXIQDaicAu+wi70QUmJ/fMuXQKOHFG7x6+/2n9drwdGjVK7VkU2Sq855K4sx0FBwPTp9ttMny7bERHVJLW83QHyH87uIOqC/diCwWiIcziC1hiArTiGlo5P/MehQ2rt/vjD/uuu7MYCgL/+cv4co8REICFBfmbZ2XIqrXv3qm8JX7RIPr/8svm2fL0emDat/HUiopqEwQ5p5ptv1NsOxqf4EHeiLorwLTpjMLbgDJxYcQzgwgW1dnXr2n/d1d1YjRs7f05Fen3lfD9aWLQImDcPWLZMlo248kpgwgSO6BBRzcVghzRz+bJau/vxH6zAQ6gFAz7DbRiJj3AR7quq6Wgdi6u7sSynoXxJUJCsA0ZERFyzQxrq3NlRC4HZmI//YBxqwYCVGIth2ORyoNOsmVq7666z/7oru7Fc3TFFRESex5Ed0kxamu3XdCjDq5iCyVgKAJiP2XgSz8Pe1nJHVKdlHK3tMe7GOnlSPTHiXXf5dskFg0H79UBERNUVR3ZIM6dPWz8ehGKsxWhToPMoXsWTmI+qBDp16tjOVWPJUQBjbzu4LcnJMqDwRSkpsv5Wr17A6NHyuUULeZyIqCZisEOasVaDrR4KsAWDcRc+RAkCcRfW4XU8WuV7FRWp57lp0MBxG1vbwW1xtX6Vu6WkACNGVF5wffKkPM6Ah4hqIgY7pJknnjD/uTFysRu90A87UIgQDMJn+BB3aXa/Ll3U2o0bp9YuMRE4dqzy+7Dl5Em1dp5iMABTplgfyRJCPpKSfHdEiojIXRjskGYqFuZsgUzsQzd0RDr+QiP0xB7sQD9N76e6Zqeleuoe6PXqW8qrkmfHHVS20PvqiBQRkTsx2CHNGEcM4pGBr3EzWuMojqE5bsbXSEdHze/XubPjMg+u7JpSDXaqmmdHa6ojTb42IkVE5G4Mdkgze/cCN2MfvsItiEE2MhCPrtiPo2jtlvvFxTku8+DKrinVdTu+lmdHdaTJ10akiIjcjcEOaab10S3Yjn4Ix3nsw824BV8hGzEuXcvR4mO9Xo7sOCrz4Mquqa5dHQdIer1s50uq64gUEZG7MdghbaxZg7s/HoY6uIQtGIT+2IbzCHfpUjEx5nWdrDEYgLfecs8alf37HQdIBoNs50uq64gUEZG7MdihqnvlFeC++xBQZsBq3Ivh2IgiOChIZcelS2rtjh5Va+dsOQjV6u2uVHl3J2NyRHuY+ZmIaiIGO+Q6IYCnngKmTgUAHE9MwlisQikCq3TZs2fV2pWUqLVTybNT0XffadvOU4zJEW0lRtTpZFzKTMpEVNMw2CHXGAzAI48Azz8vf37+ebx99WIID/4ndeCAWrtNm5y7rmrJCNV2nmRMjmg5whMXJ48nJnqnX0RE3sTaWOS8khLg3nuBjz6SwwXLlwMPPww87dluHD+u1i411bnrtmqlbTtPS0wEEhJYG4uIyEgnhC/++9Sz8vPzERYWhry8PNS3VvOAyl24IL9Nt20DAgOBDz4A7rgDALBzJ9C3b9Vv0agR8Pffjts1bw78+afjdvHxQEaG+v1LSoC6de0vUtbrgYsX1RMbEhGR9lS/vzmNRerOngX69QO2bYOhdl3snr4FexrfYQoKevYEIiKqfpsxY4B69ey3qVcP6NNH7Xo33eTc/YOCgGnT7LeZNo2BDhFRdcFgh9RkZwM9egDffIPzunDcfGknei/sb1ZRW68HVqyo+q0+/BAIDrbfJjgYCFfc2a7arqJFi4CZMytP/ej18viiRc5fk4iIvIPTWOA0lkN//CFHdP74A6cQjf7Yhh8Rb3rZuPvHuAA2JQV49FH3lyW44Qbg4EHH7fr2BbZvd+0eJSXAsmXA778DV14JTJjAER0iIl+h+v3NBcpk3+HDQP/+QHY2jumvRC/DdhyDeWVNIWTAk5QkF8YCtrc/e0Nd11P+IChIvi8iIqq+OI1Ftn3/vZy6ys5G4RXt0MWwt1KgYySETLL3/PPAiBGOMxtrQTUTcIxrFSuIiMhPMNgh63btkiuAz54FbroJXz6+BzmIdnjaq69WLf+MTieDGJXaVMOHq13T12pYERGRZzHYITMGA5Ax7xMYBtwGFBZC9O4DbN+OiFYNlc5XzX5sz0MPqdWmystTu15cXNX7RERE1ReDHTJJSQGmNn4fVz99O/SXi5GC4bjqyGdI2VbPVHfJXimChmrxkE16PTBjhnqyvsaNWQuKiIgcY7BDAGSgs/P2ZXjt3L2oBQPew30YiY+QeSoYI0YAn3wip6iAygGP8ecpU6rWh7Iy4KWX1At8Nm3KWlBEROSYV4Odr776CkOGDEFMTAx0Oh02WRQxGjt2LHQ6ndnjJosMccXFxZg8eTIaNWqEkJAQDB06FCc8sTrWjxgMwJH7F+INTAQAvI5JuB8rYUAt0/ob406r9esrLwyOjZXHn3zS/uiPI8Z7vf2241Ek44gNa0EREZEjXg12Lly4gPbt22Pp0qU22wwYMADZ2dmmx+eff272elJSEjZu3Ijk5GTs27cPhYWFGDx4MAyOFn2QJARO3vs4ZufPBgDMw5N4FK+ZFfQ07rTau1cGD7//DixZAkyaJJ9/+00eN1bdBmyP/owd67A7OHECePBB+9epOGKTmAgcOwbs3g2sXSufMzMZ6BAR0T+EjwAgNm7caHZszJgxIiEhweY558+fF4GBgSI5Odl07OTJkyIgIEBs3brV5nmXLl0SeXl5pkdWVpYAIPLy8qr6NqoXg0GICROEkDGGmIFFxj9afaxdK8SGDULExpofj42Vx42stYmLk8fXrrV9fZV7Ga9DRESUl5en9P3t82t29uzZgyZNmqB169Z48MEHkZuba3otPT0dly9fRv/+/U3HYmJiEB8fj/3799u85oIFCxAWFmZ6xNXE7TqlpcD99wPLlkHodHgYb+IlzLR7ytGj1nPonDwpj6ekyJ9tjbQkJACnT6t1LzrauREbgwHYswdYt04+uzqwp9V1iIjIh3go+HIIVkZ2kpOTxZYtW0RGRobYvHmzaN++vWjbtq24dOmSEEKIDz74QAQFBVW6Vr9+/cRDDz1k8141fmTn0iUhEhPlUIleLy6/94HQ6+2PtOj1QjRtavt1nU6OupSWWr+ltVEaV66jem3L0SZPXoeIiDxDdWTHp8tF3HnnnaY/x8fHo2PHjmjevDk+++wzJNpZkCGEgM7OKtng4GAEO6o06a8uXgRuvx3YulXWQvjoI+wLS1DKa2Ov1pVxXc+cOTIXYffu5WtqUlLkyI+jZIPW1uM4YuvaxtEm1UXKWl2HiIh8j89PY1UUHR2N5s2b4+g/e5OjoqJQUlKCc+fOmbXLzc1FZGSkN7ro2woKgNtuk4FO3brAli1AQgKys7W7xbx5MKuEbjDILekqWZWNu7pUgwp71664i0wlkLN3HSHUrkNERL6pWgU7Z86cQVZWFqKjZdmCDh06IDAwENsrlLTOzs7G4cOH0ZU1AsydOyfLf6emAvXrA9u2yUrmkOtjtGYcEXn+ebU6WUuWOL+Dau9e+9euuIusKtcB1K5DRES+yavTWIWFhfjtt99MP2dmZuLQoUNo2LAhGjZsiDlz5uD2229HdHQ0jh07hieeeAKNGjXC8H+KIoWFhWHcuHGYPn06IiIi0LBhQ8yYMQPt2rVD3759vfW2fE9urqxc/r//ARERwJdfAh06mF42Zkc+edL66IaxXpUQwKlTaqM0xkror72m1sXISOeT/6mOSDlqZ296zpV2RETkW7w6snPgwAFcf/31uP766wEA06ZNw/XXX49nnnkGer0eGRkZSEhIQOvWrTFmzBi0bt0a33zzDUJDQ03XWLJkCYYNG4aRI0fi5ptvRt26dfHpp59Cz7S50smTwC23yEAnKkpuMaoQ6ABq+XFefbU8cFFNGigEcOaMWltXRpdUz3HU7q+/1K7zzTecyiIiqo50QlSlRrV/yM/PR1hYGPLy8lC/fn1vd0c7mZlytXBmpkwpvHOn3cJTKSly7UrFKZ24OLlg2Di9NGsWsHixc1/6DRvKWTRbo0axsbKLzsanBoNcG2RvCiouzvG1P/gAuOcetXvGxsrAj4uViYi8T/X7u1qt2SEn/PqrnJ/KzASuvFIuOHFQYdNRXpuUFFm7ytnRDWPNLJVsyM7Q64FRo+y3uesux9e2LH9hj2VOISIi8n0c2YEfjuwcPiwXI58+DVx9NbBjBxATU6VLqoyiWKo4ajN7duURIb0emDYNWLTIfX1SGdlx9r1VZTSKiIi0w5GdmurgQaBnTxnotG8vd19VMdAB1HYsVVRx1OaTT6yPCBkM8riroyRa7aIyrllyZi0Sd2cREVUfDHb8yTffAL17y1XBN94o56EaN9bk0s7m4jHmzElIcJxnx9UcNlrtxgJsV0/X4v5ERORdDHb8RWqq3F6elyfX6mzfDoSHa3Z51Z1PTz1lvtZHq1w4VemTajvjmqUlS7S9LhEReReDHX+wfTswcCBQWCjX6nzxhUwcqCFjLh5bUz06nVwfM2eOnEUzrmXRcvTF1T51765+Tb0emDzZ8QiPs9clIiLvYbBT3X32GTBkCFBUJEtBfPopEBKi+W1UcvFY21VV1dEXe1XIXe2TI1rt8iIiIt/AYKc627gRGD4cKC6Wzxs3ArVru+12xnUtllu17dW0qsroS0qK3CXVqxcwerR5za2q9MkRg0EGV/YkJzPBIBFRdcGt56imW8+Tk2UmPINBDjOsXg0EBnrk1gaDXGOTnS1HZCpWOLfGWFEcMF+obAyArAUltqqQ2zrH2T7Zs2ePDKwc2b1bTtkREZF3qH5/e7U2Frlo9Wrg/vuBsjJgzBjg3Xc9Oqei1zv3JW8cfbHMzhwba56d2chRFXKdTu7gSkgof9vO9sked64zIiIiz2OwU928+y7w4IPyW/+hh4Dly4EA35uNtBxpSUiQD5XRF2d2cLljZEXrXV5ERORdDHaqk2XLgIkT5Z8nTZKVOVUz4XmQtRpbztSU8vbIikoV+NhY7sYiIqoufG9IgKx75ZXyQGfaNJ8OdEaMqDwy40xNqSZN1O6l2s5Z7trlRURE3sFgpzp48UVg6lT559mzZY0FHwx0HK21AVzPluxp7tjlRURE3sFpLF83fz7w5JPyz888I7P2+WCgA2i31iY3V+1+qu1clZiovs6IiIh8F4MdX/bcc8Czz8o///vfshaDD9NqrY0vLRDWcpcXERF5B6exfJEQwNNPlwc6Cxf6fKADaBekuKMMBBER1VwMdnyNEMATTwDz5smfX3oJeOwx7/ZJkVZBChcIExGRlhjs+BIhgFmz5EgOIL/Rp0/3apecoWWQwgXCRESkFZaLgI+UixBCBjZLlsifly4t32pezVjLsxMXZz1bsiNaloEgIiL/ovr9zWAHPhDsCCH3ZL/2mvz5zTeBhx/2fD80xCCFiIjcjbWxqgshgMmTgTfekD+vWCHLQVRz3MVERES+gsGON5WVybIPy5fLRS3vvAM88IC3e0VERORXGOx4S1kZMGEC8NZbMtBZuVJWMCczqtNhnDYjIiJbGOx4Q1kZ8MgjcspKpwNWrQLuu8/bvXI7ZwMS1YKiVS08SkRE/o1bzz2trAwYP14GOgEBwOrVNSLQSUkBWrQAevUCRo+Wzy1a2C4MqlpQVIvCo0RE5N+4Gwse3I1VViZ3Wb3zTnmgc/fd7rufjzAGJJb/pRlz71jmzTEYZCBkq86WTidHbn77DbjySsftMjM5pUVE5I9Uv785suMploHOmjU1ItBxpRK6akHRZcvUC48SEVHNxWDHE6wFOqNHe7tXHuFMJXQj1YKiv/+u1k71ekRE5J8Y7LhbDQ50ANcqoasWFL3ySrV2nqiOTkREvovBjjsZFyPX0EAHcK0SumpB0QkTWB2diIgcY7DjLkLIQOftt8sXI9ewQAdwrRK6akHRoCBWRyciIscY7LiLTgf83//VqF1X1rhaCV216jmroxMRkSNeDXa++uorDBkyBDExMdDpdNi0aZPZ60IIzJkzBzExMahTpw569uyJH3/80axNcXExJk+ejEaNGiEkJARDhw7FCXsrYj1p+nTgxx9rbKBj5GpAkpgIHDsG7N4NrF0rnzMzK7dXbUdERDWTV4OdCxcuoH379li6dKnV1xctWoTFixdj6dKlSEtLQ1RUFPr164eCggJTm6SkJGzcuBHJycnYt28fCgsLMXjwYBgq7mX2pjZtvN0Dn+BqQGIsKDpqlHy2NSWl2o6IiGoen0kqqNPpsHHjRgwbNgyAHNWJiYlBUlISHnvsMQByFCcyMhIvvPACHn74YeTl5aFx48ZYs2YN7rzzTgDAqVOnEBcXh88//xy33nqr1XsVFxejuLjY9HN+fj7i4uLcn1SQiIiINFPtkwpmZmYiJycH/fv3Nx0LDg5Gjx49sH//fgBAeno6Ll++bNYmJiYG8fHxpjbWLFiwAGFhYaZHXFyc+94IEREReZXPBjs5OTkAgMjISLPjkZGRptdycnIQFBSE8PBwm22smT17NvLy8kyPrKwsjXtPREREvsLnq57rLLbwCCEqHbPkqE1wcDCCg4M16R8RERH5Np8d2YmKigKASiM0ubm5ptGeqKgolJSU4Ny5czbbEBERUc3ms8FOy5YtERUVhe3bt5uOlZSUIDU1FV27dgUAdOjQAYGBgWZtsrOzcfjwYVMbIiIiqtm8Oo1VWFiI3377zfRzZmYmDh06hIYNG6JZs2ZISkrC/Pnz0apVK7Rq1Qrz589H3bp1MfqfTMRhYWEYN24cpk+fjoiICDRs2BAzZsxAu3bt0LdvX2+9LSIiIvIhXg12Dhw4gF69epl+njZtGgBgzJgxWLVqFWbNmoWioiJMmDAB586dQ+fOnbFt2zaEhoaazlmyZAlq1aqFkSNHoqioCH369MGqVaugZ6IVIiIigg/l2fEm1X36RERE5DuqfZ4dIiIiIi0w2CEiIiK/xmCHiIiI/BqDHSIiIvJrPp9B2ROMa7Tz8/O93BMiIiJSZfzedrTXisEOgIKCAgBgQVAiIqJqqKCgAGFhYTZf59ZzAGVlZTh16hRCQ0Md1t1yRn5+PuLi4pCVlcUt7R7Az9tz+Fl7Dj9rz+Fn7TlafdZCCBQUFCAmJgYBAbZX5nBkB0BAQABiY2Pddv369evzfxwP4uftOfysPYeftefws/YcLT5reyM6RlygTERERH6NwQ4RERH5NQY7bhQcHIxnn30WwcHB3u5KjcDP23P4WXsOP2vP4WftOZ7+rLlAmYiIiPwaR3aIiIjIrzHYISIiIr/GYIeIiIj8GoMdIiIi8msMdtxo2bJlaNmyJWrXro0OHTpg79693u6S31mwYAE6deqE0NBQNGnSBMOGDcORI0e83a0aYcGCBdDpdEhKSvJ2V/zSyZMncc899yAiIgJ169bFddddh/T0dG93y++UlpbiqaeeQsuWLVGnTh1cccUVeO6551BWVubtrvmFr776CkOGDEFMTAx0Oh02bdpk9roQAnPmzEFMTAzq1KmDnj174scff9S8Hwx23OTDDz9EUlISnnzySfz3v/9F9+7dMXDgQBw/ftzbXfMrqampmDhxIr799lts374dpaWl6N+/Py5cuODtrvm1tLQ0rFixAtdee623u+KXzp07h5tvvhmBgYH44osv8NNPP+Hll19GgwYNvN01v/PCCy/gzTffxNKlS/Hzzz9j0aJFePHFF/H66697u2t+4cKFC2jfvj2WLl1q9fVFixZh8eLFWLp0KdLS0hAVFYV+/fqZalZqRpBb3HjjjWL8+PFmx9q0aSMef/xxL/WoZsjNzRUARGpqqre74rcKCgpEq1atxPbt20WPHj3ElClTvN0lv/PYY4+Jbt26ebsbNcKgQYPEAw88YHYsMTFR3HPPPV7qkf8CIDZu3Gj6uaysTERFRYmFCxeajl26dEmEhYWJN998U9N7c2THDUpKSpCeno7+/fubHe/fvz/279/vpV7VDHl5eQCAhg0berkn/mvixIkYNGgQ+vbt6+2u+K3NmzejY8eOuOOOO9CkSRNcf/31ePvtt73dLb/UrVs37Ny5E7/++isA4H//+x/27duH2267zcs983+ZmZnIyckx+64MDg5Gjx49NP+uZCFQN/j7779hMBgQGRlpdjwyMhI5OTle6pX/E0Jg2rRp6NatG+Lj473dHb+UnJyMgwcPIi0tzdtd8Wt//PEHli9fjmnTpuGJJ57A999/j0cffRTBwcG47777vN09v/LYY48hLy8Pbdq0gV6vh8FgwPPPP49Ro0Z5u2t+z/h9aO278s8//9T0Xgx23Ein05n9LISodIy0M2nSJPzwww/Yt2+ft7vil7KysjBlyhRs27YNtWvX9nZ3/FpZWRk6duyI+fPnAwCuv/56/Pjjj1i+fDmDHY19+OGHeP/997F27Vq0bdsWhw4dQlJSEmJiYjBmzBhvd69G8MR3JYMdN2jUqBH0en2lUZzc3NxKESxpY/Lkydi8eTO++uorxMbGers7fik9PR25ubno0KGD6ZjBYMBXX32FpUuXori4GHq93os99B/R0dG45pprzI5dffXV2LBhg5d65L9mzpyJxx9/HHfddRcAoF27dvjzzz+xYMECBjtuFhUVBUCO8ERHR5uOu+O7kmt23CAoKAgdOnTA9u3bzY5v374dXbt29VKv/JMQApMmTUJKSgp27dqFli1bertLfqtPnz7IyMjAoUOHTI+OHTvi7rvvxqFDhxjoaOjmm2+ulELh119/RfPmzb3UI/918eJFBASYfxXq9XpuPfeAli1bIioqyuy7sqSkBKmpqZp/V3Jkx02mTZuGe++9Fx07dkSXLl2wYsUKHD9+HOPHj/d21/zKxIkTsXbtWnzyyScIDQ01jaaFhYWhTp06Xu6dfwkNDa20FiokJAQRERFcI6WxqVOnomvXrpg/fz5GjhyJ77//HitWrMCKFSu83TW/M2TIEDz//PNo1qwZ2rZti//+979YvHgxHnjgAW93zS8UFhbit99+M/2cmZmJQ4cOoWHDhmjWrBmSkpIwf/58tGrVCq1atcL8+fNRt25djB49WtuOaLq3i8y88cYbonnz5iIoKEjccMMN3A7tBgCsPlauXOntrtUI3HruPp9++qmIj48XwcHBok2bNmLFihXe7pJfys/PF1OmTBHNmjUTtWvXFldccYV48sknRXFxsbe75hd2795t9e/oMWPGCCHk9vNnn31WREVFieDgYHHLLbeIjIwMzfuhE0IIbcMnIiIiIt/BNTtERETk1xjsEBERkV9jsENERER+jcEOERER+TUGO0REROTXGOwQERGRX2OwQ0RERH6NwQ4RERH5NQY7RFTtrFq1Cg0aNPBqH3r27ImkpCSv9oGI1DCDMhFpZuzYsXjvvfcqHb/11luxdetWze5TVFSEgoICNGnSRLNrOuvs2bMIDAxEaGio1/pARGpYCJSINDVgwACsXLnS7FhwcLCm96hTp47XC702bNjQq/cnInWcxiIiTQUHByMqKsrsER4ebnpdp9PhnXfewfDhw1G3bl20atUKmzdvNrvG5s2b0apVK9SpUwe9evXCe++9B51Oh/PnzwOoPI01Z84cXHfddVizZg1atGiBsLAw3HXXXSgoKDC1EUJg0aJFuOKKK1CnTh20b98e69evt/teli1bhlatWqF27dqIjIzEiBEjTK9VnMbas2cPdDpdpcfYsWNN7T/99FN06NABtWvXxhVXXIG5c+eitLTUyU+XiFzBYIeIPG7u3LkYOXIkfvjhB9x22224++67cfbsWQDAsWPHMGLECAwbNgyHDh3Cww8/jCeffNLhNX///Xds2rQJW7ZswZYtW5CamoqFCxeaXn/qqaewcuVKLF++HD/++COmTp2Ke+65B6mpqVavd+DAATz66KN47rnncOTIEWzduhW33HKL1bZdu3ZFdna26bFr1y7Url3b1P7LL7/EPffcg0cffRQ//fQT3nrrLaxatQrPP/+8sx8dEblC8zrqRFRjjRkzRuj1ehESEmL2eO6550xtAIinnnrK9HNhYaHQ6XTiiy++EEII8dhjj4n4+Hiz6z755JMCgDh37pwQQoiVK1eKsLAw0+vPPvusqFu3rsjPzzcdmzlzpujcubPpHrVr1xb79+83u+64cePEqFGjrL6XDRs2iPr165tds6IePXqIKVOmVDr+999/iyuvvFJMmDDBdKx79+5i/vz5Zu3WrFkjoqOjrV6biLTFNTtEpKlevXph+fLlZscs17dce+21pj+HhIQgNDQUubm5AIAjR46gU6dOZu1vvPFGh/dt0aKF2WLh6Oho0zV/+uknXLp0Cf369TM7p6SkBNdff73V6/Xr1w/NmzfHFVdcgQEDBmDAgAGmqTdbLl++jNtvvx3NmjXDq6++ajqenp6OtLQ0s5Ecg8GAS5cu4eLFi3avSURVx2CHiDQVEhKCq666ym6bwMBAs591Oh3KysoAyLU1Op3O7HWhsGnU3jWNz5999hmaNm1q1s7W4unQ0FAcPHgQe/bswbZt2/DMM89gzpw5SEtLs7nt/ZFHHsHx48eRlpaGWrXK/3otKyvD3LlzkZiYWOmc2rVrO3xvRFQ1DHaIyKe0adMGn3/+udmxAwcOVOma11xzDYKDg3H8+HH06NFD+bxatWqhb9++6Nu3L5599lk0aNAAu3btshq0LF68GB9++CG++eYbREREmL12ww034MiRIw6DQCJyDwY7RKSp4uJi5OTkmB2rVasWGjVqpHT+ww8/jMWLF+Oxxx7DuHHjcOjQIaxatQoAKo34qAoNDcWMGTMwdepUlJWVoVu3bsjPz8f+/ftRr149jBkzptI5W7ZswR9//IFbbrkF4eHh+Pzzz1FWVob/+7//q9R2x44dmDVrFt544w00atTI9P7r1KmDsLAwPPPMMxg8eDDi4uJwxx13ICAgAD/88AMyMjIwb948l94TEanjbiwi0tTWrVsRHR1t9ujWrZvy+S1btsT69euRkpKCa6+9FsuXLzftxqpKvp5///vfeOaZZ7BgwQJcffXVuPXWW/Hpp5+iZcuWVts3aNAAKSkp6N27N66++mq8+eabWLduHdq2bVup7b59+2AwGDB+/Hiz9z1lyhQAMqnili1bsH37dnTq1Ak33XQTFi9ejObNm7v8fohIHTMoE5HPe/755/Hmm28iKyvL210homqI01hE5HOWLVuGTp06ISIiAl9//TVefPFFTJo0ydvdIqJqisEOEfmco0ePYt68eTh79iyaNWuG6dOnY/bs2d7uFhFVU5zGIiIiIr/GBcpERETk1xjsEBERkV9jsENERER+jcEOERER+TUGO0REROTXGOwQERGRX2OwQ0RERH6NwQ4RERH5tf8HnFfPhGEk6dwAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "plt.scatter(train.ENGINESIZE, train.CO2EMISSIONS, color='blue')\n",
+ "XX = np.arange(0.0, 10.0, 0.1)\n",
+ "yy = clf.intercept_[0]+ clf.coef_[0][1]*XX+ clf.coef_[0][2]*np.power(XX, 2)\n",
+ "plt.plot(XX, yy, '-r' )\n",
+ "plt.xlabel(\"Engine size\")\n",
+ "plt.ylabel(\"Emission\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "
\n",
+ "\n",
+ "IBM SPSS Modeler is a comprehensive analytics platform that has many machine learning algorithms. It has been designed to bring predictive intelligence to decisions made by individuals, by groups, by systems – by your enterprise as a whole. A free trial is available through this course, available here: SPSS Modeler\n",
+ "\n",
+ "Also, you can use Watson Studio to run these notebooks faster with bigger datasets. Watson Studio is IBM's leading cloud solution for data scientists, built by data scientists. With Jupyter notebooks, RStudio, Apache Spark and popular libraries pre-packaged in the cloud, Watson Studio enables data scientists to collaborate on their projects without having to install anything. Join the fast-growing community of Watson Studio users today with a free account at Watson Studio\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Thank you for completing this lab!\n",
+ "\n",
+ "\n",
+ "## Author\n",
+ "\n",
+ "Saeed Aghabozorgi\n",
+ "\n",
+ "\n",
+ "### Other Contributors\n",
+ "\n",
+ "Joseph Santarcangelo\n",
+ "\n",
+ "\n",
+ "##