"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "plt.scatter(cdf.ENGINESIZE, cdf.CO2EMISSIONS, color='green')\n",
+ "plt.xlabel(\"Engine size\")\n",
+ "plt.ylabel(\"Emission\")\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#### Creating train and test dataset\n",
+ "Train/Test Split involves splitting the dataset into training and testing sets respectively, which are mutually exclusive. After which, you train with the training set and test with the testing set. \n",
+ "This will provide a more accurate evaluation on out-of-sample accuracy because the testing dataset is not part of the dataset that have been used to train the model. Therefore, it gives us a better understanding of how well our model generalizes on new data.\n",
+ "\n",
+ "We know the outcome of each data point in the testing dataset, making it great to test with! Since this data has not been used to train the model, the model has no knowledge of the outcome of these data points. So, in essence, it is truly an out-of-sample testing.\n",
+ "\n",
+ "Let's split our dataset into train and test sets. Around 80% of the entire dataset will be used for training and 20% for testing. We create a mask to select random rows using the __np.random.rand()__ function: \n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "tags": []
+ },
+ "outputs": [],
+ "source": [
+ "msk = np.random.rand(len(df)) < 0.8\n",
+ "train = cdf[msk]\n",
+ "test = cdf[~msk]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "tags": []
+ },
+ "source": [
+ "#### Train data distribution\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "tags": []
+ },
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAGwCAYAAABPSaTdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB3bElEQVR4nO3de1yUddo/8M84CAICAsopUMzQTLBMLaVMSDyViZGZ2u5iubvueghEoE33YLsmLRbqT9PttGq6Sq3hqYOnEtNFN8T1CcvH3IREhSgPHBQZGeb3h8+MDMzhe99zD3Pg8/69eP1i5pr7vgd4di6/9/W9LpVOp9OBiIiIyE11cvQFEBEREdkTkx0iIiJya0x2iIiIyK0x2SEiIiK3xmSHiIiI3BqTHSIiInJrTHaIiIjIrXk4+gKcQXNzMy5evAg/Pz+oVCpHXw4REREJ0Ol0qKurQ0REBDp1Mr9+w2QHwMWLFxEVFeXoyyAiIiIZKioqEBkZafZ5JjsA/Pz8ANz6Yfn7+zv4aoiIiEhEbW0toqKiDJ/j5jDZAQy3rvz9/ZnsEBERuRhrJSgOLVBevHgxVCqV0VdYWJjheZ1Oh8WLFyMiIgLe3t5ISEjA119/bXSMxsZGzJs3D927d4evry8mTpyI8+fPt/dbISIiIifl8N1YAwYMQGVlpeGrtLTU8Fxubi7y8vKwevVqFBcXIywsDKNHj0ZdXZ0hJj09Hdu2bUN+fj4OHz6M+vp6TJgwAVqt1hFvh4iIiJyMw29jeXh4GK3m6Ol0OqxYsQKLFi1CSkoKAGDDhg0IDQ3F5s2bMWvWLNTU1ODdd9/Fxo0bkZSUBADYtGkToqKisH//fowdO9bkORsbG9HY2Gj4vra21g7vjIiIiJyBw1d2zpw5g4iICPTu3RtTp07F2bNnAQBlZWWoqqrCmDFjDLFeXl4YOXIkioqKAAAlJSW4efOmUUxERARiY2MNMabk5OQgICDA8MWdWERERO7LocnOgw8+iPfeew979uzB22+/jaqqKsTHx+PSpUuoqqoCAISGhhq9JjQ01PBcVVUVPD09ERgYaDbGlJdeegk1NTWGr4qKCoXfGRERETkLh97GGj9+vOG/4+LiMHz4cPTp0wcbNmzAsGHDALStsNbpdFarrq3FeHl5wcvLy4YrJyIiIlfh8NtYLfn6+iIuLg5nzpwx1PG0XqGprq42rPaEhYVBo9HgypUrZmOIiIioY3OqZKexsRGnTp1CeHg4evfujbCwMOzbt8/wvEajwcGDBxEfHw8AGDx4MDp37mwUU1lZiZMnTxpiiIiIqGNz6G2szMxMPPHEE+jZsyeqq6uxZMkS1NbWIjU1FSqVCunp6Vi6dCliYmIQExODpUuXwsfHB9OnTwcABAQEYObMmViwYAGCg4MRFBSEzMxMxMXFGXZnERERUcfm0GTn/PnzmDZtGn766Sf06NEDw4YNw9GjR9GrVy8AQHZ2NhoaGjB79mxcuXIFDz74IPbu3WvUFnr58uXw8PDAlClT0NDQgFGjRmH9+vVQq9WOeltEROQEtM1aHDp3CJV1lQj3C8eIniOg7sTPho5IpdPpdI6+CEerra1FQEAAampqOC6CiMgNFJwqQNruNJyvvd1RP9I/EivHrURK/xQHXhkpSfTz26lqdoiIiGxVcKoAkz+YbJToAMCF2guY/MFkFJwqcNCVkaMw2SEiIrehbdYibXcadGh700L/WPrudGibOVKoI2GyQ0REbuPQuUNtVnRa0kGHitoKHDp3qB2vihyNyQ4REbmNyrpKRePIPTDZISIitxHuF65oHLkHJjtEROQ2RvQcgUj/SKhgemSQCipE+UdhRM8R7Xxl5EhMdoiIyG2oO6mxctxKAGiT8Oi/XzFuBfvtdDBMdoiIyK2k9E/B1ilbcYf/HUaPR/pHYuuUreyz0wGxqSDYVJCIyB2xg7L7E/38dui4CCIiIntRd1IjITrB0ZdBToC3sYiIiMitMdkhIiIit8Zkh4iIiNwakx0iIiJya0x2iIiIyK0x2SEiIiK3xmSHiIiI3BqTHSIiInJrTHaIiIjIrTHZISIiIrfGZIeIiIjcGpMdIiIicmtMdoiIiMitMdkhIiIit8Zkh4iIiNwakx0iIiJya0x2iIiIyK0x2SEiIiK3xmSHiIiI3BqTHSIiInJrTHaIiIjIrTHZISIiIrfGZIeIiIjcmtMkOzk5OVCpVEhPTzc8NmPGDKhUKqOvYcOGGb2usbER8+bNQ/fu3eHr64uJEyfi/Pnz7Xz1RERE5KycItkpLi7GW2+9hYEDB7Z5bty4caisrDR8ffLJJ0bPp6enY9u2bcjPz8fhw4dRX1+PCRMmQKvVttflExERkRNzeLJTX1+PZ599Fm+//TYCAwPbPO/l5YWwsDDDV1BQkOG5mpoavPvuu3j99deRlJSEQYMGYdOmTSgtLcX+/fvb820QERGRk3J4sjNnzhw8/vjjSEpKMvl8YWEhQkJC0LdvX/zqV79CdXW14bmSkhLcvHkTY8aMMTwWERGB2NhYFBUVmT1nY2Mjamtrjb6IiIjIPXk48uT5+fk4fvw4iouLTT4/fvx4PP300+jVqxfKysrwhz/8AY8++ihKSkrg5eWFqqoqeHp6tlkRCg0NRVVVldnz5uTk4OWXX1b0vRAREZFzcliyU1FRgbS0NOzduxddunQxGfPMM88Y/js2NhZDhgxBr1698PHHHyMlJcXssXU6HVQqldnnX3rpJWRkZBi+r62tRVRUlIx3QURERM7OYclOSUkJqqurMXjwYMNjWq0WX3zxBVavXo3Gxkao1Wqj14SHh6NXr144c+YMACAsLAwajQZXrlwxWt2prq5GfHy82XN7eXnBy8tL4XdEREREzshhNTujRo1CaWkpTpw4YfgaMmQInn32WZw4caJNogMAly5dQkVFBcLDwwEAgwcPRufOnbFv3z5DTGVlJU6ePGkx2SEiIqKOw2ErO35+foiNjTV6zNfXF8HBwYiNjUV9fT0WL16Mp556CuHh4SgvL8fChQvRvXt3PPnkkwCAgIAAzJw5EwsWLEBwcDCCgoKQmZmJuLg4swXPRERE1LE4tEDZErVajdLSUrz33nu4evUqwsPDkZiYiPfffx9+fn6GuOXLl8PDwwNTpkxBQ0MDRo0ahfXr15tcGSIiIqKOR6XT6XSOvghHq62tRUBAAGpqauDv7+/oyyEiIgVom7U4dO4QKusqEe4XjhE9R0Ddif8Qdiein99Ou7JDREQkV8GpAqTtTsP52tvjgyL9I7Fy3Eqk9De/m5fck8ObChIRkfPRNmtRWF6ILaVbUFheCG2z64zgKThVgMkfTDZKdADgQu0FTP5gMgpOFTjoyshRuLJDRERGXHlVRNusRdruNOjQtkJDBx1UUCF9dzqS+yXzllYHwpUdIiIycPVVkUPnDrW59pZ00KGitgKHzh1qx6siR2OyQ0REAKyvigBA+u50p76lVVlXqWgcuQcmO0REBMA9VkXC/cIVjSP3wGSHiIgAuMeqyIieIxDpHwkVTM9HVEGFKP8ojOg5op2vjByJyQ4REQFwj1URdSc1Vo5bCQBtEh799yvGrWBxcgfDZIeIiAC4z6pISv8UbJ2yFXf432H0eKR/JLZO2er0O8pIedx6TkREAG6vikz+YDJUUBkVKrvaqkhK/xQk90tmB2UCwHERADgugoioJVN9dqL8o7Bi3AquipBTEf38ZrIDJjtERK1xrhS5As7GIiIi2dSd1EiITnD0ZRApgskOEZET4ErKbfxZkNKY7BAROZgrz6JSGn8WZA+s2QFrdog6Gk2TBmuOrcF3l79Dn6A+mD1kNjw9PB1yLfpZVK1HNOh3P70/+X308O3RIVY5rP0suG2cWmOBsgRMdog6jux92cg7kget7vZ8J7VKjYzhGcgdnduu16Jt1iJ6ZbTFEQ1qldroWt11lcPaz0IFFSL9I1GWVua2yR5JJ/r5zaaCRNRhZO/LxrKiZUbJAwBodVosK1qG7H3Z7Xo91mZRAWhzra4yfVwqd5jLRc6LyQ4RdQiaJg3yjuRZjMk7kgdNk6adrkjejClXmT4ulTvM5SLnxWSHiDqENcfWtFklaU2r02LNsTXtdEXyZ0w54yqHtlmLwvJCbCndgsLyQsmJmDvM5SLnxd1YRNQhfHf5O0XjlKCfRXWh9kKbolwR9lzlkLL9W4kdVNZ+FvqaHWefy0XOiSs7RNQh9Anqo2icEixN6BZhr1WOglMFiF4ZjcQNiZheMB2JGxIRvTLaZJ2QfgdV63obqbVFnFZO9sRkh4g6hF/e90tF45RibkK3WmX+Q92e08elJC/aZi3SdqeZXImRU1vEaeVkL9x6Dm49J+oIVhxdgfl75luNWz52OdKHpdv/glppfdvop2s/YcrWKQBgcvq4PT78RbbCR/lHGbZ/F5YXInFDotXjHkg9IGn0BDsokyjOxiIiaqE9a3bkNC00NYtqa6etJmth7DV9XGQrvL4wOiE6wW47qDiXi5TGZIeIOoT2qtkx1bQwc2+mrKaFKf1TkNwvud1WOS7UXpAUxx1U5CpYs0NEdqVp0mDF0RWY98k8rDi6ol372LQ0e8hsi3UwwK06mdlDZss+h7M1LZTqx+s/SorT76AyV1xtz9oiIimY7BCR3WTvy4bPUh/M3zMfq4tXY/6e+fBZ6uOQD31PD09kDM+wGJMxPEP2jCx7NC2UsitKCT18ekiK4w4qchVMdojILpxxlSN3dC6y4rParPCoVWpkxWfZNBtL6aaFSm3plqL1LiiROO6gIlfA3VjgbiwipWmaNPBZ6mPxw1+tUuP6wusOmTZuj6nn8z6Zh9XFq63GzR06F6seW2UxxlFDMaXuxmr9Wu6govbGQaBE5DDOOJqhJU8PT6QPS8eqx1YhfVi6IgmXkgXQjhqKqb8tZakGh7elyBUx2SEixTnjaAZ7U7IA2pFDMfW3pSL9I40ej/KPMntbqr1ri4ik4tZzIlKcM45msDd9AfSyomVmY0QLoB29pVvKlnd9bVHrLsr62iLW7ZAzcJqVnZycHKhUKqSnpxse0+l0WLx4MSIiIuDt7Y2EhAR8/fXXRq9rbGzEvHnz0L17d/j6+mLixIk4f95yUywisq/22ObtjHJH5yK5X7LJ55L7JQsXQDvDlm59Y79pcdOQEJ1gMtFRelwEkb04RbJTXFyMt956CwMHDjR6PDc3F3l5eVi9ejWKi4sRFhaG0aNHo66uzhCTnp6Obdu2IT8/H4cPH0Z9fT0mTJgArZb/x0XkKPbe5u2sCk4VYOfpnW0eV0GFnad3KjoU8/Uxr+PQuUPYUroFheWFDkkoHFVbRCSVw5Od+vp6PPvss3j77bcRGBhoeFyn02HFihVYtGgRUlJSEBsbiw0bNuD69evYvHkzAKCmpgbvvvsuXn/9dSQlJWHQoEHYtGkTSktLsX//fke9JSKCfbd5OyNbVzm0zVoUlhcakpfkfslmt3RnxmciY2+Gw2tkHFlbRCSFw2t25syZg8cffxxJSUlYsmSJ4fGysjJUVVVhzJgxhse8vLwwcuRIFBUVYdasWSgpKcHNmzeNYiIiIhAbG4uioiKMHTvW5DkbGxvR2Nho+L62ttYO74yIckfnYkniEsW3eTsjKascrec+FZwqMDkDa+W4lShPKzc5INQZamQcXVtEJMqhyU5+fj6OHz+O4uLiNs9VVVUBAEJDQ40eDw0Nxffff2+I8fT0NFoR0sfoX29KTk4OXn75ZVsvn4gE6Ld5uzu5qxxSCnz1fXDMrR6poEL67nQk90tul+3h+tqiC7UXTF6Tvh8Qx0WQoznsNlZFRQXS0tKwadMmdOnSxWycSmV8v1qn07V5rDVrMS+99BJqamoMXxUVFdIunoioFTmrHFJvfTlbjYyzjIto0DRg7idzMXbjWMz9ZC4aNA12PR+5HoclOyUlJaiursbgwYPh4eEBDw8PHDx4EP/v//0/eHh4GFZ0Wq/QVFdXG54LCwuDRqPBlStXzMaY4uXlBX9/f6MvIiJbyNlBJTV5ccYaGUePi5iUPwk+OT54o/gN7D27F28UvwGfHB9Myp9k1/OSa3FYsjNq1CiUlpbixIkThq8hQ4bg2WefxYkTJ3DnnXciLCwM+/btM7xGo9Hg4MGDiI+PBwAMHjwYnTt3NoqprKzEyZMnDTFERO1BziqH1OTFWWtkUvqnoDytHAdSD2BzymYcSD2AsrSydkl0dpzeYfK5Had3MOEhA4fV7Pj5+SE2NtboMV9fXwQHBxseT09Px9KlSxETE4OYmBgsXboUPj4+mD59OgAgICAAM2fOxIIFCxAcHIygoCBkZmYiLi4OSUlJ7f6eiKhj069ymCo2XjFuRZsPf6nJizPXyOj78rSXBk2D2URHb8fpHWjQNMDb07udropas8ccOjkcvhvLkuzsbDQ0NGD27Nm4cuUKHnzwQezduxd+fn6GmOXLl8PDwwNTpkxBQ0MDRo0ahfXr10Ot5uwWImp/UroPS01e9KtHkz+YDBVURq9pzxoZZ5C1P0s4bvVj1ge0kvKy92Uj70ie0Zy8zL2ZyBie0e6tJzj1HJx6TkSOo9+NBcBk8mKq7sXUVvUo/yiTq0fuauzGsdh7dq/VuDF3jsGen+9phyuilrL3ZVscnaJUry3Rz28mO2CyQ+TqtM1aoZUUZyUneXH192yruZ/MxRvFb1iNmzN0Dld22pmmSQOfpT5GKzqtqVVqXF943eZbWkx2JGCyQ+S6LDXkc6VVjo6evEjVoGmAT46P1bjrL11nzU47W3F0BebvmW81bvnY5Tb34BL9/Hbqmh0iIkvcaeK2UgW+HSVp8vb0RnK/ZItFysn9kpnoOMB3l79TNE4JDp+NRUQkBydut1VwqgDRK6MdPjOrvWyfut3ilPntU7e37wURAKBPUB9F45TA21jgbSwiV1RYXojEDYlW4w6kHmjXLdFy2boiY26Vy1Khs5IaNA3I2p+FM5fOICY4BsuSlrXbqoojz01tOWPNDm9jEZFLcsZuwtZUXa3Cfe/ch6s3rqJbl2448csTCOsWJqvuqGVyFOIbgrRPza9yyZmZJSWBaN3cT9/JuL1WV7w9vVmE7EQ8PTyRMTzD4m6sjOEZ7dpvhys74MoOkStytZUd31d8cb3pepvHPTt54mbzTUkrMqaSIxGiPwtznYlNJS+Wuhibew11DKb67KhVakX77HA3lgRMdohcj34CuLWGfGVpZQ4v0DWX6Fhj6j2Yu10lYnPKZkyLm2YxRkrywh1RZI29OyiLfn6zQJmIXJKzTNy2pupqlaxEB2g7CNRSUbaIEN8Qi89LGcEASOtiTB2Tp4cn0oelY9Vjq5A+LN0hoyIAJjtE5MIcPXFbxH3v3GfzMfR1R9ampNtKavJy5tIZoXjROCJ7YYEyEbk0KbOoHOHqjas2H0M/CNTWYuvqa9UWn5eavMQExwiNbIgJjhE6LpG9cGWHiFyeviHftLhpSIhOcJpEBwC6dekm+7UqqBDlH2UYBCo6Jd0ca68XTUr0ca8++qpQvGgckb0w2SEisqMTvzwh63Wm6o70U9Jb1yiJHKtl0mTOsiTzW4VNxR2rOiYULxpHZC9MdoiI7CisWxh8PCzvWPLs5IlI/0ijx0zVHVkqyjZHSrG2fgSDJS1HMLhiryPqmJjsEBHZ2bVF18wmPD4ePmj8QyPK08pxIPUANqdsxoHUAyhLKzNZYG2uKDvKPwpZ8VlCSZMlUkYwiN5Ws/X2G5Gt2GcH7LNDRO3DXAdlOcyNl1BqEKhIB2VX6nVE7olNBSVgskPk2txh0re9m6/Zi77JIQCjhMceM7nc4fdMymKyIwGTHSLXJWeulLNpj7b69mTqdxDlH4UV41Yo9jtwh98zKY/JjgRMdohck6MnfUtlavXm9wd+b3FgYlZ8lkskPPZcmXK13zO1HyY7EjDZIXI9+noRcx2Fna1exNTqjf7D2tL4B7VKjesLrzv1LS17rrq42u+Z2hdnYxGRW7M2OqH1XClHyt6XjWVFy4wSHeDWNVqbc6XVaZGxNwNbSregsLwQ2matxfj2pl91af27uFB7AZM/mIyCUwUmX6dt1qKwvNDq+3Kl3zM5L46LICKX5Co9XjRNGuQdybPpGG8Uv4E3it8A4Fx1KpYGk+qggwoqpO9OR3K/ZKNVFykrQa7yeybnxmSHiFySM/d4ablr6F8V/2qzomML/YqJM9SpiK66rPpyFUJ9QxHuF46frv2EKVuntEmQzL0vZ/49k+tgzQ5Ys0Pkipy1x4upVQulOUudypbSLZheMF3Sa9Qqtdnkz9T7ctbfMzkH1uwQkVuzNDpB//3rY17HoXOH2q3exVz9itJarpjY+t4aNA2Y+8lcjN04FnM/mYsGTYPwa+Wsplha5TJVf9Py92yOyCgM6ti4sgOu7BC5MnM9XqbGTsWWk1varS+LtV1D9ibnvU3Kn4Qdp3e0ebz1WAhzGjQN8MmxPPdLjs0pmzEtbprRY67ei4jsg1vPJWCyQ+TaWnfWNVcXYs++LIXlhUjckKjoMaWQ+t7MJTp6IgnPiqMrMH/PfEnXKeJA6gEkRCcYvmefHTJH9PObBcpE5PLUndSGD0f9CovUHUK2cvRuIP17S/s0DQFeAai+Vm12pEKDpsFiogMAO07vQO7hXFTUVphtEvjd5e8UfQ/6+psRPUcYHpO744uoJSY7RORWpPRlabl6YIlId2Bn2A2kgw7n684jaWOS4bFIv0isHG98eytrf5bQ8V787EXDf2fuzWxzy6hPUB8FrvoW/SpN6/obe/w+qeNhgTIRuRWl+7Jk78uGz1IfzN8zH6uLV2P+nvnwWeqD7H3ZRnEjeo5ApH+k5Ou1t/N15/HUB08ZNfc7c+mM5ONodVosK1pm9L5nD5kNtUreakrr10X6R5q8HcU+O6QEJjtE5FaU7MtirvOxqQ9+dSc1BocPlnaxALp4dGmzm8wefr3r14YdWzHBMbKPk3ckD5omDQDA08MTE/pOkPR61f/9vy1PbcGB1APYnLIZB1IPoCytzGTdDfvskBKY7BCRW3kw4kFF4kQ6H7f84Nc0afDRtx9ZPe9v7v8Nxtw5BnOGzsH1l67jHyn/ANB2+7zSLjVcQmF5IQBgWZL5waPWaHVarDm25tZ/N2tRUlliMd7cCs7TA55GQnQCpsVNQ0J0gtl6G/2KmbmfjwoqRPlHGdX5ELXGZIeIXF7LOUui9ShvHn/T4vNrjq2x2vm45Qe/SDwA9OvRD3t+vgerH1sNb09vpPRPwdYpW3GH/x1C120LfbLj7emN5H7Jso+jL0y2Vk8D3PoZLR+73OoKjjki/ZTYZ4escWiys3btWgwcOBD+/v7w9/fH8OHD8emnnxqenzFjBlQqldHXsGHDjI7R2NiIefPmoXv37vD19cXEiRNx/rxj+lwQUfsrOFWA6JXRSNyQiOkF0w0zpKyxVrciutNIHyc1vqWU/ikoTys33NZZPna50LFssX3qdtkJj74w+ULtBaH4Hj49rK7gWGIuITRX50PUmkN3Y0VGRuLVV1/FXXfdBQDYsGEDkpOT8Z///AcDBgwAAIwbNw7r1q0zvMbT03gHRHp6Onbt2oX8/HwEBwdjwYIFmDBhAkpKSqBWM9Mncmfm+q+IUKks3zYS3Wmkj5Ma31rr7fOvH3nd4oiEO/zuwPpJ61F9rRqV9ZVYsHeB1XO33q20fep2NGgakLU/C2cunUHvwN54+/jbaNY1mz2GWqXG7CGzAQA/Xv/R6jmlxFmS0j8Fyf2SjfopmdpWT2SK0zUVDAoKwrJlyzBz5kzMmDEDV69exfbt203G1tTUoEePHti4cSOeeeYZAMDFixcRFRWFTz75BGPHjhU6J5sKEjlG62aAUj68bO1Y/N6k9/Dze39u9nlNkwY+S30s3ppSq9S4vvA6PD08Jce3Zq4xIgCjhMdUIz1tsxahr4XiUsMls+cO9g7GD5k/WP356ouyzcmKzzJsP//HV//Az7b9zOLxAGDTk5vw7MBnrcYRSeVys7G0Wi3y8/Nx7do1DB8+3PB4YWEhQkJC0LdvX/zqV79CdXW14bmSkhLcvHkTY8aMMTwWERGB2NhYFBUVmT1XY2Mjamtrjb6IqH21vv2UuCER0SujjbZIWyJSL2JJVECUxec9PTyRMTzDYkzG8AxD4iI1viVTP4v5e+cjMz7T7K2b5H7JhjqlQ+cO4W+P/83iud964i2hRDJ3dC6y4rPaFBarVWqjRAeAcJ1Re9QjEVni8KaCpaWlGD58OG7cuIGuXbti27ZtuOeeewAA48ePx9NPP41evXqhrKwMf/jDH/Doo4+ipKQEXl5eqKqqgqenJwIDA42OGRoaiqqqKrPnzMnJwcsvv2zX90VE5pm7/XSh9gImfzBZqA7Dlr4qwd7Bdtm9o08EzM1w+t3w3yFuTRwu1l9ERNcIHPzFQRRWFJr9WbxW9Bren/w+evj2MFr92nF6R5tVrUj/SGTFZ2Fz6WZcqLtdS2OqqaDI+1iSuMRqI8URPUcg2DvY6ooSd0qRozn8NpZGo8G5c+dw9epVfPjhh3jnnXdw8OBBQ8LTUmVlJXr16oX8/HykpKRg8+bNeO6559DY2GgUN3r0aPTp0wd/+5vpf+k0NjYavaa2thZRUVG8jUXUDqzdftKPDChLK7O4EvHZ2c+MOgVLIXJLR9Okgfcr3miG+fqVTuiEhkUNbZIAUx2Xe67oiR+u/WDyGObOYepnYW1OlKnkyF51LUrePiOSw2VmY3l6ehoKlIcMGYLi4mKsXLkSb77ZdltoeHg4evXqhTNnbu2iCAsLg0ajwZUrV4xWd6qrqxEfH2/2nF5eXvDy8lL4nRCRCGdo/3+p4ZLV46/6cpXFRAcAmtGMVV+uwoJ44+JgTw9PpA9LN3wf9lqYyURHfwxzWv8sROZELdi7wGqiqJRD5w5ZTHQAsZ81kb05Tc2Onk6na7NSo3fp0iVUVFQgPPxWp8zBgwejc+fO2LdvnyGmsrISJ0+etJjsEJHjKNX+v/patcXnbT3+4XOHhY5jLe5y/WWziY4o/bVKSRTbA0c5kKtw6MrOwoULMX78eERFRaGurg75+fkoLCzE7t27UV9fj8WLF+Opp55CeHg4ysvLsXDhQnTv3h1PPvkkACAgIAAzZ87EggULEBwcjKCgIGRmZiIuLg5JSfKWt4nIvpRq/2/reABrr+/q2VXoONbiRr43UviazNFfq2jS8O7xd/HhNx+arbVRCkc5kKtwaLLzww8/4Oc//zkqKysREBCAgQMHYvfu3Rg9ejQaGhpQWlqK9957D1evXkV4eDgSExPx/vvvw8/Pz3CM5cuXw8PDA1OmTEFDQwNGjRqF9evXs8cOkZPSt/+31EMm0j/SalGrteOYI3r8qQOmYlPpJqvHmzpgqsXnL9ZfFL621lpfq2jS0PK6TU0rV4r+d2BptYmjHMgZODTZeffdd80+5+3tjT179lg9RpcuXbBq1SqsWrVKyUsjIjvRt/+f/MFkqKAy2UPmr0l/RdruNJy5dAYxwTFYlrQM3p7ewscxR8p4gf+99L9C7+d/L/0vHsfjZp+P6BqByw2XhY7VkqlrlZPg6YeWAlA84VF3UiO8a7jFZCesaxiLk8nhnK5mh4jcS8u5VYXlhdA2ay22/x8SMcQw9mHv2b14o/gN+OT4YFL+pDbHNnecKP8oDI0Y2iZeBx0m9psotA377JWzQu/PWtzBXxwUOk6YT5jR96ZGIViaE2VNy6GlSmnQNKD4YrHFmOKLxWjQNCh6XiKpHL4bi4jcV8GpAqTtTmvTD2bluJUm2/8vP7IcO7/dafJYO07vwKT8Sdg+dbvR46aO89G3H+H1I6+bPU72vmyrqxzWxkmIxgV1DUKob6jFIuVQ31Cczzgv1E1an+C1/rlaox9a2nKXmK1Eh65m7c/C6sdWK3ZeIqmY7BDZwJZxB87CXu9BtHGgfktyg6bBbKKjt+P0DjRoGkze0tIfR9OkQdJ7ljco5B3Jw5LEJRYLd02tDMmNq8qsMrv9PNQ3FFWZt5qgim7Pbp3gffD1B9h+ervV14kOKxX17U/fKhpHZC+8jUUkk63jDpyBvd6DtX4wAJC+Ox3a5ttdhqWsEliy5tgai/OpgNurHJb8dP0noesRjfvFvb+Q9Lg1+gRvWtw0jIwW2/ElOqxUlK+nr6JxRPbCZIdIBv2qRevbCPpVC1dIeOz5HuT0gzlz6YzQsa3Fia5eWIsTLSoWibM0XHNZ0TJk78sWOpc5s4fMbjPLqrWW08qVMqnfJEXjiOyFyQ6RRHJWLZyNvd+DnGZzMcExQq+xFie6eqH0Koc5miYN8o7kWYyxtXjYliGktugV2EvROCJ7YbJDJJGzdbGVw97vQU6zuWVJplc+WrMWp9QqR7BPsND1WItT6raaNbmjc5HcL9nkc8n9ku3aZ8cS9tkhZ8Bkh0gid2iRb+/3oP8QNLc9WgVVmw9Bb09vsx/Wesn9ktsUJwPG29uLzhdZ3XEkssoR6htq8XnROKVuq1lTcKoAO0+bLvDeeXqnXW6t6rfCq/7v/7Wkf0ykpxGRvTHZIZLIHVrk2/IeTPXNac1SPxhLjf22T91ucXWi9bZzwHSR9ftfv4/kfsltVnjUKjWy4rOEVjnCuoZZjRGJa4/bapZuS+pJvS0p8nsGbu0Mm9hvYptzS+lpRGRv3HpOJJFS4w4cSe57sNY3pyVz/WAi/SOxYtwKsx+C26duR4OmAVn7syx2UNZfj7nt7RdqLyD/qXxcrL+I7y5/Z/c5UebMHjIbmXszLd7KsrV4WOlJ8lJ+z9n7srHj9A6TxxHtaURkb0x2iCQSGXfg7Ev3ct6DaN+clkw1/BPp4+Pt6W21CZ21ImsVVMjcl4mytDJZvwvRqerW4vTFw+Z2YwG2Fw8reVtSyu9ZtPjaWk8jInvjbSwiGfSrFhF+EUaP3+F3h8kPfWdkaWRD6/dgy+6tlv1gEqITFEsCnbHI2pzc0bnIis+y6baardcgEif199xexddEtuLKDpENpM4ncjaiKy9K3yZRQnsVWSt1uzJ3dC6WJC7BmmNrFL+tptT0cam/5/Yqviaylexk5+rVq/jyyy9RXV2N5uZmo+d+8Qt5HUGJXIXZpf4687d0XJkz7kCzd6G4PW5Xenp4KjqbSk/dSY1psdMs3iqbGjvV6rVK/T07W08jInNkJTu7du3Cs88+i2vXrsHPz89oEJ5KpWKyQ25NpFYkfXf6rd1ATly3A4gXorb3DjSReV22rLyIzgMzFFl/mobzdbd/Rnf432GyWNdRtM1abDm5xWJM/sl85IzKsfg3KfX3/Mv7fon5e+Zbjf/lfb9s85g7zJUj1yGrZmfBggV4/vnnUVdXh6tXr+LKlSuGr8uXxVqsE7kqd2gqCEgbFzGi5wh09exq8XhdPbsqsgNNdF6XfuXF3HZrHXQmV17kzANrs61aZ36LtyNY+5sEIPQ3KbU/0jsn3hG6vtZx7jBXjlyLrGTnwoULeOGFF+Dj46P09RA5PWe8pSOV1EJUbbMW1zXXLR7zuua6zSMy7D1zTOrx9fEX6i4YPX6x7qJTzUBT6m9San8kOTU77jBXjlyPrGRn7NixOHbsmNLXQuQSnKWpoGjTN1Okrk6tObYGzWg2Gw8AzWi2adeNnAQsbXea2ePpbye2jpd6fCXnh/1Y+yN6r+iNrku7oveK3vix9kfh11qi5N+klF16Umt23GGuHLkmWTU7jz/+OLKysvDNN98gLi4OnTt3Nnp+4sSJilwckTNyhqaCUpq+mSJ1JaA9dt1I3QnkbPHWdHu1G2oaawzfX6u5hpDlIQjwCsDV3121+npLlP6bFN2lJ7VhojPu6qOOQVay86tf/QoA8Oc//7nNcyqVClots3JyX45uKiinuV9rUlcC2mPXjdQEzNniLWmd6LRU01iDbq92synhscffpL4/kiVSGya6wy1gck2ybmM1Nzeb/WKiQx2BlKV+JSl1G0BqIapSk8QtCfENkRQnNWGzd7w5P9b+aDbR0atprLH5lpaj/ialNEzs5tVN6JiicUSi2FSQSCa5oxBsIXobYNWXqxDqG2r2mqSuBHh6eGJC3wlmZyABwIS+E9p1JIDUWzcjeo5AsHcwLjVcMnvMYO9go/guHl1wo+mG2fguHl2s3hp64O8PiLwdPPD3B1CWXiYUa44j/iYB8YaJO781PZW9tZ3f7sT4vuPtcanUQclOdg4ePIjXXnsNp06dgkqlQv/+/ZGVlYURI5x3+CGR0kSW+pUkurzfsveJEoM6tc1alFSWWDzn8crj0DZrZX+wSp1FZe/biZomjcVEBwBuNN2Apkljckip3o/XxVZsROOsae+/ST2Rholnr5wVOpZoHJEoWbexNm3ahKSkJPj4+OCFF17A3Llz4e3tjVGjRmHz5s1KXyMR/R85O7wsbelN6Z+C8rRyHEg9gM0pm3Eg9QDK0sraJEZK9XGxRM5tIym3bg6dO2RxVQcALjVcMryHrP1ZQtdjLa6HTw+h45iLs2XXnbOJCY5RNI5IlKyVnVdeeQW5ubmYP//2vx7T0tKQl5eHv/zlL5g+fbpiF0hEt1m7dWOKta7OIisB7VFYKndHkeitG6nv4cylM0Lx1uK+fP5LhCy3Xo/05fNftnnM1l13zmZZ0jK8UfyGUByRkmSt7Jw9exZPPPFEm8cnTpyIsjLb7jkTkXktm75J0bKWR84KgS3FuqIrE1Ib2rV+rbXJ6lLfg1KrED38eyDAK8BiTIBXAHr4G6/syG2+p2nSYMXRFZj3yTysOLoCmiaNwLtoH96e3kjul2wxJrlfssXbgkRyqHQy+p7fddddyMrKwqxZs4wef/PNN/Haa6/hzBmxfxE5i9raWgQEBKCmpgb+/v6OvhwiqyblT7JYLCxCygqBpkkDn6U+VvupXF943agoVc7KhKnXRPlHtakjkkrbrEX0ymirK0dlaWVQd1Kj/kY9/P7qZ/W4dS/WoWsXy6M0APPbz0312dFfq7lbh62vVS97XzbyjuQZ/Z7UKjUyhmcY7YpyNHN/v8n9krF96vb2vyByWaKf37JuYy1YsAAvvPACTpw4gfj4eKhUKhw+fBjr16/HypXS/9VJROKy92XbnOgA0vryFJ0vspjoAIBWp0XR+SLDLTG5/YDstaNIakHzsSqxLvHHqo4JFQRf/d1V/Fj7Ix74+wP48fqP6OHTA18+/2WbFR1AXvO97H3ZJvvdaHVaw+POkvBsn7odDZoGZO3PwplLZxATHINlScu4okN2IyvZ+e1vf4uwsDC8/vrr+OCDDwAA/fv3x/vvv4/kZMtLlEQkn6ZJg7wjeYocS8qEdqn1LqL9gMyd1147iqTsQLNHnVIP/x5C28ulnlvk7yLvSB6WJC5p1/YAlnh7emP1Y6sdfRnUQcjeev7kk0/iySefVPJaiFyOtlnbrj1N1hxbY3WFRQrR9vxS612k7N5q723SoitHjpyBJvXcIn8XWp0WGXsz8FDUQ+3Wf4fIWbCpIJFMjtgpY8vsKUusrSTER8ZDrVJbrdmJj4wHcOtWlQjROKWJrBwN7D5Q6FiicVLod6ZZShhbdrgW/bt4o/gNw24oV97VRSSV8G6soKAg/PTTTwCAwMBABAUFmf0icnfmdsqcrz1vcaeMrWyZPWWJtZUEKTU7QPs30rOHiR+IDTQWjZNC3UmNabHTLMZMjZ1qWJmR83dhbVcXkTsRXtlZvnw5/Pz8DP+tUpmeqUPk7izVowC3bg2J1MHIITJlWgrRadhSa0hsbaTnDL6/+r2icVJom7XYcnKLxZj8k/nIGZUDdSe1rL8LKTVbRK5OONlJTU01/PeMGTPscS1ELsGR9SgiU6ZFSRmpILWGpHVHY3NE45QmUmvVrUs3nK+z/HvWx4nSNGmszo8CpP+Nyf27EK3ZInJ1spoKHj9+HKWlpYbvd+zYgUmTJmHhwoXQaMQbWK1duxYDBw6Ev78//P39MXz4cHz66aeG53U6HRYvXoyIiAh4e3sjISEBX3/9tdExGhsbMW/ePHTv3h2+vr6YOHEizp+3/j9QRHI5uh4ld3Su1cZsprSeSi1lGra+Zsfa8fU1O/qaE0ta1py0p4JTBYheGY3EDYmYXjAdiRsSEb0yus3tnBcefEHoeKJx2fuy4bPUB/P3zMfq4tWYv2c+fJb6IHtfdpvYipoKoWO2jDM3fVyELZ2viVyBrGRn1qxZ+PbbbwHc6qb8zDPPwMfHB//85z+Rnd32/3DNiYyMxKuvvopjx47h2LFjePTRR5GcnGxIaHJzc5GXl4fVq1ejuLgYYWFhGD16NOrq6gzHSE9Px7Zt25Cfn4/Dhw+jvr4eEyZMgFbruvNjyLk5uh6l4FQBdp4Wmx7dklanxfKxy9vMwBLpcCy1Zkff06Z1J2Q9FVQ2DelsTbRrsJRaq2s3rwmdWyRO3wOn9c9Q3wOndcLz7wv/Fjp367jc0bm4vvA6lo9djrlD52LO0DlCx7HHjjIiZyJrN9a3336L++67DwDwz3/+EyNHjsTmzZvxr3/9C1OnTsWKFSuEjtN65MQrr7yCtWvX4ujRo7jnnnuwYsUKLFq0CCkpt/7luWHDBoSGhmLz5s2YNWsWampq8O6772Ljxo1ISkoCcGtIaVRUFPbv34+xY8eaPG9jYyMaGxsN39fW1kr8CVBH5sh6FGv1QtaE+oZiWtztwlfRHWVyes6Y62mjRDfklkx1Dc7cm9mma7DUWiulfs9yeuCINrY3Fddy+ri2WYsdp3dInjdG5G5krezodDo0NzcDAPbv34/HHnsMABAVFWXYsSWVVqtFfn4+rl27huHDh6OsrAxVVVUYM2aMIcbLywsjR45EUdGtfz2WlJTg5s2bRjERERGIjY01xJiSk5ODgIAAw1dUVJSsa6aOyZH1KCK1HJb8cO0HwwrO1q+3Cs9ekttzRnSqulxSVkykTm5X6vcs2gNnzbE1hu9F53KpVKo2K3INmgbM/WQuxm4ci7TdachNupXwSZ03JpU7TWcn9yNrZWfIkCFYsmQJkpKScPDgQaxduxYAUFZWhtDQUEnHKi0txfDhw3Hjxg107doV27Ztwz333GNIVlofLzQ0FN9/f2v3Q1VVFTw9PREYGNgmpqqqyuw5X3rpJWRkZBi+r62tZcJDwqT2QFGSLbUVapUa8/fMN/reXIfj1rt0bOk5Y69uyFJXTKTWWin1exbtgdMybtb9s4x+V+a07psT3jUcxReLDc/vPbsXbxS/gaERQ1FZX2m1a7Rc7jadndyPrJWdFStW4Pjx45g7dy4WLVqEu+66CwCwdetWxMfHSzpWv379cOLECRw9ehS//e1vkZqaim+++cbwfOst7jqdzuq2d2sxXl5ehqJo/ReRKKk9UJRkS22FqdUPc1ru0gHav+fM5frLiFsTh+DcYMSticPl+sttYqSumEittVLq9yzaA6dl3L8vitXstHS+9rxRotNS8cVi3B92v11W2BzVc4pIClnJzsCBA1FaWoqamhr86U9/Mjy+bNkybNiwQdKxPD09cdddd2HIkCHIycnBvffei5UrVyIsLAwA2qzQVFdXG1Z7wsLCoNFocOXKFbMxREoT7YFij2X8ByMeVPyYluhXks7VnBOKF42zJOy1MAS/HoyTP57E5YbLOPnjSQS/Hoyw18KM4qSumEitwVHq9/x036eFztsyzh67o3Z+uxMPRjyIaXHTkBCdoNitK5E6KN7SIkeTlexUVFQYbe/+8ssvkZ6ejvfeew+dO3e26YJ0Oh0aGxvRu3dvhIWFYd++fYbnNBoNDh48aFg9Gjx4MDp37mwUU1lZiZMnT0peYSISJbX2Q0lvHn9T8WNaol9J6hnQUyheNE6vdZ1H6LJQ/HDtB5OxP1z7wSjhkbpiIrUGR6nf88PvPSx03pZx9todlbU/S9HjOfL/FoikkFWzM336dPz617/Gz3/+c1RVVWH06NEYMGAANm3ahKqqKvzxj38UOs7ChQsxfvx4REVFoa6uDvn5+SgsLMTu3buhUqmQnp6OpUuXIiYmBjExMVi6dCl8fHwwffp0AEBAQABmzpyJBQsWIDg4GEFBQcjMzERcXJxhdxaR0uT0QFGKvWZjtdZ6l87HUz9Gt2XdrL7u46kfC5/DVJ2HNT9c+wGX6y8jqGuQUNdgtepWd2FAeg2OUv2U5LQqEJlFJseZS2cUPZ6je04RiZK1snPy5Ek88MADAIAPPvjAsPtp8+bNWL9+vfBxfvjhB/z85z9Hv379MGrUKPz73//G7t27MXr0aABAdnY20tPTMXv2bAwZMgQXLlzA3r17DWMrgFujKyZNmoQpU6bgoYcego+PD3bt2gW1mq3POxLRPitKkNsDRQn2mo3VkqldOgE+AegTaPncfQL7IMAnQOgc5uo8RIx8bySA292kLckYnmHYzt2y94+pnUmte/8o1U/JU922Q7K1OJG+RnKI7vIS5eieU0SiZCU7N2/ehJeXF4BbW88nTrxVlHj33XejslL8XvO7776L8vJyNDY2orq6Gvv37zckOsCt4uTFixejsrISN27cwMGDBxEbG2t0jC5dumDVqlW4dOkSrl+/jl27dnFnVQcjpTOtEmzpgWKr2UNmy+qQa4loZ+X/vvBfhPqaroUL9Q3Ff1/4r9D5bO0VdLH+ouG/zXUNVqvUyIrPMuqzA9zu/dP6lpap9xzYxXiXpznW4kS7XbeMs1dH42VJto8ZackdZqBRxyDrNtaAAQPwt7/9DY8//jj27duHv/zlLwCAixcvIjg4WNELJLJE32elNX2fFQBtPvBsJfqvY6X/FQ3cWs2Y0HcCdpzeodgxH495HPOHz7c4Jwq4tRpTfa3a5DGqr1Wj4FSB0O4eW3sFRXSNMPo+d3QuliQuEZo5BdxKeJL7JVudjWVuZ1NrxReLkXpfqtnn7w27F/gf68e5N+xew3/bo2YnuV8yvD29FT2ms89AI9JT6WT887OwsBBPPvkkamtrkZqair///e8AbtXg/O///i8KClxrq2FtbS0CAgJQU1PDbeguRNOkgc9SH6s1G9cXXjf7wedK5wVurYpEr4y2KVloTeRarZ1XX+NTllZmdZfPltItmF4wXfb1XlpwCUFdg2S/XtScj+cYNfozZ/aQ2Xjj8TfMPi/n70X/8zbX+Vj/mpbHjPKPQljXMJNJWnK/ZGyfut3qe5FK5O8xyj9K6O+CSA7Rz29ZKzsJCQn46aefUFtba9TQ79e//jV8fHzkHJJIMil9VvTt85Xg6eEJL7UXrjddNxvjpfZSPNEBbF8VMUXkZ2TtvFKmZ9uyahHqG2oy0RGZYi6VUit4IhPJW9YWAbfriyZ/MBkqqIwSHn290eaUzbhYf7HNalaDpgFZ+7Nw5tIZxATHYFnSMsVXdExdJwCT16nkDDQiuWQlOwCgVqvbdC6Ojo629XqIhMnpTKuEy/WXLSY6AHC96bph15CS7LWrxdrPSM5sLHPk9goK9Q1FVWbbzuj26t4rdbeXJfpbqa1neKlV6jYzvPTMzRaL9I/E1NipWLBvgdHjrx953fCeVz+2Wug9KsHSdSo5A43IFsLJzv3334/PPvsMgYGBGDRokMUOxcePH1fk4ogskdOZVgn63UAicaWzSxU9t712tVj7GcmdjWWKaK+gwC6B0Gg16OHTA18+/yV6+LctctXv6mp9q0c/38tUobUoOSsylkitLQJM1xf9eO1HPLP1Gbu8Z7lE66CIHEU42UlOTjbswJo0aZK9rodImOj8oFn3z1L0vI7sLWKvXS2/iP2FxeeVnAcmutJ25catzujXaq7h/nfvb7NSY2lXl6n5XnLoV1xeP/I6mnXNhsctrchY0nIiuaiWs8X0NTL2fM9y2WsGGpEShJOdlmMhWv43kaOIzg/698V/K/o/wp4enkCjYJzC7LWrZeZHM7Ft6jazz+vnRFla5RCdByZnpc3UqoWSdUSWDIschnDfcFyov528hvmGYVjkMNnHlKu93jORu5HVZ6el+vp61NbWGn0RtQcl60ikGN9nvKJxUuhXWJRmrbOukvPA5PQK0q9ktJyz1B6/f/1tspaJDnCr14+cIZe2Nr901N88kauTleyUlZXh8ccfh6+vLwICAhAYGIjAwEB069atTdEykb0oWUcixdXGq4rGSaHf/aK0azevWXxeyRlIIp2PTWk9iV309/rDtR8Ms7ekDKS0dpsMgKQhl0o0v3TU3zyRq5O1G+vZZ58FAPz9739HaGioxWJlInvRr3KY60XSer6TUhz9gXP0/FHFj3ln4J0Wn1d6RcHc7iQp57D2+wdu1da0rOuSsktLyVtGSjW/dNTfPJGrk7Wy89VXX2HdunV45plnkJCQgJEjRxp9EbWHlqscpmYdAeZ7fLSeti3lX/xRfmLjSETjpNA0afBa0WuKH7f6WjXGbhyLuZ/MRYOmoc3z9kjwckfn4vrC61g+djnmDp2LOUPnSDqHpd+/XutESl/7I3L7SakET9OkQd6RPIsxeUfyhG5p2fI3T9SRyUp2hg4diooK5Sc6E0klZdaRXsGpAkSvjEbihkRML5iOxA2JiF4ZLVx/UXS+SNE4KVb+e6XsmVKWnPzxJPae3Ys3it+AT44PJuVPMnpev6JgLqlQQSW8G6sl/e6kVY+twspxKyWfw9zv31xNkJTbT0oleFKaX4qQ8zdP1NHJuo31zjvv4De/+Q0uXLiA2NhYdO7c2ej5gQMHKnJxRCKk9PhQoi9L+dVyoesSjZNCyZlY1s4zKX+SYcSASEdfW1cU5J6j9e//h2s/WGxJIHr7SalbRvZofsm+NkTSyEp2fvzxR3z33Xd47rnnDI+pVCrodDqoVCpotdLuwRPZSqTHh1J9Wfy8/ISuSTSu5fU504fXjtM70KBpMIwasEenXE2Tpk2TPTnnaPn731JqedeYnrXbT0olePZqfsm+NkTiZCU7zz//PAYNGoQtW7awQJlchlIFpw9FPoQj549YPd9DkQ8JX5voyIMBPQbgXxX/Ej6urbL2ZxmNHlByRSF7X3abAuXMvZnIGJ6B8rRy2edQsr5IiQRPybETRCSPrGTn+++/x86dO3HXXXcpfT1EdqNUwWmXzl2EjiMaJ+XW2sM9H8Zbx98SOq4STPXfUWJFQandSaYovWPJ1gRP6bETRCSdrALlRx99FP/zP/+j9LWQi7Nlh1N7CPENUSRO9EPSXFzLn9NnZz9D2qfivVwi/CKEzq0U0cnfUii5O8kU/e0nc4XcOugk1xfpE7xpcdOQEJ3A2hgiFyNrZeeJJ57A/PnzUVpairi4uDYFyhMnTlTk4sh12GvytDMS/aAzVyDd+udkiaPb/y9LMr8aIZeU3UlS50jpWetFdPT80Xb7uxRN7pYkLuHqDpGdyEp2fvOb3wAA/vznP7d5jgXKHY89J08rqfpatSJxco9j7uckQn9rraq+SvJr5Urul2woTlbS6Z9OKxrXmqZJg9eLXrcY83rR6+2WXLRHckdElsm6jdXc3Gz2i4lOx6J0S317UqpwtbtPd6HjtIyz9HMSob+19uP1H2W9XqrkfsmGbedKE03Y5CZ2q75chWY0W4xpRjNWfblK+Ji23KK1x9ZzIpJGUrLz2GOPoaamxvD9K6+8gqtXrxq+v3TpEu655x7FLo6cn5QdTo6mVGO80upSofO1jBOZLSWih08Pm49hSkxgDMbcOQZzhs7B9Zeu2y3RAew/buPwucOKxtnahNJeW8+JSJykZGfPnj1obGw0fP/Xv/4Vly9fNnzf1NSE06flLT2Ta3KlKcxKtdovu1ImdL6Wcba+f/0tsdZdc5VyT8g92PPzPVj92Gq73LpqqW9wX0XjWuvq2VWxOP2tx9aJ6vna88JjJ0SmvHPrOZF9SUp2dDqdxe+p41Fqh1N7UaLVfq9uvYTO1TLO1qGg+tcPCRti03HMCfFpv9+PvT/8p8dOVyTO2q1HHXRCt2hFprxz6zmRfckqUCZyFHNdhqV0H7a5MZ5ojt8iTmRCtznB3sGGW2u/+/x3kl4rqv5mvXCsrZ2e7d13RvR11uJEbj2K7pQzN+VdrVIjY3iG7J5CRCRGUrKjUqnadEtm9+SOTakdTiLMbW+fFjsN//jqH7hYf9HweETXCKx6bJXQeAGpzl49Kzmu5egBW5hq8qeE769+jy2lW6wmL0q1GLDnh79SBdAXai8IHUc0Lnd0LpYkLmkzHsNdVnScbdwJUUuSkh2dTocZM2bAy8sLAHDjxg385je/ga+vLwAY1fNQx2DvYlM9c9u2z9eeN7lCcLH+Ip764Cl8OOVDxbe9y61TSumfgsz4zDYf8NZcarhkWD2ICY7B3rN7JV2viKLzRYYp7eaSF6VbDNjrw190x5q1OKWO05J+yru76Uh9tsg1SarZSU1NRUhICAICAhAQEICf/exniIiIMHwfEhKCX/ziF/a6VnJCSu1wssSWbdup21MV3/YuZ+s5cOsD4bWi1yQlOnr6xOnPj7TtbaU0ffLSsvjWXi0G9B/+qx5bhfRh6YqscojuWLMWp9Rx3J25Im5Tf0dEjiJpZWfdunX2ug5yUUpNhrbElm3b9Zp6fHb2M4y5a4zs87cm5zaJUn12FhUukvV6KUxNgFdqiGp7EN2xZi1OqeO4M2tJcOu/IyJHkdVUkKglJXY4WWLrtu2NX2206fWtlV0V3HreIk6pPjvHLh6z+RgiWvdHcqUWA/rVRktEVhuVOo47c6U+W9SxcTcWKcLmHU4W2FrvU68R32kk4qb2puQ4pfrsdPPqZtNxpNJfd3vVZimhdTG43NVGpY7jzlwpCaaOjSs7pBh7TYYeFDLIptc/3PPhNo/Z0v5/RC/Bqect4pTqs5PYO9Gm40ilv33WHrVZSlJqtdHeq5auzpWSYOrYuLJDTm/GzhmyX9sJnTDvgXlGj9m6c6RvkGAH4BZxI3qOQLB3MC41XBK88ttaJhEnq09Kfr0S2qM2S2lKrTbac9XS1VnrH6WCCpH+kU6TBFPHxWSHnN5/L/9X9msXxC8w2uGjxPZpOTU7tpgaO9XwwarUMUVdrLvdu0i/ymEqUVwxboVTrnLY0k/JHsdxN66YBFPH5NDbWDk5ORg6dCj8/PwQEhKCSZMmtZmtNWPGDEMzQ/3XsGHDjGIaGxsxb948dO/eHb6+vpg4cSLOn7e9GJScg7+Xv+TXqFVqZMVnGTWnU2r79Fc/fCV0DS3jDp07JGtVBwDyT+Ybrumn6z/JOoZc/77wb6PvU/qnoDytHAdSD2BzymYcSD2AsrQyp0x0qH3wVh+5Aoeu7Bw8eBBz5szB0KFD0dTUhEWLFmHMmDH45ptvDI0KAWDcuHFG2949PY17caSnp2PXrl3Iz89HcHAwFixYgAkTJqCkpARqNf9F4eoeinrI0PDOksReiRgQMsBsczqltk/fuHlD6LpbxtlSoNnymszVzNiLqfl3XOWg1nirj5ydQ5Od3bt3G32/bt06hISEoKSkBI888ojhcS8vL4SFhZk8Rk1NDd59911s3LgRSUlJAIBNmzYhKioK+/fvx9ixY9u8prGx0ajbc21trRJvp8Nr0DQga38Wzlw6g5jgGCxLWqbIBG0vDy+huId6PoS/PPoXs88rtXMk2DdY6Dgt42wt0Hzli1eQcygH129et+k4UsUEx7Tr+agtVxnDwCSYnJlT7caqqakBAAQFBRk9XlhYiJCQEPTt2xe/+tWvUF19e85SSUkJbt68iTFjbjeNi4iIQGxsLIqKTK8G5OTkGLo+BwQEICoqyg7vpmOZlD8JPjk+eKP4Dew9uxdvFL8BnxwfTMqfZPOxRf8H1FqcUjtHFgxbIHSclnHxkfFWJ31bsr9sP/ae3YsL9WJzmJTyy/t+2a7nI2MFpwoQvTIaiRsSMb1gOhI3JCJ6ZTS7EhNJ5DTJjk6nQ0ZGBh5++GHExsYaHh8/fjz+8Y9/4PPPP8frr7+O4uJiPProo4aVmaqqKnh6eiIwMNDoeKGhoaiqMt3p9qWXXkJNTY3hq6Kiwn5vrAOYlD8JO07vMPncjtM7bE54EqIT0NWzq8WYrp5drSY7Sm2fTuqTZDVxUavUSOqTZPi+6HyRrDERjvbOiXccfQkdFscwECnHaXZjzZ07F1999RUOHz5s9Pgzzzxj+O/Y2FgMGTIEvXr1wscff4yUFPOFbzqdzuxEdi8vL8MwU7JNg6bBbKKjt+P0DjRoGmy6peWl9kI9zDcH9FJb/30qtXNE26w1WcvSkk6ng7ZZaziWqzZVs9eUdbKMYxiIlOUUKzvz5s3Dzp07ceDAAURGWm7PHh4ejl69euHMmVv/IxwWFgaNRoMrV64YxVVXVyM0NNRu10y3ZO3PUjTOFJGdTPrJ4NYosXNkzbE1aEazxZhmNGPNsTWG7121qZq5fzCQfXEMA5GyHLqyo9PpMG/ePGzbtg2FhYXo3bu31ddcunQJFRUVCA+/9eExePBgdO7cGfv27cOUKVMAAJWVlTh58iRyc3MtHYoUIPovf1tWCC7UitWpiMbZunNEznsWaSoY1CUIHzz9AaqvVSPvSB6OVbbPHCxLhoYPdfQldEgcw0CkLIcmO3PmzMHmzZuxY8cO+Pn5GWpsAgIC4O3tjfr6eixevBhPPfUUwsPDUV5ejoULF6J79+548sknDbEzZ87EggULEBwcjKCgIGRmZiIuLs6wO4vsp3c36wmqlDhTfrz+o1Dc1m+24uj5o2a3nrdky84R0dUOqasiKpXKMGbj0LlDTpHsXGm8Yj2IFMcxDETKcuhtrLVr16KmpgYJCQkIDw83fL3//vsAALVajdLSUiQnJ6Nv375ITU1F3759ceTIEfj5+RmOs3z5ckyaNAlTpkzBQw89BB8fH+zatYs9dtpB70DBZEcwzpQePj2E4raf3o7Vxasxf898+Cz1Qfa+bNnntOTBOx6UHCf1VtzEvhPlX6CCRH/2pCxXm0VG5OwcfhvLEm9vb+zZs8fqcbp06YJVq1Zh1apVSl0aCbJUVyAnzpTW9TUitDotlhUtAwCjLsqG523oXRIVINaqoGWc1NsSV244x4qKnJ892Y5jGIiU5RQFyuS6+gT1UTTOFP2/cuXIO5IHTZPG6DFbe5eIXE/rf3VLvS0R7C3WuNCeuHLgWBzDQKQcJjtkk9lDZgv1nJk9ZLbsc6g7qTE4fLCs12p1WqNdUeZ6l5yvPS/cu0Tkeu4Pv9/oX91Sb0uUVpdavQ57UkHFlQMnwFlkRMpgskM28fTwRMbwDIsxGcMzLBYLW6Np0uCjbz+S/frvLn8HwHLvEuDWdl6RQaAi1/PRtx8ZrSjpb0sAaJPwmLotcfbKWYvHV0qfwD5tVqmi/KO4cuBE9MX00+KmGQrYiUgaJjsdiLZZi8LyQmwp3YLC8kKrH+qivr30rU3PW7Pm2Bqbug/rb6FZ610CQKh3icj1tF5RAqTdlmiv/jbfXfkOzwx4hisHROTWnKaDMtlXwakCpO1OM/qwj/SPxMpxK236YGuPDsqnfzot63WA8S00pfr12NJbSLTHz4N3PIg3it8QOo+tVhxdgaWPLrVp9Y2IyJlxZacDsOeMHdHOyNMLpsteUbKlfmVC3wmGD3HRfj3W4mztsyNyW0J0x5cSTK1CERG5EyY7bs7ajB0AQnUq5oiuumw/vV321GaRuVfmHK88bnhvoj1jrMUNCh0kdBzROFMejBDr5aMUfV0TEZE7YrLj5uw9Y6ehqUHya6SuKDVqGyWfQ6/lexPtGWMt7qMzYsXSonGmvHn8TdmvlcOW1gBERM6OyY6bs/eMnZigGMmvkbqidGe3OyWfoyX9e5PTH8eU2sZaofOKxpnSnisttrYGICJydkx23Jy9Z+wcuyhvfpOUFSVbVkiA2+9NTn8cU6qvVQudVzTOlPZcabG1NQARkbNjsuPmlFrNMEej0VgPskBkRanxpvzbWMDt+hc5/XFM6e7dXei8onGmiDRrtJVapUZWfJbJcRpERO6EyY6bU3dSY1rsNIsxU2Onym5U9mOj2A4nc0RWlPy6+FmNsURf/yK3P05rjc1iyZdonCmeHp64P/x+2a83JyYwBnOHzsXysctxfeF1JjpE1CEw2XFz2mYttpzcYjEm/2S+7N1Ynp3k3f6QMrX5peEvyTqH3tfVXwMQr4OxFic6t8qW+VaaJg2OVx6X/XpzVo5biVWPrUL6sHTeuiKiDoPJjptTqmuwOZdvXJb8GqlTm/95+p+Sz9HS0fNHASg3tNTfy1/oOKJxptjaNdqULh5dMOauMYoek4jIFTDZcXNKdQ02x0MlvQm31KnNNTdqJJ+jJf2qlVJDS/28xG6ricaZYo/dWGP7jOVcJSLqkJjsuDmlugab499FbPUisEug7NlLdwXdJeva9PSrT0oNLRUtHLalwNgeu7FEiq+JiNwRkx03p1TXYHOyHhQbF7EofpHsqc3rJ66XcWW3BXoFGv47d3QusuKz2iQiUnYm9Q7sLXRe0ThT7LEbi2MhiKijYrLj5mzpGiwyJX11yWqh44vGmfKf6v/Ifi0AeKiNb7Xljs7F9YXXsXzscnk7k9pO3rAtzgSRVSg5OBaCiDoiTj13cyN6jkCwdzAuNVwyGxPsHdxmV5TolPT26CYst7uzXnxUfJvHPD08kT4sXdbxvq/5XtE4c/TJV96RPMWKlTkWgog6Iq7sdADWZku1fl7KlPSIrhFC1yAaZ0o3r26yXwsA/Xv0t+n1rSm1q0tE61Wo2B6xso/FsRBE1FEx2XFzheWFqNfUW4yp19SjsLwQgPQp6QtHLBS6DtE4U/75jW1bz3953y9ten1rSu3qEqVfhVr12Cocef6I7ONwLAQRdVRMdlyYSE2NPomxRh8ndUr6a0deEzq+aJwpH/7vh7JfCwDvnHinzWOaJg1WHF2BeZ/Mw4qjKyTtUvL08MSEvhMsxkzoO8EuiUXXLl3RJ1DaihHHQhBRR8eaHRclWlPTrGsWOp4+TuqUdEu1QC2Jxpkit7uzXuui3Ox92W3qYDL3ZiJjeIZQQqBt1uLwucMWYw6fOwxts1bxvjbaZq3V25KR/pGYP2w+yq6UoU9QH8weMpsrOkTUoXFlxwVJqakJ8g4SOqY+TuqU9NobggXKgnGmxPWIk/1awLh2JntfNpYVLWtT8KvVabGsaBmy92VbPV5heaHV5O1SwyXhVTUpRDpin689j/vD7+dYCCKi/8Nkx8VIrakJ6xomdFx9nH5Kun6kQ2utZ1p1VnUWOr5onCk7n9kp+7Uta2c0TRrkHcmzGJ93JM/qLa3Pyz4XOrdonBRSV96IiIjJjsuRWlMjtc+OupMaK8ettBjbcqbVTdwUOr5onCn/+OYfsl/bsihXqann52rOCZ1bNE4KqStvRETEZMflSP2Xvb7PjiWt++yk9E9BZnymyS7DmfGZRjVB4V0FP3wF40yR2wgv1DfUqAZHqannPQN6Ch1HNE4KOb9PIqKOjsmOi5HzL/urN65ajG39fMGpArxW9FqbVZBmXTNeK3rNqCaoPZKdCD95PXp+uPYDHnj7AcP3SvXHebT3o0LHEY0jIiL7YrLjYuIj44V6vMRH3uoa/Om3nwrduvn0209v/beVmiAddEY1QYfLLe9K0hONM+VIhfzeMsUXi1F/41afIaX64yREJwitriREJ0i6VhGHzh0SKo7W38YkIiImOy6n6HyRUPJSdL4IAPCng38SOq4+TmS3T8uaoEZY3gatJxpnSnlNuezXAsDPt/8cgIJTzzup8dYTb1mMeeuJtxTfdg6wQJmISA4mOy5G6ofdlRtXhOL1cRdqLwjF6+M6Cf4JicaZIrWJXmtnLp0x/LcSU8+BW3VNH075EJF+kUaPR/pH4sMpHxrVNSmJBcpERNKxqaCLkfphF9Y1DGVXy6zG67ee/3j9R6Hj6+NGRY/CvvJ9VuNHRY8SOq4pGydthN9f/WS//trNa0bf547OxZLEJVhzbA2+u/yd7MZ7Kf1TkNwvGYfOHUJlXSXC/cIxoucIu6zo6OlbA1yovWDyVqMKKkT6R7JAmYioBSY7Lkbqh92v7v8Vjpy3XvPyq/t/BQDo4dND6Dr0cc/e+6xQsvPsvc8KHdcU/YiE767I25XVu1vvNo/ZMvW8JXUntV1qcyydb+W4lZj8wWSooDL6G9D3RmrZGoCIiBx8GysnJwdDhw6Fn58fQkJCMGnSJJw+fdooRqfTYfHixYiIiIC3tzcSEhLw9ddfG8U0NjZi3rx56N69O3x9fTFx4kScP2+57sRV6T/sTCU6wK0i4pYfdlK3SUttQtjdu7tQvGicKSIjEiy5u8fdsl/rjFL6p2DrlK1teihF+kdi65StdruFRkTkqhya7Bw8eBBz5szB0aNHsW/fPjQ1NWHMmDG4du32bYfc3Fzk5eVh9erVKC4uRlhYGEaPHo26ujpDTHp6OrZt24b8/HwcPnwY9fX1mDBhArRa22YqkXVvHbdcqCs1zhSRomlLJvadKPu1ziqlfwrK08pxIPUANqdsxoHUAyhLK2OiQ0RkgkNvY+3evdvo+3Xr1iEkJAQlJSV45JFHoNPpsGLFCixatAgpKbf+R3zDhg0IDQ3F5s2bMWvWLNTU1ODdd9/Fxo0bkZSUBADYtGkToqKisH//fowdO7bd35c96beGm6OCCmmfpiHAKwDV16pxsvqk0HGr6quM/n/R+P9e/q9QvGicKd9f/V72awHxIm1X09630IiIXJVT1ezU1NQAAIKCbg2lLCsrQ1VVFcaMGWOI8fLywsiRI1FUVIRZs2ahpKQEN2/eNIqJiIhAbGwsioqKTCY7jY2NaGy8fVuktlb+kMr2JjIu4nzdeSRtTJJ03B+u/QAAqKwX3O31f3EXagR3bwnGmfLhqQ9lvxYAunl1s+n1RETk2pxm67lOp0NGRgYefvhhxMbGAgCqqm6tHoSGhhrFhoaGGp6rqqqCp6cnAgMDzca0lpOTg4CAAMNXVFSU0m/HbuzVP+XS9VuN6k5UnhCK18e13ulkTt3NOmwp3YLC8kJDQ0JRF+suSopvbee38geJEhGR63OaZGfu3Ln46quvsGXLljbPqVTGE7h1Ol2bx1qzFPPSSy+hpqbG8FVRUSH/wttZiG+IXY7bpG0CANRp6qxEwiiuGc1C8c1oxvSC6UjckIjoldFGIyessXVlRu5sLSIicg9OkezMmzcPO3fuxIEDBxAZebtJW1jYrR0/rVdoqqurDas9YWFh0Gg0uHLlitmY1ry8vODv72/01dGdunSq3c51ofYCJn8wWTjhGd1ntE3n8/X0ten1RETk2hya7Oh0OsydOxcFBQX4/PPP0bu3cT+U3r17IywsDPv23e7jotFocPDgQcTH35r9NHjwYHTu3NkoprKyEidPnjTEuJPqa9V2Oe6NmzcAiA/d1MdZW2EzRb9tvuWMLUsi/SOtxlgy6e5JNr3eEm2zFoXlhbJv0bnquYmIXIlDC5TnzJmDzZs3Y8eOHfDz8zOs4AQEBMDb2xsqlQrp6elYunQpYmJiEBMTg6VLl8LHxwfTp083xM6cORMLFixAcHAwgoKCkJmZibi4OMPuLHdibQClXH279wUA9OveTyheH9fVoytqbtZIPp8OOsOMLWs7ilr3k5GqV7deNr3enIJTBUjbnWZUMB7pH4mV41bafQt4wakCvPDJC7hQf7vw+46ud+D/Pfb/uP2ciKgVh67srF27FjU1NUhISEB4eLjh6/333zfEZGdnIz09HbNnz8aQIUNw4cIF7N27F35+t8cHLF++HJMmTcKUKVPw0EMPwcfHB7t27YJa7X5dZEurS+1y3GVJywDcmgyu78Rrjgoqw2Twm003bTqvSMG1vmu0HMHewXYZnVBwqgCTP5jcZmec1Ft0cs/91AdPGSU6AHCh/gKe+uApu56biMgVOfw2lqmvGTNmGGJUKhUWL16MyspK3LhxAwcPHjTs1tLr0qULVq1ahUuXLuH69evYtWuXS+2wkkLuyARr6m/UG/7bXHdmU89roLHpvCKzvtSd1BgcPljW8W3pvGyOvteRqZ+T1Ft0cs6duj3VYkzq9lTe0iIiasEpCpRJnL22nj/w9wcAAK8feV0oXh/n2Una8Ew9FVSI8o8SWnXRNGnw0bcfyTpPvaYeheWFsl5rjkivI/0tOqV9dvYz1GvqLcbUa+rx2dnPFD83EZGrYrLjYkRnV0mln2L+Vong+If/ixsSMUTyuaQOrFxzbA20OvkrFUonO6IJpz0S041fbVQ0joioI2Cy42JEC4il0k8xv9F0QyheHxfoHWglsi2pAyudrU+OyK03KXFSWFvVkRpHRNQRMNlxMbPun2WX4375/JcAgKERQ4Xi9XHDooYJxc8cNFP2wMregb2tB1nwSK9HbHp9a/qCaXOF3FJu0Un1cM+HFY0jIuoImOy4mH9f/LddjtvD/9bKzuaUzULx+rjvr4gN6eys6oxpcdOQEJ0gdOuqpbiQOEnxrXVSKftnru6kxspxKwGgTcIj9RadVPMemIdOVv7PthM6Yd4D8xQ/NxGRq2Ky42Iu1MofqGnxuJdvHbdrl64I8AqwGBvgFYCuXboCAM5cPiN0fNE4U366/pPs1wLik9ylSOmfgq1TtrbpAST1Fp1Unh6eWBC/wGLMgvgF8PSQVzhOROSOnGrqOVlnaReQLeLejsPlFy+jQdOAmkbLTQJrGmvQoGmAt6e3YVq6NaJxptg6D0xffK20lP4pSO6XjEPnDqGyrhLhfuEY0XOEXVZ0WsodnQvg1o64Zt3t2WRqlRoZwzMMzxMR0S1MdlzMvu/2WQ+Soa7x1mDPrP1ZQvFZ+7Ow+rHVhsJma0Tj7MGe51Z3UlvtAG0PuaNzsSRxCdYcW4PvLn+HPkF9MHvIbK7oEBGZwGTHxVhbdZHLz+tWR+ozlwRvS/1fXEAXy7e89ETjTLF1Hpit4yaclaeHJ9KHpTv6MoiInB5rdlzMgB4D7HLcz5/5HAAQExwjFK+Pm9B3glC8aJwptmzhtteuKCIich1MdlzMlxe/tMtxn9z+JIDbM7Ks0cf9p+o/QvGicaZY2+ptjgoqu+2KcgaaJg1WHF2BeZ/Mw4qjK6Bpsm10BxGRu2Ky42J+qJdf6GuJvojX08MTXTy6WIz19vA21IY0NTcJHV80zhSRrd6mTOw30W0ngGfvy4bPUh/M3zMfq4tXY/6e+fBZ6oPsfdmOvjQiIqfDZMfF+Hv52+W4+qTh0LlDVrsoNzQ1GOY+iSZftiZp5rZ6+3r6mn3NjtM73PLDP3tfNpYVLWszQkOr02JZ0TK3fM9ERLZgsuNiFo5YaJfj3hd8HwDxPj76uPYcnZDSPwXlaeU4kHoAm1M2Y8+ze9Bws8Hia/KO5LnV7R1NkwZ5R/IsxrjbeyYishWTHRdzZ+CddjnuVe1VAOI9afRxfYP7CsWLxlmj3+o9LW4avvnpG6sDQrU6LdYcW6PIuZ2ByFBUd3vPRES2YrLjYrTN8qd/WxLaNRSAeE8afdzsIbOhVlkuAFar1Jg9ZLZtF2iC6IBQZxskaguprQGIiIjJjsvR18oo7e7udwMQ70mjj/P08LS6rXxC3wl2aXbXJ6iPonGuQKUS25EmGkdE1BEw2SEAt7eSx0fGC63UxEfGA7i10lRSWWIx/njlcbusSIlOgLfXpHhHePCOBxWNIyLqCJjsuBh7jCYYGjEU3p7eAICi80VCNSFF54sA3Fppsjavq6K2wi4rUqIT4O01Kd4RogKiFI0jIuoImOy4GP2KipKq6qsMKy9Sd2NV1lUKxYvGSVFRU6FonCvQN1i0hF2jiYiMMdlxMW8ef1PxY7ZceZG6G6s9t5639u8Lgis7gnGuQN9g0VwzRXfvGk1EJAeTHRdjr102+pWXYO9goXh93JCwIULxonFS6HQ6ReNchb7BYusVnij/KGydstVtu0YTEcnFqecuxl67bPQrL5caLgnF6+Oy9mcJxWftz8LaCWvlXZwZUoeWupOU/ilI7peMQ+cOobKuEuF+4RjRcwRXdIiITGCy42KGhg9V9HgqqBDpH2mo8ZC6snPs4jGheNE4KWYPmY3MvZkWC6rt1ePHGegbLBIRkWW8jeVirjReUexY+rqPljUeUld2unl1E4oXjZPC08MTGcMzLMZkDM+wS48fIiJyHUx2XIxoh2MRkf6RbWo8Ar0ChV6rj0vonSAULxonVe7oXGTFZ7XpDaRWqZEVn4Xc0bl2OS8REbkO3sZyMaIdjs1ZPnY5Qn1DzdZ4FFcWCx2nuLIYqYNScerHU0LxonFy5I7OxZLEJVhzbA2+u/wd+gT1wewhs7miQ0REAJjsuBx9nxVrjfxa09fmzHtgnsUiVtFOx/q4+pv1QvGicXJ5engifVi6Xc9BRESuibexXIy6kxrTYqdJeo2p2hxLxxe9DgAI7yrYZ0cwjoiISGlMdlyMtlmLLSe3WIxpXb9iqjbHHKmzl+KjxDo6i8YREREpjbexXIzILCqtTmuyNkfbrLXal0Xq7CXOaiIiImfHZMfFiM6YCvUNxbS427e7Ck4VIG13mlGiFOkfiZXjVhqt+IjUBLWcvSQ1noiIqL3xNpaLkTOLquBUASZ/MLlNQnKh9gImfzAZBacKDI+1nL3Uev6S/rGWtT+c1URERM7OocnOF198gSeeeAIRERFQqVTYvn270fMzZsyASqUy+ho2bJhRTGNjI+bNm4fu3bvD19cXEydOxPnz0nYquRL9Soql5KLlSoq2WYu03WnQoe18KP1j6bvTjXZh6Wcvtd7mbq72h7OaiIjImTn0Nta1a9dw77334rnnnsNTTz1lMmbcuHFYt26d4XtPT+PeKenp6di1axfy8/MRHByMBQsWYMKECSgpKYFa7bjVBE2TRnLfF5GaGv1KyuQPJkMFlVESY2rXlbUaHx10hqnnLUcPSJ29xFlNRETkrBya7IwfPx7jx4+3GOPl5YWwsDCTz9XU1ODdd9/Fxo0bkZSUBADYtGkToqKisH//fowdO1bxaxaRvS8beUfyjGY2Ze7NRMbwDLMdfUVraoDbKymm4leMW2EUL1rjYypO6uwlzmoiIiJn5PQFyoWFhQgJCUG3bt0wcuRIvPLKKwgJCQEAlJSU4ObNmxgzZowhPiIiArGxsSgqKjKb7DQ2NqKxsdHwfW1trWLXm70vG8uKlrV5XKvTGh5vnfDoa2pa32rS19SYu3VkbiWl5QrRD9d+ELpu0VogRxNZ/SIiImrJqZOd8ePH4+mnn0avXr1QVlaGP/zhD3j00UdRUlICLy8vVFVVwdPTE4GBxvOcQkNDUVVVZfa4OTk5ePnllxW/Xk2TBnlH8izG5B3Jw5LEJYZbWtZqalRQIX13OpL7JZu8pdV6JcXUCpFapTY7Gbz11HNnJmX1i4iISM+pd2M988wzePzxxxEbG4snnngCn376Kb799lt8/PHHFl+n0+mgUpku4AWAl156CTU1NYaviooKRa53zbE1ZpMKPa1OizXH1hi+l1JTY425XVeWEh1ArLOyo0nZUUZERNSSUyc7rYWHh6NXr144c+YMACAsLAwajQZXrlwxiquurkZoaKjZ43h5ecHf39/oSwnfXf5OcpwtNTUtWVoh0rOls7IjWVv90kHXZkcZERGRnkslO5cuXUJFRQXCw2/VlwwePBidO3fGvn37DDGVlZU4efIk4uPbfzxBn6A+kuPk9M0xRUpn5c0pm3Eg9QDK0sqcPtEBxN6b6OoXERF1PA6t2amvr8d///tfw/dlZWU4ceIEgoKCEBQUhMWLF+Opp55CeHg4ysvLsXDhQnTv3h1PPvkkACAgIAAzZ87EggULEBwcjKCgIGRmZiIuLs6wO6s9zR4yG5l7My3eylKr1Jg9ZLbhe33fnAu1F0yuXIjW1MjtrOwKLtReUDSOiIg6Foeu7Bw7dgyDBg3CoEGDAAAZGRkYNGgQ/vjHP0KtVqO0tBTJycno27cvUlNT0bdvXxw5cgR+fn6GYyxfvhyTJk3ClClT8NBDD8HHxwe7du1ySI8dTw9PZAzPsBiTMTzDqN+Ovm8OAJMdiwGxmhqlVohsoW3WorC8EFtKt6CwvFCx20o/Xv9RKG7rN1sx75N5WHF0BTRNGkXOTURErk+l0+nMF3l0ELW1tQgICEBNTY0i9Tum+uyoVWqLfXbkvKYlbbMW0Sujra4QlaWV2aUY2Z47pf7x1T/ws20/k/QaKT87IiJyTaKf30x2oHyyA0jroGyuzw5wK0kRLSLWHweAyc7K9ipGNnf9Sp23sLwQiRsSZb02Kz6LCQ8RkZtisiOBPZIdUfoVGXMFuFJXZGxdIZJK6euXcw5L1Co1ri+8bnVUBxERuR7Rz2+X2o3ljpTus/Na0WttCqS1Oi1eK3rNLr1olLx+c6xNVrekdV8jIiLqeJjsOFh79tmxRy8apa7fGnOT1UWI9j8iIiL3xGTHwdqrz44SKyxyrktqnCUp/VNQnlaOA6kHsDllM+YMnSP0OtH+R0RE5J6Y7DiYvs+OuVs0KqgQ5R+lWJ8dW1dYWlPq+kXp54FNi5uGvDF5bbpCt4lv1deIiIg6HiY7DubMfXZE+uYodf1yyOlrREREHQ+THSegr0e5w/8Oo8elzK5SeoWl4FQBoldGI3FDIqYXTEfihkREr4w2WeSsxPXLNSxymE3PExGR++PWczh263lL2mYtDp07hMq6SoT7hWNEzxGSVkSU6rMjt2+OrdcvVXtseyciIufFrecuqGU9SkJ0guQPaCVWWKxNGAfss6tLDkcVZRMRkWtx6CBQUl5K/xQk90uWvcIiJYFIiE4wPG7PcRHmOKoom4iIXAuTHRdm7raRfoVIDjkJhLnbXhdqL2DyB5PtVrfjDMNPiYjI+THZcVH2WkkJ8Q2RFGfttpcKKqTvTkdyv2TF62b0RdnWhp8qte2diIhcE2t2XJB+JaX17Sb9Soo9xkKY48i6GUdueyciItfBZMfF2LuAuPpataQ4R9fNOHLbOxERuQbexnIxcguIRUmtg3GGuhlbi7KJiMi9MdlxMfZeSZFaB+MsdTO2FGUTEZF7420sF2PvlRSpdTCsmyEiImfHZMfFtMfgTal1MKybISIiZ8ZxEXCecRGilBoLYY3U8Q/tPS6CiIg6NtHPbyY7cL1kBzDdZyfKPworxq3gSgoREXUITHYkcMVkB+BKChERdWyin9/cjeXCuAOJiIjIOiY7pBiuNBERkTNiskOKcMTUcyIiIhHceu6GtM1aFJYXYkvpFhSWF8oeHSHKmWZ1ERERtcaVHTfT3issjpx6TkREJIIrO27EESssjpx6TkREJILJjpuw9zR0cxw99ZyIiMgaJjtuwlErLM4w9ZyIiMgSJjtuwlErLO0xq4uIiMgWTHbchKNWWDj1nIiInB2THTfhyBUWTj0nIiJn5tBk54svvsATTzyBiIgIqFQqbN++3eh5nU6HxYsXIyIiAt7e3khISMDXX39tFNPY2Ih58+ahe/fu8PX1xcSJE3H+vPnaFXfl6BWWlP4pKE8rx4HUA9icshkHUg+gLK2MiQ4RETmcQ5Oda9eu4d5778Xq1atNPp+bm4u8vDysXr0axcXFCAsLw+jRo1FXV2eISU9Px7Zt25Cfn4/Dhw+jvr4eEyZMgFZr30Z6zsjRKyz6WV3T4qYhITqBt66IiMgpOM3Uc5VKhW3btmHSpEkAbq3qREREID09HS+++CKAW6s4oaGh+Otf/4pZs2ahpqYGPXr0wMaNG/HMM88AAC5evIioqCh88sknGDt2rNC5XXXquTmcUUVERB2B6Oe309bslJWVoaqqCmPGjDE85uXlhZEjR6KoqAgAUFJSgps3bxrFREREIDY21hBjSmNjI2pra42+3AlXWIiIiG5z2mSnqqoKABAaGmr0eGhoqOG5qqoqeHp6IjAw0GyMKTk5OQgICDB8RUVFKXz1RERE5CycNtnRU6mMi211Ol2bx1qzFvPSSy+hpqbG8FVRUaHItRIREZHzcdpkJywsDADarNBUV1cbVnvCwsKg0Whw5coVszGmeHl5wd/f3+iLiIiI3JPTJju9e/dGWFgY9u3bZ3hMo9Hg4MGDiI+PBwAMHjwYnTt3NoqprKzEyZMnDTFERETUsXk48uT19fX473//a/i+rKwMJ06cQFBQEHr27In09HQsXboUMTExiImJwdKlS+Hj44Pp06cDAAICAjBz5kwsWLAAwcHBCAoKQmZmJuLi4pCUlOSot0VEREROxKHJzrFjx5CYmGj4PiMjAwCQmpqK9evXIzs7Gw0NDZg9ezauXLmCBx98EHv37oWfn5/hNcuXL4eHhwemTJmChoYGjBo1CuvXr4dazR1IRERE5ER9dhzJ3frsEBERdQQu32eHiIiISAlMdoiIiMitObRmx1no7+S5WydlIiIid6b/3LZWkcNkBzAMFmUnZSIiItdTV1eHgIAAs8+zQBlAc3MzLl68CD8/P6vdmaWora1FVFQUKioqOkzhM98z37O74nvme3ZXrvyedTod6urqEBERgU6dzFfmcGUHQKdOnRAZGWm343fELs18zx0D33PHwPfcMbjqe7a0oqPHAmUiIiJya0x2iIiIyK0x2bEjLy8v/OlPf4KXl5ejL6Xd8D13DHzPHQPfc8fQEd4zC5SJiIjIrXFlh4iIiNwakx0iIiJya0x2iIiIyK0x2SEiIiK3xmTHTr744gs88cQTiIiIgEqlwvbt2x19SXaVk5ODoUOHws/PDyEhIZg0aRJOnz7t6Muyq7Vr12LgwIGGRlzDhw/Hp59+6ujLajc5OTlQqVRIT0939KXY1eLFi6FSqYy+wsLCHH1ZdnfhwgX87Gc/Q3BwMHx8fHDfffehpKTE0ZdlN9HR0W1+zyqVCnPmzHH0pdlNU1MTfv/736N3797w9vbGnXfeiT//+c9obm529KUpjh2U7eTatWu499578dxzz+Gpp55y9OXY3cGDBzFnzhwMHToUTU1NWLRoEcaMGYNvvvkGvr6+jr48u4iMjMSrr76Ku+66CwCwYcMGJCcn4z//+Q8GDBjg4Kuzr+LiYrz11lsYOHCgoy+lXQwYMAD79+83fK9Wqx14NfZ35coVPPTQQ0hMTMSnn36KkJAQfPfdd+jWrZujL81uiouLodVqDd+fPHkSo0ePxtNPP+3Aq7Kvv/71r/jb3/6GDRs2YMCAATh27Biee+45BAQEIC0tzdGXpygmO3Yyfvx4jB8/3tGX0W52795t9P26desQEhKCkpISPPLIIw66Kvt64oknjL5/5ZVXsHbtWhw9etStk536+no8++yzePvtt7FkyRJHX0678PDw6BCrOXp//etfERUVhXXr1hkei46OdtwFtYMePXoYff/qq6+iT58+GDlypIOuyP6OHDmC5ORkPP744wBu/Y63bNmCY8eOOfjKlMfbWGQXNTU1AICgoCAHX0n70Gq1yM/Px7Vr1zB8+HBHX45dzZkzB48//jiSkpIcfSnt5syZM4iIiEDv3r0xdepUnD171tGXZFc7d+7EkCFD8PTTTyMkJASDBg3C22+/7ejLajcajQabNm3C888/r+hwaGfz8MMP47PPPsO3334LAPif//kfHD58GI899piDr0x5XNkhxel0OmRkZODhhx9GbGysoy/HrkpLSzF8+HDcuHEDXbt2xbZt23DPPfc4+rLsJj8/H8ePH0dxcbGjL6XdPPjgg3jvvffQt29f/PDDD1iyZAni4+Px9ddfIzg42NGXZxdnz57F2rVrkZGRgYULF+LLL7/ECy+8AC8vL/ziF79w9OXZ3fbt23H16lXMmDHD0ZdiVy+++CJqampw9913Q61WQ6vV4pVXXsG0adMcfWmKY7JDips7dy6++uorHD582NGXYnf9+vXDiRMncPXqVXz44YdITU3FwYMH3TLhqaioQFpaGvbu3YsuXbo4+nLaTcvb0XFxcRg+fDj69OmDDRs2ICMjw4FXZj/Nzc0YMmQIli5dCgAYNGgQvv76a6xdu7ZDJDvvvvsuxo8fj4iICEdfil29//772LRpEzZv3owBAwbgxIkTSE9PR0REBFJTUx19eYpiskOKmjdvHnbu3IkvvvgCkZGRjr4cu/P09DQUKA8ZMgTFxcVYuXIl3nzzTQdfmfJKSkpQXV2NwYMHGx7TarX44osvsHr1ajQ2Nrp94S4A+Pr6Ii4uDmfOnHH0pdhNeHh4m4S9f//++PDDDx10Re3n+++/x/79+1FQUODoS7G7rKws/O53v8PUqVMB3Ermv//+e+Tk5DDZITJFp9Nh3rx52LZtGwoLC9G7d29HX5JD6HQ6NDY2Ovoy7GLUqFEoLS01euy5557D3XffjRdffLFDJDoA0NjYiFOnTmHEiBGOvhS7eeihh9q0jvj222/Rq1cvB11R+9FvrtAX7bqz69evo1Mn49JdtVrNreckrr6+Hv/9738N35eVleHEiRMICgpCz549HXhl9jFnzhxs3rwZO3bsgJ+fH6qqqgAAAQEB8Pb2dvDV2cfChQsxfvx4REVFoa6uDvn5+SgsLGyzM81d+Pn5tanB8vX1RXBwsFvXZmVmZuKJJ55Az549UV1djSVLlqC2ttbt/uXb0vz58xEfH4+lS5diypQp+PLLL/HWW2/hrbfecvSl2VVzczPWrVuH1NRUeHi4/8fjE088gVdeeQU9e/bEgAED8J///Ad5eXl4/vnnHX1pytORXRw4cEAHoM1Xamqqoy/NLky9VwC6devWOfrS7Ob555/X9erVS+fp6anr0aOHbtSoUbq9e/c6+rLa1ciRI3VpaWmOvgy7euaZZ3Th4eG6zp076yIiInQpKSm6r7/+2tGXZXe7du3SxcbG6ry8vHR333237q233nL0Jdndnj17dAB0p0+fdvSltIva2lpdWlqarmfPnrouXbro7rzzTt2iRYt0jY2Njr40xal0Op3OMWkWERERkf2xzw4RERG5NSY7RERE5NaY7BAREZFbY7JDREREbo3JDhEREbk1JjtERETk1pjsEBERkVtjskNERERujckOEbmc9evXo1u3bg69hoSEBKSnpzv0GohIDDsoE5FiZsyYgQ0bNrR5fOzYsYrODGtoaEBdXR1CQkIUO6ZUly9fRufOneHn5+ewayAiMe4/6YyI2tW4ceOwbt06o8e8vLwUPYe3t7fDB8wGBQU59PxEJI63sYhIUV5eXggLCzP6CgwMNDyvUqnwzjvv4Mknn4SPjw9iYmKwc+dOo2Ps3LkTMTEx8Pb2RmJiIjZs2ACVSoWrV68CaHsba/HixbjvvvuwceNGREdHIyAgAFOnTkVdXZ0hRqfTITc3F3feeSe8vb1x7733YuvWrRbfy5o1axATE4MuXbogNDQUkydPNjzX8jZWYWEhVCpVm68ZM2YY4nft2oXBgwejS5cuuPPOO/Hyyy+jqalJ4k+XiORgskNE7e7ll1/GlClT8NVXX+Gxxx7Ds88+i8uXLwMAysvLMXnyZEyaNAknTpzArFmzsGjRIqvH/O6777B9+3Z89NFH+Oijj3Dw4EG8+uqrhud///vfY926dVi7di2+/vprzJ8/Hz/72c9w8OBBk8c7duwYXnjhBfz5z3/G6dOnsXv3bjzyyCMmY+Pj41FZWWn4+vzzz9GlSxdD/J49e/Czn/0ML7zwAr755hu8+eabWL9+PV555RWpPzoiksOhM9eJyK2kpqbq1Gq1ztfX1+jrz3/+syEGgO73v/+94fv6+nqdSqXSffrppzqdTqd78cUXdbGxsUbHXbRokQ6A7sqVKzqdTqdbt26dLiAgwPD8n/70J52Pj4+utrbW8FhWVpbuwQcfNJyjS5cuuqKiIqPjzpw5Uzdt2jST7+XDDz/U+fv7Gx2zpZEjR+rS0tLaPP7TTz/p+vTpo5s9e7bhsREjRuiWLl1qFLdx40ZdeHi4yWMTkbJYs0NEikpMTMTatWuNHmtd3zJw4EDDf/v6+sLPzw/V1dUAgNOnT2Po0KFG8Q888IDV80ZHRxsVC4eHhxuO+c033+DGjRsYPXq00Ws0Gg0GDRpk8nijR49Gr169cOedd2LcuHEYN26c4dabOTdv3sRTTz2Fnj17YuXKlYbHS0pKUFxcbLSSo9VqcePGDVy/ft3iMYnIdkx2iEhRvr6+uOuuuyzGdO7c2eh7lUqF5uZmALdqa1QqldHzOoFNo5aOqf//P/74Y9xxxx1GceaKp/38/HD8+HEUFhZi7969+OMf/4jFixejuLjY7Lb33/72tzh37hyKi4vh4XH7f16bm5vx8ssvIyUlpc1runTpYvW9EZFtmOwQkVO5++678cknnxg9duzYMZuOec8998DLywvnzp3DyJEjhV/n4eGBpKQkJCUl4U9/+hO6deuGzz//3GTSkpeXh/fffx9HjhxBcHCw0XP3338/Tp8+bTUJJCL7YLJDRIpqbGxEVVWV0WMeHh7o3r270OtnzZqFvLw8vPjii5g5cyZOnDiB9evXA0CbFR9Rfn5+yMzMxPz589Hc3IyHH34YtbW1KCoqQteuXZGamtrmNR999BHOnj2LRx55BIGBgfjkk0/Q3NyMfv36tYndv38/srOz8cYbb6B79+6G9+/t7Y2AgAD88Y9/xIQJExAVFYWnn34anTp1wldffYXS0lIsWbJE1nsiInHcjUVEitq9ezfCw8ONvh5++GHh1/fu3Rtbt25FQUEBBg4ciLVr1xp2Y9nSr+cvf/kL/vjHPyInJwf9+/fH2LFjsWvXLvTu3dtkfLdu3VBQUIBHH30U/fv3x9/+9jds2bIFAwYMaBN7+PBhaLVa/OY3vzF632lpaQBuNVX86KOPsG/fPgwdOhTDhg1DXl4eevXqJfv9EJE4dlAmIqf3yiuv4G9/+xsqKiocfSlE5IJ4G4uInM6aNWswdOhQBAcH41//+heWLVuGuXPnOvqyiMhFMdkhIqdz5swZLFmyBJcvX0bPnj2xYMECvPTSS46+LCJyUbyNRURERG6NBcpERETk1pjsEBERkVtjskNERERujckOERERuTUmO0REROTWmOwQERGRW2OyQ0RERG6NyQ4RERG5tf8PNRd0jXHTE6cAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ "
\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "In reality, there are multiple variables that impact the co2emission. When more than one independent variable is present, the process is called multiple linear regression. An example of multiple linear regression is predicting co2emission using the features FUELCONSUMPTION_COMB, EngineSize and Cylinders of cars. The good thing here is that multiple linear regression model is the extension of the simple linear regression model.\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {
+ "tags": []
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Coefficients: [[10.99646535 7.61620514 9.4874738 ]]\n"
+ ]
+ }
+ ],
+ "source": [
+ "from sklearn import linear_model\n",
+ "regr = linear_model.LinearRegression()\n",
+ "x = np.asanyarray(train[['ENGINESIZE','CYLINDERS','FUELCONSUMPTION_COMB']])\n",
+ "y = np.asanyarray(train[['CO2EMISSIONS']])\n",
+ "regr.fit (x, y)\n",
+ "# The coefficients\n",
+ "print ('Coefficients: ', regr.coef_)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "As mentioned before, __Coefficient__ and __Intercept__ are the parameters of the fitted line. \n",
+ "Given that it is a multiple linear regression model with 3 parameters and that the parameters are the intercept and coefficients of the hyperplane, sklearn can estimate them from our data. Scikit-learn uses plain Ordinary Least Squares method to solve this problem.\n",
+ "\n",
+ "#### Ordinary Least Squares (OLS)\n",
+ "OLS is a method for estimating the unknown parameters in a linear regression model. OLS chooses the parameters of a linear function of a set of explanatory variables by minimizing the sum of the squares of the differences between the target dependent variable and those predicted by the linear function. In other words, it tries to minimizes the sum of squared errors (SSE) or mean squared error (MSE) between the target variable (y) and our predicted output ($\\hat{y}$) over all samples in the dataset.\n",
+ "\n",
+ "OLS can find the best parameters using of the following methods:\n",
+ "* Solving the model parameters analytically using closed-form equations\n",
+ "* Using an optimization algorithm (Gradient Descent, Stochastic Gradient Descent, Newton’s Method, etc.)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "
Prediction
\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "tags": []
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Mean Squared Error (MSE) : 573.97\n",
+ "Variance score: 0.86\n"
+ ]
+ }
+ ],
+ "source": [
+ "y_hat= regr.predict(test[['ENGINESIZE','CYLINDERS','FUELCONSUMPTION_COMB']])\n",
+ "x = np.asanyarray(test[['ENGINESIZE','CYLINDERS','FUELCONSUMPTION_COMB']])\n",
+ "y = np.asanyarray(test[['CO2EMISSIONS']])\n",
+ "print(\"Mean Squared Error (MSE) : %.2f\"\n",
+ " % np.mean((y_hat - y) ** 2))\n",
+ "\n",
+ "# Explained variance score: 1 is perfect prediction\n",
+ "print('Variance score: %.2f' % regr.score(x, y))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "__Explained variance regression score:__ \n",
+ "Let $\\hat{y}$ be the estimated target output, y the corresponding (correct) target output, and Var be the Variance (the square of the standard deviation). Then the explained variance is estimated as follows:\n",
+ "\n",
+ "$\\texttt{explainedVariance}(y, \\hat{y}) = 1 - \\frac{Var\\{ y - \\hat{y}\\}}{Var\\{y\\}}$ \n",
+ "The best possible score is 1.0, the lower values are worse.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "
Practice
\n",
+ "Try to use a multiple linear regression with the same dataset, but this time use FUELCONSUMPTION_CITY and FUELCONSUMPTION_HWY instead of FUELCONSUMPTION_COMB. Does it result in better accuracy?\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "tags": []
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Coefficients: [[11.07046945 7.23764833 6.17307568 3.02316987]]\n",
+ "Residual sum of squares: 516.35\n",
+ "Variance score: 0.87\n"
+ ]
+ }
+ ],
+ "source": [
+ "# write your code here\n",
+ "regr = linear_model.LinearRegression()\n",
+ "x = np.asanyarray(train[['ENGINESIZE','CYLINDERS','FUELCONSUMPTION_CITY','FUELCONSUMPTION_HWY']])\n",
+ "y = np.asanyarray(train[['CO2EMISSIONS']])\n",
+ "regr.fit (x, y)\n",
+ "print ('Coefficients: ', regr.coef_)\n",
+ "y_= regr.predict(test[['ENGINESIZE','CYLINDERS','FUELCONSUMPTION_CITY','FUELCONSUMPTION_HWY']])\n",
+ "x = np.asanyarray(test[['ENGINESIZE','CYLINDERS','FUELCONSUMPTION_CITY','FUELCONSUMPTION_HWY']])\n",
+ "y = np.asanyarray(test[['CO2EMISSIONS']])\n",
+ "print(\"Residual sum of squares: %.2f\"% np.mean((y_ - y) ** 2))\n",
+ "print('Variance score: %.2f' % regr.score(x, y))\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Click here for the solution\n",
+ "\n",
+ "```python\n",
+ "regr = linear_model.LinearRegression()\n",
+ "x = np.asanyarray(train[['ENGINESIZE','CYLINDERS','FUELCONSUMPTION_CITY','FUELCONSUMPTION_HWY']])\n",
+ "y = np.asanyarray(train[['CO2EMISSIONS']])\n",
+ "regr.fit (x, y)\n",
+ "print ('Coefficients: ', regr.coef_)\n",
+ "y_= regr.predict(test[['ENGINESIZE','CYLINDERS','FUELCONSUMPTION_CITY','FUELCONSUMPTION_HWY']])\n",
+ "x = np.asanyarray(test[['ENGINESIZE','CYLINDERS','FUELCONSUMPTION_CITY','FUELCONSUMPTION_HWY']])\n",
+ "y = np.asanyarray(test[['CO2EMISSIONS']])\n",
+ "print(\"Residual sum of squares: %.2f\"% np.mean((y_ - y) ** 2))\n",
+ "print('Variance score: %.2f' % regr.score(x, y))\n",
+ "\n",
+ "```\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Thank you for completing this lab!\n",
+ "\n",
+ "\n",
+ "## Author\n",
+ "\n",
+ "Saeed Aghabozorgi\n",
+ "\n",
+ "\n",
+ "### Other Contributors\n",
+ "\n",
+ "Joseph Santarcangelo\n",
+ "\n",
+ "##
\n",
+ "\n",
+ "\n",
+ "# Non Linear Regression Analysis\n",
+ "\n",
+ "\n",
+ "Estimated time needed: **20** minutes\n",
+ " \n",
+ "\n",
+ "## Objectives\n",
+ "\n",
+ "After completing this lab you will be able to:\n",
+ "\n",
+ "* Differentiate between linear and non-linear regression\n",
+ "* Use non-linear regression model in Python\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "If the data shows a curvy trend, then linear regression will not produce very accurate results when compared to a non-linear regression since linear regression presumes that the data is linear. \n",
+ "Let's learn about non linear regressions and apply an example in python. In this notebook, we fit a non-linear model to the datapoints corrensponding to China's GDP from 1960 to 2014. \n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "
Importing required libraries
\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "tags": []
+ },
+ "outputs": [],
+ "source": [
+ "import numpy as np\n",
+ "import matplotlib.pyplot as plt\n",
+ "%matplotlib inline"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Although linear regression can do a great job at modeling some datasets, it cannot be used for all datasets. First recall how linear regression, models a dataset. It models the linear relationship between a dependent variable y and the independent variables x. It has a simple equation, of degree 1, for example y = $2x$ + 3.\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "tags": []
+ },
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjUAAAGwCAYAAABRgJRuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAABgd0lEQVR4nO3deZyNdf/H8deZkUHGWLLPWNuICCVuihbSXampbqVbCFHJ1p2ShFSkFCUKlRRRtn5Fe0Pu4iaRNXd2DbLPWIeZuX5/fO8zZjszZ7nOOu/n43Ee41znmnN9z9F9Xx/f7+f7+Tgsy7IQERERCXNRwR6AiIiIiB0U1IiIiEhEUFAjIiIiEUFBjYiIiEQEBTUiIiISERTUiIiISERQUCMiIiIRoViwBxBImZmZ7N27l9jYWBwOR7CHIyIiIm6wLIvjx49TrVo1oqJcz8cUqaBm7969JCQkBHsYIiIi4oU9e/YQHx/v8vUiFdTExsYC5kspU6ZMkEcjIiIi7khNTSUhISHrPu5KkQpqnEtOZcqUUVAjIiISZgpLHVGisIiIiEQEBTUiIiISERTUiIiISERQUCMiIiIRQUGNiIiIRAQFNSIiIhIRFNSIiIhIRFBQIyIiIhFBQY2IiIhEhCJVUVhERCQSZGTAsmWwbx9UrQqtW0N0dLBHFXwKakRERMLI/PnQvz/8+ef5Y/HxMGECJCYGb1yhQMtPIiIiYWL+fLjnnpwBDUBysjk+f35wxhUqFNSIiIiEgYwMM0NjWXlfcx4bMMCcV1QpqBEREQkDy5blnaHJzrJgzx5zXlGloEZERCQM7Ntn73mRSEGNiIhIGKha1d7zIpGCGhERkTDQurXZ5eRw5P+6wwEJCea8okpBjYiISBiIjjbbtiFvYON8Pn580a5Xo6BGREQkTCQmwty5UL16zuPx8eZ4Ua9To+J7IiIiYSQxETp2VEXh/CioERERCTPR0dCmTbBHEXq0/CQiIiIRQUGNiIiIRAQFNSIiIhIRFNSIiIhIRAiZoObHH3/k9ttvp1q1ajgcDhYuXJjj9W7duuFwOHI8rr322uAMVkREREJOyAQ1J0+epFGjRkycONHlObfccgv79u3LeixevDiAIxQREZFQFjJbujt06ECHDh0KPCcmJoYqVaoEaEQiIiISTkJmpsYdS5YsoVKlSlx66aX06tWLAwcOFHh+WloaqampOR4iIiISmcImqOnQoQMzZ87khx9+YNy4caxatYobbriBtLQ0l78zevRo4uLish4JCQkBHLGIiIgEksOyLCvYg8jN4XCwYMEC7rzzTpfn7Nu3j5o1azJ79mwSXTS7SEtLyxH0pKamkpCQQEpKCmXKlLF72CIiIuIHqampxMXFFXr/DpmcGk9VrVqVmjVr8scff7g8JyYmhpiYmACOSkRERIIlbJafcjt8+DB79uyhatWqwR6KiIiIhICQmak5ceIEW7duzXq+Y8cO1q5dS/ny5SlfvjwjRozg7rvvpmrVquzcuZNnnnmGiy66iLvuuiuIoxYREZFQETJBzS+//ELbtm2zng8aNAiArl27MnnyZNavX8+MGTM4duwYVatWpW3btsyZM4fY2NhgDVlERERCSEgmCvuLu4lGIiIiEjrcvX+HbU6NiIiISHYKakRERCQiKKgRERGRiKCgRkRERCKCghoRERGJCApqREREJCIoqBEREZGIoKBGREREIoKCGhEREYkICmpEREQkIiioERERkYigoEZEREQigoIaERERiQgKakRERCQiKKgRERGRiKCgRkRERCKCghoRERGJCMWCPQAREREJLxkZsGwZ7NsHVatC69YQHR3sUSmoEREREQ/Mnw/9+8Off54/Fh8PEyZAYmLwxgVafhIRERE3zZ8P99yTM6ABSE42x+fPD864nBTUiIiISKEyMswMjWXlfc15bMAAc16wKKgREREJYRkZsGQJfPyx+RmsoGHZsrwzNNlZFuzZY84LFuXUiIiIhKhQyl/Zt8/e8/xBMzUiIiIhKNTyV6pWLfh1B5lcxa+FnudPCmpERERCTCjmr7RubWaJHI68r13Cf/mBG1jBtbSusClwg8pFQY2IiEiICcX8lehos+wF5wObYpzjaUazjitpw1KiYi4g+veNgRtULgpqREREQkyo5q8kJsLcuVC9OjTlF36hGaN5hhKk8VejdhTbvAHuvTewg8pGQY2IiEiIcTcvJRj5K4ntT7LrnidYFdWcRqzjXJnyZE6fQeU1X0Ht2oEfUDYKakREREJMQfkrYI4nJJjzAuqbb6BBA6LGv4YjMxM6d+aCPzYT1bWL68EGkIIaERGREJNf/oqT8/n48QHst3T4MHTtCu3bw86dUKMGLFoEM2dCpUoBGkThFNSIiIiEoOz5K9nFx5vjAalTY1mm6l+9ejBjhomo+vWDjRvh1lsDMADPqPieiIiIj/zVtToxETp29O69c4+pZUv4+WcP3mf3bnjkEVi82Dy/4gqYNg2uvdb3D+YnCmpERER84O+qv9HR0KaN72OKjs5Z18blGDMyYNIkGDIETp6E4sXh2WfhqafMn0OYlp9ERES8FGpVfwsaU+5CffmOceNGaNXKLDGdPAl/+xusXQvDhoV8QAPgsKz86hVGptTUVOLi4khJSaFMmTLBHo6IiISxjAyoVct1kTyHw8yG7NhxfpnHX8tU7o7J5Rh/TyP65Zdg9Gg4dw5iY+Hll6F3bzKsKL+O2R3u3r+1/CQiIuIFT6r+tmkTmOaUhY0pvzEm7PmJM/V7ceGuzebg7beb5af4+JBqqOkOLT+JiIh4wZOqv66WhP78E+6+GwYOhCVLfO/l5EmF4VhSmchj/EQrE9BUqgSffAKffZYV0ITa0lphFNSIiIh4wd1qvpUquW5O6TR+PLRta5aOfAkW3B3TbXzORq7gMSYBsO+W7rB5M9x7LxmZDr7/Hnr1Cq2Gmu5QUCMiIuIFd6v+gvtLQr7OghQ2pkr8xWw68Tl3kMCfbKMO91f8jkpfvAflyzN/vgmsbroJjhxxfZ1gNNR0h4IaEREpMjIyzDLPxx/7vtzjbtXfAwfcf09vZ0Gcn+uTT8wMS94xWXTjfTZTj058QjrRjGUwV7Kee9++keho10tkBQl0Q83CKKgREZEiwTkL0bYtdO5sz3KPO1V/PW066eksSO7PNXw4lC9vHgB12Ma33Mz7PER5jvIrV3ENK5mY8DIfzitFYqIJigpbIstPMBpqFkRbukVEJOI5ZyFy3/Gcsxm+th0oaKu2c5t1crJnQcOsWXD//QWfU9DnirLS+bLdeNoueY5iZ09jlSjB9q7Ps6rVQKrEF8sxxiVLTFDkrvy2q/uTtnSLiIhQ8CyEZZkb9IABph2Btzfogqr+Opep7rnHXMvdwKawWZCCPlcjaw3T6EnTb341B268Ecc771C3bl3q5nqPZctg3jz3xgRBaqjpJi0/iYhIRPOknoy/uFqmyo8zwbh164LPy+9zleA0Y3iKVVxNU37lCOX4ffB78O23ULdujnOzL1tNnOj+ZwloQ00PKagREZGI5kk9GX9KTISdOyEpycwMQcEJxoXNguQebxuSWE9DnmIsxchgDv+gPptY07h7ngt5kxRcvjx8951ZcgrFgAYU1IiISIRzN5k1EEmvzmWq1183Sz4FJRgXxjneshxlGj1I4gYuZht7iOd2/o/7mMNfVMnzuTxNCnY4zGPqVLjxxtBbcspOicIiIhLRCkvUDXTSa+6xedtXKSPd4tHK8xh5pC9V+AuASTzC04zhOGVcfi5Pk4ITEszMUTBnZ5QoLCIiQsGJusFOei0owbhAyclEP/YY7xz5DIBN1KMXU/mZvwEFfy53l9n69jUtHILRwNJbWn4SEZGI5049mbCQmQmTJ0O9eqZH0wUXsPne57i9+pqsgAYK/lzuLrPdfbcJuMIloAEtP4mISBHiy3JP0P3+uykX/O9/m+fXXmsSXRo08OhzhfJynCtafhIREcnF6+WeYDp7FsaOhVGjzJ8vvBBGj4ZHH82KOjz5XKG8HOcrLT+JiIiEqv/8B5o2hWHDTEBz662waRM8/rhPUUfELMflopkaERGRUHPiBAwdCm++aaZSLrrITK/cf7/rFtweSkw0VZTDdjkuHwpqREREQsmXX0KfPrB7t3n+4IMwbpwJbGwWlstxBVBQIyIikk3QkokPHoSBA2HmTPO8Zk145x1o3z4AF48MyqkRERH5n+z9kDp3Nj9r1TLH/cay4KOPzDbtmTMhKsoENxs2KKDxkIIaERERXPdDSk42x/0S2OzaZZJ/u3SBw4ehYUNYvhxeew1Kl/bDBSObghoRESnyCuqH5Dw2YIA5z7YLTpgAV1wBX30FMTHw4ouwejVcc41NFwmcjAzTfuHjj81P274nDymnRkREirxlywruWG1ZsGePOc/nxNr166FnT1i50jy/7jqYMgUuu8zHNw6O+fNNQJj9+4uPNzFboLeGa6ZGRESKPHf7Ibl7Xr7OnDH1Zpo0MQFNmTImETgpKawDmoAv2RVAQY2IiBR57vZDcve8PJYtg8aN4YUXID0d7rwTNm+Ghx82icFhKOBLdm4Iz29SRCSChEo+QlHWurVZMnFV187hgIQEc55HUlLgkUfMEtOWLVClCsybBwsWQLVqPo87mDxZsguUkAlqfvzxR26//XaqVauGw+Fg4cKFOV63LIsRI0ZQrVo1SpYsSZs2bdi4cWNwBisiYpOgbCEOccEI8pz9kCBvYON1P6TPPoP69eHtt83zXr3M7Ey49iDIJSBLdh4KmaDm5MmTNGrUiIkTJ+b7+tixY3nttdeYOHEiq1atokqVKtx8880cP348wCMVEbFHqOUjhAJ3gzx/BD629UPavx/uvdcsMe3dCxdfbPJmpkyBsmV9H2iI8PuSnTesEARYCxYsyHqemZlpValSxRozZkzWsTNnzlhxcXHW22+/7fb7pqSkWICVkpJi53BFRDyWnm5Z8fGWZSbp8z4cDstKSDDnFRXz5pnPnd934XCY153n5f7u4uPPv+6r9HTLSkqyrFmzzE+3/w4yMy1r2jTLKlvWDCo62rKGDLGsU6fsGViIcf43nN/fmd3/Dbt7/w6LLd07duxg//79tGvXLutYTEwM119/PT///DO9e/fO9/fS0tJIS0vLep6amur3sYqIuCOgW4iDxJN2A4UlnTocJuk0MxP+8Y+85zlnt+zoMO1VP6Q//oDevc2MDJjO2tOmmeTgCOVcsrvnHvP3k/3vxOslOx+FzPJTQfbv3w9A5cqVcxyvXLly1mv5GT16NHFxcVmPhIQEv45TRMRdoZiPYCdPc4XcDfIefTS0dttw7hy8/DJceaUJaEqWhFdfhRUrvA5owilx3LYlO5uERVDj5MiVvWVZVp5j2Q0ZMoSUlJSsx549e/w9RBERt4RkPoJNvMkVcjd4O3jQ9WsB323jrP779NOmBs3NN5t+TU88AcW8WwgJx8TxxETYudPEdLNmmZ87dgQnHzosgpoqVaoA5JmVOXDgQJ7Zm+xiYmIoU6ZMjoeISCjw2xbiIPO2domdwZvfZ7dOnYInnzQBzdq1UL48fPABfP011Knj9duGc+K4c8nu/vvNz0AuOWUXFkFN7dq1qVKlCt9++23WsbNnz7J06VJatmwZxJGJiHjHL1uIQ4C3tUvcCfIqVnRvDH6d3fruO9N08tVXTYLPffeZbdoPPuh68G4IxUJ24ShkgpoTJ06wdu1a1q5dC5jk4LVr17J7924cDgcDBgzgpZdeYsGCBWzYsIFu3bpRqlQpOnfuHNyBi4h4ye58hFDIxfA2V8idIO+tt4I4u3X4MHTvbpaYtm83F/riC/NlV6rk89uHYiG7sOT7Rit7JCUlWUCeR9euXS3LMtu6hw8fblWpUsWKiYmxrrvuOmv9+vUeXUNbukUkFHm9hTgbf29zdldSkutt6tkfSUn5/35+nyMhIed2bucW74K2fdsmM9OyZs+2rEqVzl+ob1/LSk219TKzZrn3vc2aZetlw4a792+HZeU32RWZUlNTiYuLIyUlRfk1IhIxnLkYuf/f3DmjEchdKBkZJrE1OTn/pRSHw8y27NhR8PbugraC59cVOiHBLNfZ+jmd262++MI8r1/fbNNu0cLGixhLlpik4MIkJYXvFn9fuHv/VlAjIhLGnEGEq6ULd4IIuzmDLMi/dokdQZYnNXA8lpkJkyebXU0nTsAFF8Czz8JTT0FMjE0XycmOYDCSuXv/DpmcGhER8Vwo5mIEonaJ33bbbNpkIqS+fU1A07Kl2eH03HN+C2ggchPHA01BjYhIGAvVIn6hVLvELWlpMHKkKZj3889QurTJTF62zCw7BUCoFbILR2HRJkFERPIXykX8vGo3EAzLl0PPnmaWBuC222DSJJOoE2CJidCxox+X1iKcghoRkTDmrO9SWC5GuBXxC4jjx+GZZ8yMjGWZrdlvvGGaS/lQc8ZXYRMMhiAtP4mIhDHlYnhp0SKzrDRxoglounUzMzWdOgU1oBHfeB3UnD17li1btpCenm7neERExEPKxfDAgQMmu/i220yGdZ068O238P77UKFCsEcnPvI4qDl16hQ9evSgVKlSXHHFFezevRuAfv36MWbMGNsHKCIihQuXxNygVT22LNOfqV49mD0boqJM/6b16+GmmwI0CPE3j4OaIUOG8Ntvv7FkyRJKlCiRdfymm25izpw5tg5ORETcFypNBV0JWgfq7duhXTuzxHTkiNnhtHIljB0LpUr5+eISSB4HNQsXLmTixIm0atUKR7Z1x/r167Nt2zZbByciIpEhKB2o09Nh3Dho0MA0oixRAsaMMQFN06Z+uKAEm8dBzcGDB6mUT/OukydP5ghyREREIEgdqNeuhWuvhX/9C06fNlNX69aZqsAXXGDjhSSUeBzUXH311SxatCjruTOQmTp1Ki380A9DRETCW0CrHp8+DUOGQLNmsHo1lC0LU6fCDz/AJZfYcAEJZR7XqRk9ejS33HILmzZtIj09nQkTJrBx40aWL1/O0qVL/TFGEREJYwGrepyUBL17wx9/mOf33mvqzlSp4uMbS7jweKamZcuW/PTTT5w6dYq6devyzTffULlyZZYvX05TrVGKiEgufq96fPQo9OoFN9xgAppq1WDhQvjkEwU0RYy6dIuIiF/5rQO1ZZkM4759Yf9+c6xPH5MMHBdnx9AlRLh7/3Zr+Sk1NdXtCytYEBGR7JxVj++5xwQw2QMbr6seJyebYGbhQvP8sstM7oz6QRRpbgU1ZcuWLXRnk2VZOBwOMgJWSUlERMKFs+px//45k4bj401A43aRwMxME7wMHgypqVCsGDz9NAwdarZs+0FGhhpMhgu3gpqkpCR/j0NERCKczx2ot2wxuTPObVLXXAPTpkHDhn4b8/z5+QdiEyaEXrVmUU6NiIiEurNn4ZVXYNQoSEuDCy+EF180y09+nDJxFgzMfZd0Llyor1bguHv/9iqoOXr0KO+++y6bN2/G4XBQr149unfvTvny5X0atL8pqBERCTMrV2L17Ilj/XoADl9zC2VnTSa6bi2/XtaZ3Oyqvo7Xyc3iFXfv3x5v6V66dCm1atXijTfe4OjRoxw5coQ33niD2rVrq06NiEiYCVqDycKcOAEDB2Jdey2O9es5RAUe4CMuWrmYWm1q+b1fVEALBoptPC6+99hjj9GpUycmT55M9P/C04yMDB599FEee+wxNmzYYPsgRUTEfiGbL/LVV2Zr9q5dOIAP+SeDeI1DVATO94vy5/JPwAoGiq08nqnZtm0bTzzxRFZAAxAdHc2gQYPU0FJEJEwEpcFkYQ4dgi5doEMH2LWLPdE1uYUveZAPswIa8GO/qGz8XjBQ/MLjoKZJkyZs3rw5z/HNmzfTuHFjO8YkIiJ+FJQGkwWxLJg5E+rVg48+AoeDPfcMoF7GBr7mFpe/4s/ln9atzayVq2omDgckJKgsTqhxa/lp3bp1WX/u168f/fv3Z+vWrVx77bUArFixgrfeeosxY8b4Z5QiImIbT/JF2rRx/329queyaxc88gh8+aV53qABTJvGv7c35+Tcwq/pr+UfvxQMFL9zK6hp3LgxDoeD7BulBg8enOe8zp0706lTJ/tGJyIitvNHvojH+TkZGfDWW/DMM3DyJBQvDsOGmaJ6xYtT9bR71/Xn8o9tBQMlYNwKanbs2OHvcYiISIDYnS/iqp6Ly4TeDRugZ0/4z3/M81atTJXgyy/POsW5/FNYvyh/L//4XDBQAkrF90REihg7G0x6VM8lPc0UzRszBs6dg9hYGDsWHn4YovKmeDqDJch/+SfUi9+pvYJ9bG1omZ9Nmzaxe/duzp49m+P4HXfc4e1biohIANiZL+Jufs66Sf/mqkm94PffzQt33AGTJkH16i5/N5yXf0J2u3yE83imZvv27dx1112sX78+R56Ns+FlKDe01EyNiMh5+d14ExLcCxicsxDz5sHEia7PiyWVMTzNo0w2BypXNr9w992utxa5uFa4zHiovYL9/NYm4fbbbyc6OpqpU6dSp04dVq5cyeHDh3niiSd49dVXaR3C+9sU1IiI5ORNwJBfMJSf2/k/JvEo8SSbAz16mB5O5crZM/gQpPYK/uG35afly5fzww8/ULFiRaKiooiKiqJVq1aMHj2afv36sWbNGp8GLiIigRMd7dm2bVezENlVZj9v0I9/8CkAO4vVJWHxFKJvvsG3wYYBf22XF/d4XHwvIyOD0qVLA3DRRRexd+9eAGrWrMmWLVvsHZ2IiISMgor2GRbdeY/N1OMffEo60bzMU6ydsb5IBDSg9grB5vFMTYMGDVi3bh116tShefPmjB07luLFizNlyhTq1KnjjzGKiEgAuVqSKmgWoi5beYfe3MgPAKymCc9WnkavSVdxZxHKH1F7heDyOKh59tlnOXnyJAAvvPACt912G61bt6ZChQrMmTPH9gGKiEhe/kqeLWjXTlpa3vOjSWcQrzGS4ZTkDKcoyTctR1Lu+YF80aZYQPNGQiGhOFTq6xRZlg0OHz5sZWZm2vFWfpWSkmIBVkpKSrCHIiLitXnzLCs+3rLMbdM84uPNcV/f1+HI+b5gjjkcljVyZM7jV7HaWs1VWQe+5UarDlutpCRbPqbHY/fHd+LtWJzfWX7fYzDGFO7cvX+r+J6ISBjx13Zhd3btOEvKHPnzFMMZwSBeoxgZHKEcg3iNGXQlPsER8J09obiF2pft8pKXrVu6ExMTmT59OmXKlCGxkL+N+UHpV+8eBTUiEs78uV14yRJo27bw82Z0/Z6WHzxMXbYDMId/0I83OOioDAQ+gAjlLdShsBwWKWzd0h0XF5dVXC8uLs6eEYqIiEf8uV24sN045TjCq/yLLh+8D8De6Hh6Z0ziC24HICFIVX5DeQu1p9vlxXduBTXvv2/+I7YsixEjRlCxYkVKlSrl14GJiEhO/twu7Ho3jsW9fMqbPE5lDmA5HDgefZTKo17iid/K0DnIsxDuftbvv9dMSVHgUZ0ay7K45JJLSE5O9td4RETEBX9uF3bu2sneuaA6f/IZHfmETlTmAH8Uq0fmkmUwcSLR5crQpg3cf7+ZjQhWsODuZ33hBbNMFcIZEmIDj4KaqKgoLrnkEg4fPuyv8YiIiAv5BR7ZORwmGdWb7cLOJpcAUWTyCJPYRH3u4HPOcgEjGc7Gj9YQfd3fvP8AflDYd5JdcrJJKFZgE7k8rig8duxYnnzySTZs2OCP8YiIiAvZA4/cN3FPu2vnJzERvh6/meXFr2MSj1GG4yznWm6tsoaG80ZwZ6cYr8fuLwV9J7k5t8UMGGCSeCXyeLylu1y5cpw6dYr09HSKFy9OyZIlc7x+5MgRWwdoJ+1+EpFgs2NHjF+2C589C2PGwIsvwtmzpJcszdp/vMSJLo/Suk10yOeiuNtk0ykpSUm84cRvDS3Hjx/vy7hERIqsgqr1ehKMJCZCx442bhdesQJ69oSNG83zW2+l2OTJNKtRw8s3DDzndzJihMmfKYx6L0UmFd8TEQmAYBSIK3RW6PhxGDoUJk40A6tYEd54Azp1ci9JJQS5W29HMzXhxdbie66cPn2ac+fO5TgWysGCghoRCYZgFIgrdFZo8WJ45BHYvdu82LUrjBsHFSrYM4AgcX7XhfVeCkYxPvGeu/dvjxOFT548Sd++falUqRKlS5emXLlyOR4iIpKTJwXi7OCcFcp9zeRk6HP3Qfa07gx//7sJaGrXhm++genTwz6gAf8nU0to8zioGTx4MD/88AOTJk0iJiaGadOmMXLkSKpVq8aMGTP8MUYRkbDmz6J5uWVkmBmavLMUFg9YH7KJeiT8+2OsqCh44glYvx5uvtn3C3spI8MsGX38sflpx66kxESznOfsVeUUHx+cPlASOB4nCn/++efMmDGDNm3a8NBDD9G6dWsuvvhiatasycyZM3nggQf8MU4RkbDlz6J5ueU3K1SLHbxNH9rzDQBraUTGpGk07d3M9wv6wK7E6fzYnkwtYcHjmZojR45Qu3ZtwOTPOLdwt2rVih9//NHe0YmIRAB/Fs3LLftsTxQZDOB1NtCA9nzDGWIYwktczSr+Wyb4AY2rJTK7CuQ5ey8Fu+qxBI7HQU2dOnXYuXMnAPXr1+eTTz4BzAxO2bJl7RybiEhECGSeh3O250p+YzkteJ1BXMgplnA9V7KOMQwhnQtsmRXyluslMhXIE994HNR0796d3377DYAhQ4Zk5dYMHDiQJ5980vYBiohEgkDlebRudpo3Y5/hF5pxDas4Rhw9mcoN/MAfXGrrrJC3Ap04LUWH2zk1AwYMoGfPngwcODDrWNu2bfn999/55ZdfqFu3Lo0aNfLLIEVEIoHf8zyWLiW6Vy/6Hv8DgLncTT/eYB/VgNDZ/RPIxGkpWtwOar766ivefPNNmjZtSs+ePbnvvvsoU6YMNWrUoEYYVZ0UkaLFjrYEdnLmedjq2DEYPBimTjXPq1ZlRZe3GDjrLvblSsL1qZWCTQKZOC1Fi0fF93766Sfee+89Pv30UzIzM0lMTKRnz55cd911/hyjbVR8T6Ro8efumpAxfz707Xt+WqN3b9PDqWzZkAvonFQgTzzl14rCp06dYs6cObz//vv8+9//pm7duvTo0YMHH3yQatWq+TRwf1JQI1J0BKMtQUDt3WuCmQULzPNLLzUzNWHyj0zn3w/k/DsKl7+fUA0YI1VA2iQAbNu2jffee4/Jkydz4sQJzp4968vb+ZWCGpGiIRhtCexU4A0zMxOmTTPLTSkpUKwYPPUUPPsslCgR1HF7yi/dxgOgSMwAhhi/denO7uTJkyxdupSlS5dy7NgxLrvsMl/eTkTEFp7srgm1poYF3jCv2AIPPwzOmmDNmpkAJ0w3aYRjgTxXM4DO+jqhPsMU6Tze0g3w448/0r17d6pUqUL//v259NJLWbZsGZs3b7Z7fCIiHgvX3TWuCtL99ec5Vt/9EhkNG5mAplQpeP11WLEibAMap3AqkKf6OqHP7ZmaP//8kw8++IDp06ezbds2mjdvzuuvv859991H6dKl/TlGERGPhOPuGlc3zGasYho9acQ6OAfWze1wTHnHrK9JQIXzDGBR4XZQU6tWLSpUqECXLl3o0aMH9erV8+e4RES85mxLUNjummAWoMst9w2zFCcZxTD6M4FoMjlEBQbyOj2G/JM2tVz0WxCPeZLwG64zgEWJ28tPn3zyCcnJybz66qtBCWhGjBiBw+HI8ahSpUrAxyEioS+QbQnskv1GeDPfsIEGDOJ1oslkJp2px2Y+ogv79iugscv8+WbCq21b6NzZ/KxVy3XfqXCcASxq3A5qEhMTKVbMp7xin11xxRXs27cv67F+/fqgjkdEQleg2hLYpWpVKM9hptOVb2hPbXayixp0YDH/ZCaHqJh1nvjOm4aagWxMKt4JbpTioWLFiml2RkTcFja7ayyL65JnsyWqPxdlHiQTB2/yOEN5kZOYnEW7lsxUX6XwhF+HwyT8duyY87txzgDec485J7/6OqE2A1jUeLX7KVj++OMPqlWrRu3atbnvvvvYvn17geenpaWRmpqa4yEiRUvI767ZvRtuu42of3bmosyDrKcBLVnOACbkCGjA9xump8stkcqXhprhNgNY1IRNUNO8eXNmzJjB119/zdSpU9m/fz8tW7bk8OHDLn9n9OjRxMXFZT0SEhICOGIRkQJkZMDEiXDFFbB4MRQvDqNGsXX2apLjm+c41Y4bpjfLLZHK14TfxETYuROSkmDWLPNzxw4FNKHA44rCDz30EBMmTCA2NjbH8ZMnT/L444/z3nvv2TpAV06ePEndunUZPHgwgwYNyvectLQ00tLSsp6npqaSkJCgisIiElwbN0LPnqbODMDf/maK6F1+OWD/ElG4V1i225IlZpaqMElJ2podKvzWJiE6Opp9+/ZRqVKlHMcPHTpElSpVSE9P927EXrj55pu5+OKLmTx5slvnq02CiARVWhq89BKMHg3nzkFsLLz8smlCGeW/iXPdxHNSQ83wY3ubhNTUVCzLwrIsjh8/TolsPUYyMjJYvHhxnkDHn9LS0ti8eTOtlWYuIuHg55/N7Iyz8vodd8Bbb5m7p5+pvkpOSviNXG4HNWXLls2qD3PppZfmed3hcDBy5EhbB5fdv/71L26//XZq1KjBgQMHeOGFF0hNTaVr165+u6aIiM9SU+GZZ2DSJHP3rFTJ5NI476gBoPoqeTkTfvPrsxXqDTXFNbeDmqSkJCzL4oYbbmDevHmUL18+67XixYtTs2ZNqlWr5pdBgmnTcP/993Po0CEqVqzItddey4oVK6hZs6bfriki4pMvvoBHHjl/13zoIXjlFcj2/5+BEI4VlgMhbLb8i9s8zqnZtWsXCQkJRPlx/ddflFMjIvmxvXbLX3+ZKYA5c8zzOnVgyhS48UZbxusN5+4nyH+5RduRJZTZnlPjVLNmTY4dO8bKlSs5cOAAmZmZOV5/8MEHPR+tiEiQzJ+f/xLEhAle3OQtCz74AAYNgqNHTWT0xBMwfLjprB1EWm6RosDjmZrPP/+cBx54gJMnTxIbG4sj25qww+HgyJEjtg/SLpqpEZHsnLMXuf9f0KvZi23bzC6m7783z6+6ymzTbtLEtvHaQRWFJRz5bUv3pZdeyq233spLL71EqSD/y8NTCmpExMm22i3p6Waq47nn4PRpKFECRo40szVB7pcnEincvX97nBiTnJxMv379wi6gERHJzpdS+VnWrIHmzeHJJ01Ac8MNsH49DB6sgEYkCDwOatq3b88vv/zij7GIiASMT7VbTp+Gp5+Gq6+GX3+FsmXh3Xfhu+/g4ovtHGbIyMgwRfw+/tj8zMgI9ohE8vL4nxJ///vfefLJJ9m0aRMNGzbkggsuyPH6HXfcYdvgRMQzypdwn9e1W374AR5+2OTQANx7L7zxBlSpErHfv63J1CJ+5HFOTUFbuR0OBxkhHL4rp0YimW48nvG4VP7Ro2aZ6d13zQnVq5uCev/7h1ykfv+2JlOLeMlvOTWZmZkuH6Ec0IhEslDuwByqyxbOUvmQt7BvjlL5UZa5c9erdz6gefRR2LQpR0ATqt+/LzIyTKCWX9DnPDZgQOj8nYr4VEHvzJkzdo1DRLwUyjee+fPNbEjbttC5s/lZq1bo3OSdtVuqV895PD7+fzMQzZPhrrvMEtNff5ku2suWmZ5N//vXYih//76yJZlaJIA8DmoyMjIYNWoU1atXp3Tp0mzfvh2AYcOG8a7zXzEiEjCheuMJl9mLxETYudN0qJ41y/zcsS2TxANvQ/368NlncMEFMGyY2e3UqhVwfgZqxIjQ/P7toEaYEm48DmpefPFFpk+fztixYylevHjW8YYNGzJt2jRbBycihQvFG0+4zV5ER0ObNnD//dCmyu9E33C96dmUmmq2bP/6Kzz/vKlBQ84ZqBdecO8a4XjjVyNMCTceBzUzZsxgypQpPPDAA0RnS+u/8sor+f33320dnIgULhRvPKE6e1Sgs2dNhNKoEfz733DhhSbp5qefoEGDrNNczUAVJhxv/M5GmK6aiTsckJBQ9BphSujyqvjexfnUYcjMzOTcuXO2DEpE3BeKN55QnD0q0H/+A02bmiWms2ehQwfYuBH69cuxJ7ugGShXwvnG73YydQRsW5fI4HFQc8UVV7Asn39effrpp1x11VW2DEpE3BeKN55QnD3K14kTZh2sRQvYsAEuusgk1ixaBDVr5jm9sBmo3CLhxl9oMrW2c0sI8bj43vDhw+nSpQvJyclkZmYyf/58tmzZwowZM/jiiy/8MUYRKUSodWB2zh4VVgMmqLMXX34JffrA7t3meZcu8NprJrBxwdOZpUjpgJ2YCB07RmZhQYksHhffA/j666956aWXWL16NZmZmTRp0oTnnnuOdu3a+WOMtlHxPYl0oVTR1pl7AjkDm6AXbTt4EAYOhJkzzfNateCdd8CN//9assQkBxfm2Wfhxht14xexi9+6dIczBTUigZVfld2EhCDNXliWCWQGDIDDhyEqyvz5+edNUrAbPK5CLCK2cPf+rTayIuI3IbNssXOnWWr6+mvz/MorYdo005DSA878pXvuMQFMfjNQ4Zw/IxLu3ApqypUrh8PV1opcjhw54tOARCSyOGvABEVGBrz5JgwdCqdOQUwMPPec6eGUqxmvu0Itf0lEznMrqBk/fnzWnw8fPswLL7xA+/btadGiBQDLly/n66+/ZtiwYX4ZpIiIx9atg549YdUq8/y662DKFLjsMp/fOmRmoEQkB49zau6++27atm1L3759cxyfOHEi3333HQsXLrRzfLZSTo1I+HI7CfrMGVNE7+WXIT0d4uLglVegRw+TRyMiYcdvicKlS5dm7dq1eQrw/fHHH1x11VWcOHHCuxEHgIIaEf/y1+6r/BKO4+NNfkuO5Z4ff4ReveC//zXP77oLJk6EatV8H4SIBI2792+P/9lSoUIFFixYkOf4woULqVChgqdvJyIRwl8dud1qjJmSYhKBr7/eBDRVqsC8eeZFBTQiRYbHu59GjhxJjx49WLJkSVZOzYoVK/jqq6/U0FIkTPk6w+IMPHLP+zoDD29r0hTWGNPhgMUPL+Su4o/i+F9lvL1/78XPd47lovJlaZ2R93OEUi0fEbGXV3Vq/vOf//DGG2+wefNmLMuifv369OvXj+bNm/tjjLbR8pNIXm4v7bjgrN3iqn2AL7VbCip2V4V9vMnj3MM8AI5XvYSHzk1h7qE2Wefk/hy+ftZgUjAmRZmK7+VDQY1ITq5mWDyp+utuld2kJM+3dn/8sVnKysmiB+/yKv+iLCmkE03S1YPpuGoYpymZ48zsnwN8/6zBEs7BmIgd/Fp8LzMzk61bt3LgwAEyMzNzvHbdddd585YiEmDuLO0MGGC2Lhc0I+DPjty5G15ezB9M4WHasgSAVTSjJ9PYt7MRp/P5fefn6N///HNX57jzWYPBX0t7IpHI46BmxYoVdO7cmV27dpF7ksfhcJCRkWHb4ETEfwrrOG1ZsGePOa+gGRZ/dOR2LrUkJ0PFinDs4DkGMY4RjKAEaZykFMMYxZv0o1zFYhw8WPDnKKyztrufNdDsCjxFigqPdz/16dOHZs2asWHDBo4cOcLRo0ezHqomLBI+7JphcXbkdlV03OEw/Z7c7cidfRfVP/8JNQ7+wkquZgxDKEEa33AzDdjAeMcgMhzFeOAB997XHd7MJvmTJ4GniHgxU/PHH38wd+7cPHVqRCS8kjntmmGxsx9S9qWWUpxkJMMZyOtEk8lhyjOQ1/mQLoCDhP+1JShf3vy0gyezSYHgz6U9kUjk8UxN8+bN2bp1qz/GIhLW/FWnxV/snGFx9kOqXj3n8fh493M+si+13MS3rKch/2Ic0WQyk87UYzNfVXyQjz5ykJRkdlMlJrr3OeLj7Z1NChR/LO2JRDKPZ2oef/xxnnjiCfbv30/Dhg25IFdTuCuvvNK2wYmEi3BM5rS747Sv/ZCWLYNTfx7mfZ6gGx8AsJsEHmEyi/m7OemgCZyy57248zkmTDA/w627tjNgS07OP6/GGbCFWjAmEjSWhxwOR55HVFRU1s9QlpKSYgFWSkpKsIciESQ93bLi4y3L3HbyPhwOy0pIMOeFonnz8o4/IcEcD5jMTOvffT+2/qKiZYGVgcOawONWaVLzfJ+zZnn/OXz5rOnplpWUZK6flBS4v89588x/Qw5H3v+uHI4A/z2JBIm792+P69Ts2rWrwNdr1qzpQ4jlX6pTI/7gzzotgZJfLhAEKD9o92549FFYtAiAjdSnJ9NYQYt8Ty/oe3Qnp8mbvKdg14nJ7/oJCWZ2KdRmAEX8QcX38qGgRvwh/wJxec2aBfff7//x2CEgN/GMDJg8GYYMgRMnsIoX57USz/BM6hDOUjzP6b5UJvaFHQUK7RBOSegidvNbQ0uADz/8kL/97W9Uq1Yta+Zm/PjxfPbZZ96NViSMRVoyp1sNJH21aZO5Kz/+OJw4AS1b4lizhtrvD+eco3iehN5g5b0UVicGTJ0YV+W5MjLMTN7HH5ufvpTxio42M1T3329+KqARycvjoGby5MkMGjSIW2+9lWPHjmUV2ytbtizj7dpXKRJG7K7TEky+3sQLlZYGI0ZA48awfDmULg1vvWWmIOrXt2UXlZ18qRMTbrvhRCKBx0HNm2++ydSpUxk6dCjR2f6p0KxZM9avX2/r4ETCgXP3DeQNbEJ5Z01+/FrsbflyaNIERo6Ec+fg7383MzaPPgpR5/+vKDERdu40uTOzZpFj+3ageVsnJiCzXSKSh8dBzY4dO7jqqqvyHI+JieHkyZO2DEok3BQ0wzBnjikQZ8cShL/5pdjb8eNmmelvfzNBTKVKMHs2fP65mcLKR6gstXiztOj32S4RccnjOjW1a9dm7dq1eXY5ffnll9SvX9+2gYmEm/zqtBw6BAMHhk93ZdvzgxYtgj59zn8B3brBuHEmygsD3tSJsaunloh4zuOg5sknn+Sxxx7jzJkzWJbFypUr+fjjjxk9ejTTpk3zxxhFwoZzhgHMEsM//hFeBflsK/Z24ICZrpg92zyvXRumTIGbbrJ9zP7kTYFCtTYQCR6Pg5ru3buTnp7O4MGDOXXqFJ07d6Z69epMmDCB++67zx9jFAk74dpd2ecqw5YFM2bAoEFw5IjJlRk0yOTRlCrl7+HbJvf26U8+yX/GLb86MZG2G04knPhUp+bQoUNkZmZSqVIlO8fkN6pTI57wpS5IuBfk86rY2/bt0Ls3fPeded64MUybBk2b+nm09nJVo+e116BixcL/e8jIMLucCpvtCnS9HZFw5u792+OZGqcDBw6wZcsWHA4HDoeDihUrevtWIiHH1+Jz4b4E4VEfp/R088UMGwanT0OJEjB8ODzxBOTqDRfqCurh1amTWTIsrICi3T21RMQD3vRf+Oc//2lFR0dn9X4qVqyY9cADD1jHjh3zvKFDAKn3k7jD2Wsnvx5O7vbaSUpy3Qsq+yMpyd+fxs/WrLGspk3Pf6A2bSzrv/8N9qi8YncPr5DoqSUSIdy9f3u8pbtnz5785z//YdGiRRw7doyUlBS++OILfvnlF3r16mV/1CUSQHZtx42kgnz5On3atDdo1gxWr4ayZc1S0w8/wCWXBHt0XrG7Rk8o1dsRKSo8Xn5atGgRX3/9Na1atco61r59e6ZOncott9xi6+BEAs2u7bgRvQSxZAn06gVbt5rn99wDb7wR9pmv/lgyzL4bTkT8z+OZmgoVKhAXF5fneFxcHOXKlbNlUCLBYueNLdRK/vvs6FETzLRtawKaatVgwQL49NOwD2hAu5ZEIoHHQc2zzz7LoEGD2Jft/9X379/Pk08+ybBhw2wdnEig2X1ji5gliHnzoH59s8QEpqDepk1w551BHZadIn7JUKQI8HhL91VXXcXWrVtJS0ujRo0aAOzevZuYmBguybWW/uuvv9o3UhtoS7cURttxc0lOhr59YeFC8/yyy2Dq1JC5s/uy7T4/zt1PkP+SYVjOsIlEAL9t6b4zgv5lJpJbROfCeCIz0wQvgwdDaioUKwZPPw1Dh5ot2yHA1233+XEuGeb3vgXW6BGRkOBT8b1wo5kacZdXxecixZYtJnfGuc3nmmvMslPDhsEdVzau6snYNaNi9wyQiPjG3fu3V0HNsWPHmDt3Ltu2bePJJ5+kfPny/Prrr1SuXJnqubMiQ4iCGvFEkbuxnT0Lr7wCo0ZBWhpceCG8+KJZfgqhD+5cInS1S63ILRGKFAF+W35at24dN910E3FxcezcuZNevXpRvnx5FixYwK5du5gxY4ZPAxcJFUVqO+7KldCzJ6xfb57fcgtMnmyihxCjLtgi4orHu58GDRpEt27d+OOPPyiRbW29Q4cO/Pjjj7YOTkT87MQJ06mxRQsT0FSoAB99BIsXh2RAA+HfgkJE/MfjmZpVq1bxzjvv5DlevXp19u/fb8ugRIqaoCx1ffWV2Zq9a5d5/s9/nu/aGMJUT0ZEXPF4pqZEiRKkpqbmOb5lyxY1tRTxwvz5ZlKkbVvo3Nn8rFXLHPeLQ4egSxfo0MEENDVrwpdfwocfhnxAA6onIyKueRzUdOzYkeeff55z584B4HA42L17N08//TR333237QMUiWTOXTy5c0SSk81xWwMby4KZM6FePbPE5HCYRlYbNpgcmjDh3HYPeQObIrXtXkTy8Hj3U2pqKrfeeisbN27k+PHjVKtWjf3799OiRQsWL17MhRde6K+x+ky7nySUBHQXz65dZqnpq6/M84YNTR2a5s19fOPgKdLb7kWKGL9u6Qb44Ycf+PXXX8nMzKRJkybcdNNNXg82UBTUSChZssQsNRUmKcmHXTwZGTBxoimad/IkFC8Ozz0HTz5p/hzmity2e5Eiym9bup1uuOEGbrjhBm9/XaTI8/sunvXrzTbtlSvN89atYcoUuPxyr94uFAOIIrXtXkQK5VFOTWZmJu+99x633XYbDRo0oGHDhtxxxx3MmDGDIlSYWMQWftvFc+YMDBsGTZqYgKZMGXj7bTM15GVAE/BkZhERL7gd1FiWxR133EHPnj1JTk6mYcOGXHHFFezatYtu3bpx1113+XOcWSZNmkTt2rUpUaIETZs2ZZmzlLtImPHLLp5ly6BxY3jhBUhPh44dTTft3r0hyuN9AUCAk5lFRHxhuem9996zYmNjrR9++CHPa99//70VGxtrffDBB+6+nVdmz55tXXDBBdbUqVOtTZs2Wf3797cuvPBCa9euXW79fkpKigVYKSkpfh2niLvmzbMsh8M8zPYk83AemzfPzTc6dsyy+vQ5/wZVqljW3LmWlZnp0/jS0y0rPj7n2HKPMyHBnOfrdZKSLGvWLPPT1/cTkcji7v3b7aDm5ptvtkaPHu3y9RdffNFq166d+yP0wjXXXGP16dMnx7HLL7/cevrpp936fQU1EormzcsbOCQkeBDQfPaZZVWvfv6Xe/a0rCNHbBlbUpLrgCb7IynJ+2vk9/nj4z34/CIS8dy9f7s9H71u3TpuKaCWRYcOHfjtt998njly5ezZs6xevZp27drlON6uXTt+/vnnfH8nLS2N1NTUHA+RUJOYCDt3ml1Os2aZnzt2uLEtef9+uPdes8SUnAwXXww//GC2apcrZ8vY/J3MrKUtEbGT20HNkSNHqFy5ssvXK1euzNGjR20ZVH4OHTpERkZGnjFUrlzZZXuG0aNHExcXl/VISEjw2/hEfOHcxXP//eZngbuKLAvefdcU0Zs715z81FOwbp17e8Q94M+WBBkZps5MfnsMnMcGDDDniYi4w+2gJiMjg2LFXO8Aj46OJj093ZZBFcSRK6vSsqw8x5yGDBlCSkpK1mPPnj1+H5+IX23dCjfeaLZqHzsGTZvCL7/AmDFQsqRbb5GRYTZCffyx+VlQ0ODPlgSedNsWEXGH23VqLMuiW7duxMTE5Pt6WlqabYPKz0UXXUR0dHSeWZkDBw64nEGKiYlxOV6RsJKeDuPGwYgRZst2yZIwapSZ6ijgHxu55VeFNz7etB3Ib7nL2ZLgnntMAJN9VsXXlgTqti0idnN7pqZr165UqlQpx3JO9kelSpV48MEH/TbQ4sWL07RpU7799tscx7/99ltatmzpt+uKBN2vv8I118DTT5uA5qabTL+mJ57wOKDxJn8lMdGsclWvnvN4fLw57m1LAnXbFhG7ed0mIRjmzJlDly5dePvtt2nRogVTpkxh6tSpbNy4kZo1axb6+2qTIGHl1CkYPhxeew0yM03y7+uvw4MPul4PcsGOPlP5VRQG76sMO8eUnJx/Xo2tva9EJKz5vU1CMHTq1InDhw/z/PPPs2/fPho0aMDixYvdCmhEwsp335mCedu3m+f33WfWeQpI1i+IJ/krrtoO5G5J4OlSVn7v56+lLREpmrwrMRpEjz76KDt37iQtLY3Vq1dz3XXXBXtIIvY5cgS6d4ebbzYBTXw8fP65yer1MqAB+/NX7NqK7a+lLREpmsJqpkYkYlkWfPopPP44HDhgpioeewxeegliY31+ezvzVwrbiu1wmK3YHTu6N8uSmGjODbVmmSISfhTUiATbnj0mgPn8c/O8Xj2YNg1sTIB3bs0uLH/Fna3Zdixl5aZu2yJih7BbfhKJGJmZMGkSXHGFCWguuMAkBq9ZY2tAA+fzVyBvjrGn+Svaii0ioUpBjUgwbN5spkUeewyOH4cWLWDtWlOHxk+1lezKX/F1KcuT4n8iIp4Iqy3dvtKWbgm6s2dN9d8XXzR/Ll3aPH/kEYgKzL8x8tua7Un+ii9bsX3dMSUiRVNEbukWCWvLl0OvXrBxo3n+97+b5acaNQI6DF/zV7zdiu3cMZU7EHLumNJuJxHxlZafRPzt+HHo1w/+9jcT0FSsaNZePv884AGNXTxdylLzShEJBM3UiPjTl19Cnz6we7d53rWr6eFUoUJwx2UDT7Zi+2PHlIhIbgpqRPzh4EEz9TBrlnleuza8/Ta0a2frZXzNj/GVu0tZ2jElIoGg5ScRO1kWfPihqTUza5ZJ/n3iCVi/3vaAZv58k7Dbti107mx+1qrlfjXfQFLzShEJBO1+EvFB9pmS2uyg+ft9cHz7jXmxUSNTRK9ZM9uv6yrp1pmoG2pJt2peKSK+cPf+rZkaES85Z0pubJvBys6v07BzAxzffkPGBTGmvcGqVbYGNM76LjNnmjSdcEq6tbP4n4iIK8qpkSLJ11wU50xJA2sd8+jJNawCYAnX0/vcFEZfdimJF9g3xj/+gKlTC062dQrVpFvnjqn86tSMHx9aM0siEp60/CRFjq8F4DIy4LKaZ+iePIrBjOUC0jlGHP/iVd7jIXBE+byUkt8YPTVrFtx/v/e/7y/BTm4WkfCj4nsi+bCjANy6N5eyKPlhLuO/AMzlbh7nTfbzvyxXH2dKXI3RU6GadKvmlSLiL8qpkSLD5wJwx45B795cNbANl/Ff9lKVu5jPvcw9H9Bk48325ILG6C6HAxIS3Ou4LSISSRTUSJHhSQG4PBYsgPr1YcoUAN6mN/XZxELucvl+3syUFDbGwijpVkSKMgU1UmR4VQBu7164+26zJrVvH1x6KRk/LOXF+LdJdZTN9/d9mSnxtficpx23RUQiiYIaKTI8KgBnWabGTP36JsmlWDEYOhR++43ottf5bXuyN7M7FSvCRx9BUpJJTlZAIyJFlYIaKTJatzYzGbkDEaesGZbK/zXleXv1gpQUuPpqWL0aXngBSpQAPG/oaNcYc4/X4TDdFx54wCTfaslJRIoyBTVB4iyk9vHH5mcoFUqLVIUVgCtmnWPxdaOJvupKWLoUSpWC11+H5cvhyivzvF9iIuzcaWZIZs2yZ6akoDHmpqUmEZGcVKcmCHytk1JU+KueSX7f/98r/8JHJXtSdudv5kC7dvDOO6ZkcBC4+m+kVy+45BLVdxGRosXd+7eCmgALt549/lJYwOLvwM95/QM7TtLiy+eInzceR2YmVKhgEmIeeMC9NSA/UpE6ERFDQU0+gh3UOJv6udqyW1Sa+hUWsAQs8PvmG+jd26whgQlkXn/dZN6KiEjIUEPLEORTnZQI4QxYcn8Pzoq+n37qY4E8dxw+DF27Qvv2JqCpUQMWLzZbiCIwoFH+logUFQpqAsirOikRxJ2Kvo895sfAz7LMnb1ePZgxw0z99OsHGzdChw5evGHoc3YSb9sWOnc2P2vVMsdFRCKNgpoA8qhOSgRyZ6bq4EH33svjwG/3brjtNnNnP3gQGjQwu5omTIDSpT18s/BQ2KyYAhsRiTQKagLI7TopEdqzx84ZKLcDv4wMePNNuOIKs8RUvDiMGmXqzjRvbt+AQozPfa5ERMKQgpoAKqxOCkR2zx53A5GKFW0K/DZuhFatzBLTiRPwt7/Bb7/Bs8+a4CaCKX9LRIoiBTUB5q9KtOHA3ZmqSZPOP8/9OrgR+KWlwYgRcNVVsGIFxMaaN/3xR7j8ch8/RXgo6vlbIlI0KagJAn9Uog0H7s5U3XOPD4HfTz+ZYGbkSDh3Du64AzZtgkcegaii8597Uc/fEpGiSXVq/EBF0wqWX52ahAQT0GQPWDz6HlNTYciQ89M8lSubXJp77gl6Eb1gcNZESk7OP6+mqNREEpHIoOJ7+QhEUKMWCO7xJvBz+Tuffw6PPnr+S+/RA155BcqV8/vnCGXO3U+QM7ApatWrRST8KajJh7+DmqLQAiFYs1D5BYuNq/7F57X7Ef/zJ+ZA3bowZQrccIP/BxQm3J0VExEJZQpq8uHPoKYotEDwdhbK10Aob7Bo0Y3pjOMJynOUzKhoov71BAwfbjprSw5aDhWRcKegJh/+DGqWLDHVWguTlARt2th66YDwdhbK1+W43MFiHbbxDr25ie8BWE0Tnq08jS+Sr9KNWkQkQqn3U4BF8hZaTwu5OXsNDRwId9/tW0VbZ72VaNJ5gldZT0Nu4ntOUZJ/8QrN+Q9f/XWV6q2IiAjFgj2ASBHJW2g9KeR25EjemZn8znc4TCDUsWPBSyH79kFj1jCNnjTlVwC+5wYeZgrbqZvjPFe0/CIiUjQoqLGJs7BcYVtow7EFgruzS599ZpaV3FnQzB4IuVyOO32av/3fCFYxjmJkcIRyPME4ptMNyLlN21Ww6O7yV6ADHwVaIiL20/KTTSK5BYK7s0szZ7oX0GTnMmD64Qdo2JAas8dSjAzm8A/qs4npdCd7QJNf2wRPl78C3clanbNFRPzEKkJSUlIswEpJSfHbNebNs6z4eMsyt3fzSEgwx8NVerr5TA5Hzs/lfDgcllWxYv6vFfZISsp1sSNHLOuhh86fEB9v/fT0/1kOR97rO49l/27z+/5djTkhwbI+/TT/z5Xfe9th3rzAXk9EJBK4e//W7ic/iMSlhcIKufXvb2ai3JVni7tlwbx50Lcv/PWXOemxx+Cll6BMGbfqrbjaoVWQihXh4EE3x+ijorDtX0TEH7SlOx+BCmoiVUGBRfny7m1ph3y2gf/5pwlg/u//zAv16sHUqaardjYFBYuFBQy+sGsbfqRv+xcR8Rd3799KFBa3JSaa3Ur5BRYZGQUnSmcXH/+/GZY7M2HyO/DUU3D8OFxwATz9NAwdCjExeX4vOtr1zb6wHVq+sGsbfiRv+xcRCQUKasQlVzMj2QMLZ1Luvn3QqxeMGGFmYvILbJxbuFu3hug/fofre8G//21evPZaMzvToIFXY/U0EHA44KKLXC89ZWfXNvxI3vYvIhIKFNRIvtzZCp3fORUqmJ+HD58/liP35exZGD0WRo0yfy5dGkaPhkce8SqRxBl4bdrk/u84l7/eegsGDQrcNvxI3vYvIhIKFNRIHq4Sbp1boefONc/zO+fIEXNs5Ei45JJcuS//+Q/07AkbNpiTb70VJk+GGjW8Hmdhhf7yk7X8lWjGdc89eWeX/LEN37ntP1DXExEpapQo7KNg73Sy+/ru7NCpXt382e1dPCdOwLPPwhtvmDv5RReZP993X96iPm7yZqdTjuWvbN9RoDtZq3O2iIhntPspH3YHNb42awzF67u7Q8cdSUnQ5sxX0Ls37N5tDj74IIwbZwIbL3m608mdgEEVhUVEQpd2P/mZO0s0/gxs/HV9u3beVOAQtZ4dAD/NNAdq1oR33oH27X1+b3d3Oj37LNx4o3sBQ0E7q5zsDETcuZ6IiHhGbRK84GnX6nC6vu87byw6M5PN1KPWTzMhKsr0K9iwwZaABtwPvOrXN4GDHTMgam0gIhL6FNR4wZOu1eF2fecOHVepLs58mfzOqcEuFnMrM/knFTmEdeWVsGIFvPaa2eVkk0BvjXbOihXWQ0pERIJLQY0Xgl1EzdPrO2vJfPyx+VnQDI47jTknTMh5ThQZ9GMCG7mCDnzFGWLY2PlFHL/8Aldf7e7Hcps7gVfuJpfeCvasnIiIuE9BjReCXUTNk+t7s2ySmGhycpy7nJzi48/n6jjPubHSen6mJRMYQGlOsiLmOn584zeumPmMqRDsB4HsiB7sWTkREXGfghovBHKmwJfrHzrk/bJJYiLs3Gl2MM2aZX7u2JEt+fjMGRJ/fZZvDjehOSs5W7IMWwa9w9XHk2j3+GV2fMwCuRN42SHYs3IiIuI+ben2UmFdqwO1+8nV9efMMdVy/dIRetky0xNhyxbz/K67YOJEqFbNwzfynb+3RqsJpYhI8Ll7/9ZMjZcCNVPg7fUrVvTDsklKimlncN11JqCpWhXmzTMRVhACGji/Nfr+++3b6ZRdsGflRETEfapT44OCulYH+/off+zee7i9bPLZZ/Doo7B3r3neqxeMHQtly3oz9LCh1gYiIuFDQY2Pgl1EzdX1bUtm3rcP+vU73/DpkktgypQitdbinBXLr3qzWhuIiIQO5dREKGcrgcI6QrvMqbEseO89+Ne/4Ngxc9LgwTBsGJQs6efRhya1NhARCQ61SSjifFo2+eMP068pKck8b9oU3n0XGjXy97BDWrBn5UREpGBKFA4hnhTJc4fHycznzsHLL8OVV5qAplQp03xyxYoiH9CIiEjoC5ugplatWjgcjhyPp59+OtjDso2/egsVWm/mfzJWruZ4/Wvg6afhzBmsm242/ZoGDYJimtATEZHQF1Z3q+eff55evXplPS9tYz+hYPJ3x+/8lk2c+SEHdp4ifupwmv/8GrFkcpjyDOR1kjZ3YcIaB4m1vb+uiIhIIIVVUBMbG0uVKlWCPQxbFdZbyOEwvYU6dnQ/KbWwhNb58801L/vzO6bwMHXYAcAs7mcA4zlIJRx77QmoREREAiVslp8AXn75ZSpUqEDjxo158cUXOXv2bIHnp6WlkZqamuMRauzuLVTYMtb8+fDw3Yd5/s/ufMfN1GEHu0ng73zBA8ziIJWyrgtq1igiIuEjbGZq+vfvT5MmTShXrhwrV65kyJAh7Nixg2nTprn8ndGjRzNy5MgAjtJzdvYWKmwZa85si6RHPmEj/ajMATJx8BaP8QwvcYLYPO+XPaDy964fbZcWERGfWUE0fPhwCyjwsWrVqnx/d+7cuRZgHTp0yOX7nzlzxkpJScl67NmzxwKslJQUf30kjyUlWZYJHwp+JCUV/D7p6ZYVH+/69xPYbX1V/LasAxuob13Lz25de9Ys/34H8+blHXt8vDkuIiKSkpLi1v07qMX3Dh06xKFDhwo8p1atWpQoUSLP8eTkZOLj41mxYgXNmzd363rBKr5X0CyEz0Xy/sdV40UHmTzCZMbwNLGcII3ivMhQxvA05yju1vj92azR1exSoBqDiohI6AuL4nsXXXQRF110kVe/u2bNGgCqutsPIEicSbm5y+tPmGBu1nb1Fspveaoem5hGT1qyHICfaEkvprKZ+m6N3RlQ+atZoz+SpEVEpOgKi0Th5cuX8/rrr7N27Vp27NjBJ598Qu/evbnjjjuoUaNGsIfnknMWIncisDPHxZm8a0fH7+yxXXHSeI6RrKUxLVnOcUrzKG/RmmUcqljfZcfp7ALRrNHuJGkRESnawiJROCYmhjlz5jBy5EjS0tKoWbMmvXr1YvDgwcEemkuezkL42vG7dWsTBCX8uZyp9OQKNgHwObfxKJNIdiQQHw+vvQb/+EfeWaHcAtGs0c4kaRERkbAIapo0acKKFSuCPQyPeDIL4cxX8aW3UPSp4yxp+Ay1/3yLKCz+ohL9eINP+AeO/027OIMUVx2ne/UyTbgDtfvItk7iIiIihElQE44COguxaBH06UPd/0Upc0p155FTr3KU8kDeWRdfZ4Xs4pxdKixJ2l85PSIiElkU1PhJQGYhDhwwUy6zZ5vnderAO+9wT9ubqFxIwBIKHaftSpIWEREBCOqW7kAL5JZuu7Zq58uyYMYM02zyyBGIijJ/HjnSdNYOM/ntEEtI8H9Oj4iIhIew2NIdyfw2C7F9O/TuDd99Z543bgzTpkHTpjaMOjhCZTlMRETCW1hs6Q5XdmzVzpKeDuPGQYMGJqApUQLGjIGVK8M6oHFyLofdf7/5qYBGREQ8pZkaP7NlFmLtWujZE1avNs/btoV33jFblURERARQUBMQXiflnj4Nzz8Pr7xiknTKljWzNd2741YFPRERkSJEQU2oSkrCevhhHFu3AnDg+nupMPMNoqtXCfLAREREQpNyakLN0aOmCt4NN+DYupVkqnEnC6i89BNqXVslq7WCiIiI5KSZmlBhWWZvc9++sH8/AJPpw9OMIZU4wGwPv/tus3M7kJV/RUREwoGCmlCQnGyCmYULAdha7DK6p0/l3+QspevcFj58+Plj2Tt+i4iIFGVafgqmzEyzi6l+fRPQFCvGzi7P0iB9bZ6AxpXcHb9FRESKKgU1wbJli9kS1acPpKZC8+bw668s7zCKNEq4/TbO2ZsBA8wGKRERkaJKQU2gnT0LL74IV15pitdceKEpLfzTT9CwoVe9oLJ3/BYRESmqlFMTSCtXmiJ669eb57fcApMnmyZR/1NY5+qC2NLxW0REJExppiYQTpyAgQPh2mtNQHPRRTBzJixenCOggfM9o8Dz+no+dfwWEREJcwpq/O2rr0y/pvHjzdTLP/8JmzdD584uoxZXPaNccThMV+vW7uUWi4iIRCQFNf5y6BB06QIdOsCuXVCzJnz5JXz4oZmpKURiIuzcCUlJMGuWqU3jcOSNg3zq+C0iIhJBlFNjN8syUciAASawcTigf38YNQpKl/borXL3jGrQwLzVn3+ePxYfbwIa1akREZGiTkGNnXbtMlu0v/rKPG/QAKZNM9u1bWBLx28REZEIpaDGDhkZMHEiDB0KJ09C8eIwbBgMHmz+bCOvO36LiIhEOAU1vkpPh+uvh59/Ns9bt4YpU+Dyy4M7LhERkSJGicK+KlYMWrSAMmXg7bdhyRIFNCIiIkHgsCxPS7yFr9TUVOLi4khJSaFMmTL2vfGpU3D0qPt7sEVERMRt7t6/tfxkh1KlzENERESCRstPIiIiEhEU1IiIiEhEUFAjIiIiEUFBjYiIiEQEBTUiIiISERTUiIiISERQUCMiIiIRQUGNiIiIRAQFNSIiIhIRFNSIiIhIRFBQIyIiIhFBQY2IiIhEBAU1IiIiEhGKVJduy7IA08JcREREwoPzvu28j7tSpIKa48ePA5CQkBDkkYiIiIinjh8/TlxcnMvXHVZhYU8EyczMZO/evcTGxuJwOII9nKBLTU0lISGBPXv2UKZMmWAPJ6Lpuw4cfdeBo+86cIr6d21ZFsePH6datWpERbnOnClSMzVRUVHEx8cHexghp0yZMkXyfyTBoO86cPRdB46+68Apyt91QTM0TkoUFhERkYigoEZEREQigoKaIiwmJobhw4cTExMT7KFEPH3XgaPvOnD0XQeOvmv3FKlEYREREYlcmqkRERGRiKCgRkRERCKCghoRERGJCApqREREJCIoqJEc0tLSaNy4MQ6Hg7Vr1wZ7OBFn586d9OjRg9q1a1OyZEnq1q3L8OHDOXv2bLCHFhEmTZpE7dq1KVGiBE2bNmXZsmXBHlJEGj16NFdffTWxsbFUqlSJO++8ky1btgR7WBFv9OjROBwOBgwYEOyhhCwFNZLD4MGDqVatWrCHEbF+//13MjMzeeedd9i4cSOvv/46b7/9Ns8880ywhxb25syZw4ABAxg6dChr1qyhdevWdOjQgd27dwd7aBFn6dKlPPbYY6xYsYJvv/2W9PR02rVrx8mTJ4M9tIi1atUqpkyZwpVXXhnsoYQ0bemWLF9++SWDBg1i3rx5XHHFFaxZs4bGjRsHe1gR75VXXmHy5Mls37492EMJa82bN6dJkyZMnjw561i9evW48847GT16dBBHFvkOHjxIpUqVWLp0Kdddd12whxNxTpw4QZMmTZg0aRIvvPACjRs3Zvz48cEeVkjSTI0A8Ndff9GrVy8+/PBDSpUqFezhFCkpKSmUL18+2MMIa2fPnmX16tW0a9cux/F27drx888/B2lURUdKSgqA/jv2k8cee4y///3v3HTTTcEeSsgrUg0tJX+WZdGtWzf69OlDs2bN2LlzZ7CHVGRs27aNN998k3HjxgV7KGHt0KFDZGRkULly5RzHK1euzP79+4M0qqLBsiwGDRpEq1ataNCgQbCHE3Fmz57Nr7/+yqpVq4I9lLCgmZoINmLECBwOR4GPX375hTfffJPU1FSGDBkS7CGHLXe/6+z27t3LLbfcwr333kvPnj2DNPLI4nA4cjy3LCvPMbFX3759WbduHR9//HGwhxJx9uzZQ//+/fnoo48oUaJEsIcTFpRTE8EOHTrEoUOHCjynVq1a3HfffXz++ec5/s8/IyOD6OhoHnjgAT744AN/DzXsuftdO/+Pae/evbRt25bmzZszffp0oqL07wtfnD17llKlSvHpp59y1113ZR3v378/a9euZenSpUEcXeR6/PHHWbhwIT/++CO1a9cO9nAizsKFC7nrrruIjo7OOpaRkYHD4SAqKoq0tLQcr4mCGgF2795Nampq1vO9e/fSvn175s6dS/PmzYmPjw/i6CJPcnIybdu2pWnTpnz00Uf6PyWbNG/enKZNmzJp0qSsY/Xr16djx45KFLaZZVk8/vjjLFiwgCVLlnDJJZcEe0gR6fjx4+zatSvHse7du3P55Zfz1FNPabkvH8qpEWrUqJHjeenSpQGoW7euAhqb7d27lzZt2lCjRg1effVVDh48mPValSpVgjiy8Ddo0CC6dOlCs2bNaNGiBVOmTGH37t306dMn2EOLOI899hizZs3is88+IzY2NitvKS4ujpIlSwZ5dJEjNjY2T+By4YUXUqFCBQU0LiioEQmgb775hq1bt7J169Y8AaMmTX3TqVMnDh8+zPPPP8++ffto0KABixcvpmbNmsEeWsRxbptv06ZNjuPvv/8+3bp1C/yARP5Hy08iIiISEZSdKCIiIhFBQY2IiIhEBAU1IiIiEhEU1IiIiEhEUFAjIiIiEUFBjYiIiEQEBTUiIiISERTUiIiISERQUCNShDgcDhYuXBjsYbhlxIgRNG7cONjDsF2bNm0YMGCA2+cvWbIEh8PBsWPHXJ4zffp0ypYt6/PYRMKdghqRMNCtWzfuvPPOYA8j7Llz8x83bhxxcXGcOnUqz2tnzpyhbNmyvPbaa16PYf78+YwaNcrr3xcR1xTUiIhk8+CDD3L69GnmzZuX57V58+Zx6tQpunTp4vH7njt3DoDy5csTGxvr8zhFJC8FNSJhqE2bNvTr14/BgwdTvnx5qlSpwogRI3Kc88cff3DddddRokQJ6tevz7fffpvnfZKTk+nUqRPlypWjQoUKdOzYkZ07d2a97pwhGjlyJJUqVaJMmTL07t2bs2fPZp1jWRZjx46lTp06lCxZkkaNGjF37tys153LJ99//z3NmjWjVKlStGzZki1btuQYy5gxY6hcuTKxsbH06NGDM2fO5Bnv+++/T7169ShRogSXX345kyZNynpt586dOBwO5s+fT9u2bSlVqhSNGjVi+fLlWePo3r07KSkpOBwOHA5Hnu8MoGLFitx+++289957eV577733uOOOO6hYsSJPPfUUl156KaVKlaJOnToMGzYsK3CB88tn7733HnXq1CEmJgbLsvIsP3300Uc0a9aM2NhYqlSpQufOnTlw4ECea//00080atSIEiVK0Lx5c9avX5/nnOw+//xzmjZtSokSJahTpw4jR44kPT29wN8RCXuWiIS8rl27Wh07dsx6fv3111tlypSxRowYYf33v/+1PvjgA8vhcFjffPONZVmWlZGRYTVo0MBq06aNtWbNGmvp0qXWVVddZQHWggULLMuyrJMnT1qXXHKJ9dBDD1nr1q2zNm3aZHXu3Nm67LLLrLS0tKzrli5d2urUqZO1YcMG64svvrAqVqxoPfPMM1ljeeaZZ6zLL7/c+uqrr6xt27ZZ77//vhUTE2MtWbLEsizLSkpKsgCrefPm1pIlS6yNGzdarVu3tlq2bJn1HnPmzLGKFy9uTZ061fr999+toUOHWrGxsVajRo2yzpkyZYpVtWpVa968edb27dutefPmWeXLl7emT59uWZZl7dixwwKsyy+/3Priiy+sLVu2WPfcc49Vs2ZN69y5c1ZaWpo1fvx4q0yZMta+ffusffv2WcePH8/3+160aJHlcDis7du3Zx3bsWOH5XA4rMWLF1uWZVmjRo2yfvrpJ2vHjh3W//3f/1mVK1e2Xn755azzhw8fbl144YVW+/btrV9//dX67bffrMzMTOv666+3+vfvn3Xeu+++ay1evNjatm2btXz5cuvaa6+1OnTokPW68/urV6+e9c0331jr1q2zbrvtNqtWrVrW2bNnLcuyrPfff9+Ki4vL+p2vvvrKKlOmjDV9+nRr27Zt1jfffGPVqlXLGjFiRP7/gYlECAU1ImEgv6CmVatWOc65+uqrraeeesqyLMv6+uuvrejoaGvPnj1Zr3/55Zc5gpp3333Xuuyyy6zMzMysc9LS0qySJUtaX3/9ddZ1y5cvb508eTLrnMmTJ1ulS5e2MjIyrBMnTlglSpSwfv755xxj6dGjh3X//fdblnX+pvzdd99lvb5o0SILsE6fPm1ZlmW1aNHC6tOnT473aN68eY6gJiEhwZo1a1aOc0aNGmW1aNHCsqzzQc20adOyXt+4caMFWJs3b7YsK+/N35X09HSrevXq1nPPPZd17LnnnrOqV69upaen5/s7Y8eOtZo2bZr1fPjw4dYFF1xgHThwIMd5uYOa3FauXGkBWQGX8/ubPXt21jmHDx+2SpYsac2ZMyffz9W6dWvrpZdeyvG+H374oVW1atWCP7hImCsWpAkiEfHRlVdemeN51apVs5YtNm/eTI0aNYiPj896vUWLFjnOX716NVu3bs2T33HmzBm2bduW9bxRo0aUKlUqx/ucOHGCPXv2cODAAc6cOcPNN9+c4z3Onj3LVVdd5XK8VatWBeDAgQPUqFGDzZs306dPnxznt2jRgqSkJAAOHjzInj176NGjB7169co6Jz09nbi4OLeuc/nll+Ou6OhounbtyvTp0xk+fDgOh4MPPviAbt26ER0dDcDcuXMZP348W7du5cSJE6Snp1OmTJkc71OzZk0qVqxY4LXWrFnDiBEjWLt2LUeOHCEzMxOA3bt3U79+/Rzfh1P58uW57LLL2Lx5c77vuXr1alatWsWLL76YdSwjI4MzZ85w6tSpHH+fIpFEQY1ImLrgggtyPHc4HFk3RMuy8pzvcDhyPM/MzKRp06bMnDkzz7mF3YhzX2/RokVUr149x+sxMTEux+sci/P3C+M8b+rUqTRv3jzHa84gw47rZPfQQw8xevRofvjhB8AEGd27dwdgxYoV3HfffYwcOZL27dsTFxfH7NmzGTduXI73uPDCCwu8xsmTJ2nXrh3t2rXjo48+omLFiuzevZv27dvnyFtyJfffqVNmZiYjR44kMTExz2slSpQo9H1FwpWCGpEIVL9+fXbv3s3evXupVq0aQFbCrFOTJk2YM2dOVgKwK7/99hunT5+mZMmSgLmhly5dmvj4eMqVK0dMTAy7d+/m+uuv93q89erVY8WKFTz44INZx1asWJH158qVK1O9enW2b9/OAw884PV1ihcvTkZGhlvn1q1bl+uvv573338/K8G3bt26gEnarVmzJkOHDs06f9euXR6P5/fff+fQoUOMGTOGhIQEAH755Zd8z12xYgU1atQA4OjRo/z3v/91OfvUpEkTtmzZwsUXX+zxmETCmYIakQh00003cdlll/Hggw8ybtw4UlNTc9yAAR544AFeeeUVOnbsyPPPP098fDy7d+9m/vz5PPnkk1lLV2fPnqVHjx48++yz7Nq1i+HDh9O3b1+ioqKIjY3lX//6FwMHDiQzM5NWrVqRmprKzz//TOnSpenatatb4+3fvz9du3alWbNmtGrVipkzZ7Jx40bq1KmTdc6IESPo168fZcqUoUOHDqSlpfHLL79w9OhRBg0a5NZ1atWqxYkTJ/j++++zltUKWorJvtw1bdq0rOMXX3wxu3fvZvbs2Vx99dUsWrSIBQsWuDWG7GrUqEHx4sV588036dOnDxs2bHBZw+b555+nQoUKVK5cmaFDh3LRRRe5rF303HPPcdttt5GQkMC9995LVFQU69atY/369bzwwgsej1MkXGhLt0gEioqKYsGCBaSlpXHNNdfQs2fPHPkVAKVKleLHH3+kRo0aJCYmUq9ePR566CFOnz6dY+bmxhtv5JJLLuG6667jH//4B7fffnuOrdCjRo3iueeeY/To0dSrV4/27dvz+eefU7t2bbfH26lTJ5577jmeeuopmjZtyq5du3jkkUdynNOzZ0+mTZvG9OnTadiwIddffz3Tp0/36DotW7akT58+dOrUiYoVKzJ27NgCz7/77ruJiYkhJiYmx1JOx44dGThwIH379qVx48b8/PPPDBs2zO1xOFWsWJHp06fz6aefUr9+fcaMGcOrr76a77ljxoyhf//+NG3alH379vF///d/FC9ePN9z27dvzxdffMG3337L1VdfzbXXXstrr71GzZo1PR6jSDhxWPktvouIYOrUHDt2LGxaK4hI0aaZGhEREYkICmpEREQkImj5SURERCKCZmpEREQkIiioERERkYigoEZEREQigoIaERERiQgKakRERCQiKKgRERGRiKCgRkRERCKCghoRERGJCP8PzmpMJJPikRkAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ "
"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "x = np.arange(-5.0, 5.0, 0.1)\n",
+ "\n",
+ "##You can adjust the slope and intercept to verify the changes in the graph\n",
+ "y = 2*(x) + 3\n",
+ "y_noise = 2 * np.random.normal(size=x.size)\n",
+ "ydata = y + y_noise\n",
+ "#plt.figure(figsize=(8,6))\n",
+ "plt.plot(x, ydata, 'bo')\n",
+ "plt.plot(x,y, 'r') \n",
+ "plt.ylabel('Dependent Variable')\n",
+ "plt.xlabel('Independent Variable')\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Non-linear regression is a method to model the non-linear relationship between the independent variables $x$ and the dependent variable $y$. Essentially any relationship that is not linear can be termed as non-linear, and is usually represented by the polynomial of $k$ degrees (maximum power of $x$). For example:\n",
+ "\n",
+ "$$ \\ y = a x^3 + b x^2 + c x + d \\ $$\n",
+ "\n",
+ "Non-linear functions can have elements like exponentials, logarithms, fractions, and so on. For example: $$ y = \\log(x)$$\n",
+ " \n",
+ "We can have a function that's even more complicated such as :\n",
+ "$$ y = \\log(a x^3 + b x^2 + c x + d)$$\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Let's take a look at a cubic function's graph.\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "tags": []
+ },
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkcAAAGwCAYAAACjPMHLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAABnDUlEQVR4nO3deXxM1/sH8M8kZCMJIRKRSFBrKRUa+9Iq1YUKLeVbS/GrWoNuWktii2q1uqAtKlp7iS6opW2CWlo7RdUSEiRiTQgSmTm/P25nzCQzmTuT2efzfr3uazJ37tw5MxO5j3Oe8xyFEEKAiIiIiAAAHvZuABEREZEjYXBEREREpIXBEREREZEWBkdEREREWhgcEREREWlhcERERESkhcERERERkZYy9m6AM1KpVLh8+TL8/f2hUCjs3RwiIiKSQQiB27dvIywsDB4ehvuHGByZ4fLly4iIiLB3M4iIiMgMGRkZCA8PN/g4gyMz+Pv7A5A+3ICAADu3hoiIiOTIzc1FRESE5jpuCIMjM6iH0gICAhgcERERORljKTFMyCYiIiLSwuCIiIiISAuDIyIiIiItDI6IiIiItDA4IiIiItLC4IiIiIhIC4MjIiIiIi0MjoiIiIi0MDgiIiIi0sLgiIiIiEiLUwVHO3bswAsvvICwsDAoFAr88MMPOo8PHDgQCoVCZ2vRooXOMfn5+Rg1ahQqV66McuXKoVu3brh48aIN3wURERE5MqcKjvLy8tC4cWN88cUXBo955plnkJmZqdk2bdqk83hcXBzWr1+PVatW4Y8//sCdO3fw/PPPQ6lUWrv5RERE5AScauHZrl27omvXriUe4+3tjdDQUL2P5eTkYPHixfjuu+/QqVMnAMCyZcsQERGBX3/9FV26dNH7vPz8fOTn52vu5+bmmvkOiIiIqES7dwONGgH+/nZrglP1HMmRmpqKKlWqoE6dOhg6dCiys7M1jx04cAAPHjxA586dNfvCwsLQsGFD7N692+A5ExMTERgYqNkiIiKs+h6IiIjcUl4e8NxzQLVqwIkTdmuGSwVHXbt2xfLly/H7779jzpw52LdvH5588klNr09WVha8vLxQsWJFneeFhIQgKyvL4HknTJiAnJwczZaRkWHV90FEROSWVqwAbt0CgoOBevXs1gynGlYzpnfv3pqfGzZsiGbNmiEyMhIbN25EbGyswecJIaBQKAw+7u3tDW9vb4u2lYiIiLQIAcybJ/08fDjgYb/+G5fqOSqqatWqiIyMxOnTpwEAoaGhKCgowM2bN3WOy87ORkhIiD2aSERERACwaxdw5Ajg4wMMGmTXprh0cHT9+nVkZGSgatWqAIDo6GiULVsW27Zt0xyTmZmJv//+G61atbJXM4mIiEg9E71fPyAoyK5NcaphtTt37uDMmTOa+2lpaTh8+DCCgoIQFBSE+Ph49OzZE1WrVsX58+fx3nvvoXLlyujRowcAIDAwEIMHD8b48eNRqVIlBAUF4c0330SjRo00s9eIiIjIxjIzgXXrpJ9HjLBvW+BkwdH+/fvRsWNHzf1x48YBAAYMGIAFCxbg2LFj+Pbbb3Hr1i1UrVoVHTt2xOrVq+GvNR3wk08+QZkyZfDyyy/j3r17eOqpp5CUlARPT0+bvx8iIiIC8PXXQGEh0KoV8Pjj9m4NFEIIYe9GOJvc3FwEBgYiJycHAQEB9m4OERGR83rwAIiMlHqPVqwAXnnFai8l9/rt0jlHRERE5ODWr5cCo5AQoGdPe7cGAIMjIiIisid1Ivb//R/g5WXftvyHwRERERHZx9GjwM6dgKcn8Prr9m6NBoMjIiIisg91r1GPHtKSIQ6CwRERERHZ3vXrwHffST+PGmXfthTB4IiIiIhsTvXl18D9+7gR1RSpyrZQKu3doocYHBEREZFNrV/zANmTpSG1uPNj0PFJBaKigORk+7ZLjcERERER2UxyMvB977UIVV1GFkKwGtKi8ZcuAb16OUaAxOCIiIiIbEKpBMaMFojDJwCA+RiOAngDANQlqePiYPchNgZHREREZBM7dwLhl/biCexDPrzwJYbpPC4EkJEhHWdPDI6IiIjIJjIzgTH4FACwHP1wFVUMHmdPTrXwLBERETmvKM8MNMdaAMCnGGPwuKpVbdUi/RgcERERkU3E7J8HDyjxOzriKBoXe1yhAMLDgbZt7dA4LRxWIyIiIuvLy4PHoq8BAJ8iDgqF7sPq+3PnSquJ2BODIyIiIrK+pCTg5k2gVi0MWPNcsdVCwsOBtWuB2Fi7tE4Hh9WIiIjIupRK4OOPpZ/HjkXsS57oHivNSsvMlHKM2ra1f4+RGoMjIiIisq7164Fz54BKlYBBgwBIgVCHDvZtliEMjoiIiMh6hAA+/FD6efhwwM/P4KFKpWP0JjE4IiIiolIpMajZtQv46y/A2xsYOdLgOZKTgTFjgIsXH+4LDwc+/dT2eUhMyCYiIiKzJScDUVFAx45A377Src4isupeowEDgCr6iz4mJ0vrqmkHRoD91ltTCKFezYTkys3NRWBgIHJychAQEGDv5hAREdmFOqgpGkmop+Vv/vQUOo+uJ+04eRKoW7fYOZRKKZgqGhhpnys8HEhLK/0Qm9zrN3uOiIiIyGRKpTQMpq+LRb3v6oT/Zqh166Y3MAKk4ThDgZH6XLZeb43BEREREZnMWFBTWWSjZ95S6c6bbxo8Tu46arZcb43BEREREZnMWLAyEl/AB/m49kgLoHVrg8fJXUfNluutMTgiIiIik5UUrJTHbYzEFwCArP+9iWJrhWhp21bKKTJ0iEIBRETYdr01BkdERERkspKCmv/D1wjCTZwtUwf1J7xY4nk8PaXp+kDxc9lrvTUGR0RERGQyQ0GNF/IxDlIi9q3/eweeXsajmthYaV01R1lvjVP5zcCp/ERERJKixRuHYCEW4v9wt1I4/C6fBby8ZJ/L2hWy5V6/WSGbiIiIzBYbC3TvLgU1WRcL0f2dD4DLgN/E8SYFRoDjrLfG4IiIiIhKRRPUrFoLXD4rLTA7dKi9m2U2BkdERERUekIAs2ZJP48eDZQrp/OwoywqKweDIyIiIiq9X34BjhwBypcvtsCsIy0qKwdnqxEREVHpJSZKt6+/DgQFaXY72qKycjA4IiIiotLZsQP44w8pAXvcOM1uOeuvxcVJxzkSBkdERERUOtOmSbcDBwJhYZrdjriorBwMjoiIiMh8u3cDv/4KlCkDTJig85AjLiorB4MjIiIiMt/UqdLtgAFAVJTOQ464qKwcDI6IiIjIPH/+CWzZIs3JL9JrBDjmorJyMDgiIiIi2ZRKIDUVWLkSuB73X67R//4H1KpV7FhHXFRWDgZHREREJEtysjRy1rEj8FHfA6i0dyOU8MCWZu8bfI6jLSorB4tAEhERkVHqekXqKfiTIPUarUBfDBhdG2vDDAc62uuvOUOFbIUQ+qoPUEnkrupLRETkCpRKqcdIPS2/MQ7jMB6HCgo0wAn8q6iH8HAgLc1xAx5A/vWbw2pERERUoqL1itS9RqvRG6dQz2HrFZmLwREREREZpFQCv/328H4THEJPJEMFBaZjos6xjlavyFzMOSIiIiIAUiCknRd07Rowdqxur9FUTAYArMQrOIFHdZ7vaPWKzMXgiIiIiJCcLK2DVtJyHzHYixewAUp4IAFTNPsVCmn2maPVKzIXgyMiIiI3V3QmmiHTMAkAsBQDcBp1ADh2vSJzMeeIiIjIjSmVUo+RscCoHbbjafyKByijCZIAx65XZC4GR0RERG6s6Ew0/YQmIFqEITiPGgCAiROl6fuuFBgBDI6IiIjcmpwZZp3wK9phJ+7DGzPwsBr2U0+5zlCaNuYcERERuTHjM8yEZsr+lxiGSwh3uQTsothzRERE5MbatpUCnaILw6o9jw2IwV/Igx9m4V2XTMAuisERERGRm1LXNVLPVCsaIHlAiURMAAB8gZG4glCXTMAuisNqREREbkhfXSMPDylgUhsTtAwNbxzHg/IVUOvjd5FSW96CsUWLSTryIrP6MDgiIiJyM4bqGqkDo7g4oEfX+2g7ZBJwAyg7aQJ6Da0o+9xFg67wcODTT52nt8mphtV27NiBF154AWFhYVAoFPjhhx90HhdCID4+HmFhYfD19UWHDh1w/PhxnWPy8/MxatQoVK5cGeXKlUO3bt1w0fgcRiIiIpdgrK6RQgGsWwe0OTofiowMoFo1YNQoWedWB11FL6uXLkn7k5NL2XgbcargKC8vD40bN8YXX3yh9/HZs2fj448/xhdffIF9+/YhNDQUTz/9NG7fvq05Ji4uDuvXr8eqVavwxx9/4M6dO3j++eeh1O5HJCIiclHG6hoJAeRk5EA5bYa0IyEB8PU1et6Sgi71vrg43WE7hyWcFACxfv16zX2VSiVCQ0PFrFmzNPvu378vAgMDxZdffimEEOLWrVuibNmyYtWqVZpjLl26JDw8PMTmzZtlv3ZOTo4AIHJyckr/RoiIiGxoxQohpHDF8DYN70s/1KsnxIMHss6bkmL8vIB0nL3IvX47Vc9RSdLS0pCVlYXOnTtr9nl7e6N9+/bYvXs3AODAgQN48OCBzjFhYWFo2LCh5hh98vPzkZubq7MRERE5I2N1jUKRiXH4WLqTmAiUkZeeLKeYpCnH2ZPLBEdZWVkAgJCQEJ39ISEhmseysrLg5eWFihUrGjxGn8TERAQGBmq2iIgIC7eeiIjINozVNZqCqfDDPYgWLYHu3WWf13gxSdOOsyeXCY7UFEW+bSFEsX1FGTtmwoQJyMnJ0WwZGRkWaSsREZGteXpKM8eA4gFSfZzEECyUHvtgluEISg9jQZdCAUREOEdVbZcJjkJDQwGgWA9Qdna2pjcpNDQUBQUFuHnzpsFj9PH29kZAQIDORkRE5KxiY6VCjtWq6e7/zOdtlIFS6jFq186kc5YUdDlbVW2XCY5q1KiB0NBQbNu2TbOvoKAA27dvR6tWrQAA0dHRKFu2rM4xmZmZ+PvvvzXHEBERuYPYWOD8eSAlBVixAjj00W/odH+DlGM0e7bZ59QXdDlbVW2nKgJ5584dnDlzRnM/LS0Nhw8fRlBQEKpXr464uDjMnDkTtWvXRu3atTFz5kz4+fmhb9++AIDAwEAMHjwY48ePR6VKlRAUFIQ333wTjRo1QqdOnez1toiIiOzC0xPo0AHS/Pro8dLON94A6tQx+5yxsVLHEytk28j+/fvRsWNHzf1x48YBAAYMGICkpCS8/fbbuHfvHoYPH46bN28iJiYGW7duhb+/v+Y5n3zyCcqUKYOXX34Z9+7dw1NPPYWkpCR4OtO3RkREZElLlwJHjgAVKgBTppT6dJqgy0kphDBUI5MMyc3NRWBgIHJycph/REREzu3OHamnKDMT+OgjYPx4e7fIauRev10m54iIiIjM8OGHUmBUsyYwcqS9W+MQGBwRERG5q0uXpOAIAD74APD2tm97HASDIyIiInc1YQJw7x7QujXQs6e9W+MwGBwRERG5o927ge++k4oQffKJSQUfXR2DIyIiInejVAKjR0s/v/Ya0Ly5fdvjYBgcERERuZslS4ADB4CAAGDmTHu3xuEwOCIiInInt25JuUYAkJAAVKli1+Y4IgZHRERE7iQ+Hrh2DahfHxgxwt6tcUgMjoiIiNzF8ePAF19IP3/6KVC2rH3b46AYHBEREbkDIYAxY6Rk7B49gKeftneLHBaDIyIiInewZg3w229Socc5c+zdGofmVAvPEhERuTul0owV73NzgbFjpZ/few+oUcPq7XRmDI6IiIicRHKyNDJ28eLDfeHhUvpQbGwJT5w0SYqmatcG3nnH6u10dhxWIyIicgLJyUCvXrqBESAtj9arl/S4XgcPPkzCnj+f66fJwOCIiIjIwSmVUo+REMUfU++Li5OOK/bEN94AVCqgTx+gUydrN9UlMDgiIiJycDt3Fu8x0iYEkJEhHadj4ULgr7+kStgff2zVNroSBkdEREQOLjPTjOOuXHlYCXv6dCl7m2RhcEREROTg5MY1OseNHy8tFdK0KTB8uDWa5bIYHBERETm4tm2lWWkKhf7HFQogIkI6DgCUG34Bli+HSuGBA0O/hBLG5vqTNgZHREREDs7TU5quDxQPkNT3586Vjvtp+W1kvfg6AOATEYdmbzRHVFQJs9moGAZHRERETiA2Fli7FqhWTXd/eLi0PzZWCoAu/O99VFNm4BxqYDKmApAx3Z90KITQNzGQSpKbm4vAwEDk5OQgICDA3s0hIiI3YqhCtlIJxFbdg/VXW8MDAp2wDb/h4dR9hUIKpNLSZFTUdlFyr9+skE1EROREPD2BDh2K7//jt3zMvDoEHhBYgoE6gRGgO91f3/PpIQ6rERERuYCgr2fhUZzAFVTBeBheWFZuWQB3xuCIiIjI2R07hkd/nAEAGIXPcRNBBg9luSPjGBwRERE5swcPgAED4FH4AFt9umEtXtJ7WNHp/mQYgyMiIiJnNnMmcOgQEBSEB198BSgURqf7U8kYHBERETmrQ4ekpUEAYN48PDc41Oh0fzLO7NlqBQUFSEtLQ61atVCmDCe9ERER2VR+PjBgAFBYCPTsCfTuDUAKgLp31z/dn+Qxuefo7t27GDx4MPz8/PDoo48iPT0dADB69GjMmjXL4g0kIiIiPaZOBY4dA4KDgQULdEpnq6f7v/KKdMvAyDQmB0cTJkzAkSNHkJqaCh8fH83+Tp06YfXq1RZtHBEREemxbx+g7pBYsEAKkMhiTB4P++GHH7B69Wq0aNECCq0otUGDBjh79qxFG0dERERF3L0LvPoqoFIBffpIQ2pkUSb3HF29ehVVqlQptj8vL08nWCIiIiIrGD8eOHUKCAsDvvjC3q1xSSYHR82bN8fGjRs199UB0cKFC9GyZUvLtYyIiIh0/fwz8OWX0s9LlwKVKtm3PS7K5GG1xMREPPPMMzhx4gQKCwvx6aef4vjx49izZw+2b99ujTYSERHRlSvA4MHSz+PGAZ06lXw8mc3knqNWrVph165duHv3LmrVqoWtW7ciJCQEe/bsQXR0tDXaSERE5N6EAF57Dbh6FXjsManwo4mUSiA1FVi5UrpVKi3eSpehEEIIezfC2eTm5iIwMBA5OTkICAiwd3OIiMjVzZsHjBwJ+PgA+/cDjz5q0tOTk4ExY4CLFx/uCw8HPv3UvQpDyr1+yxpWy83Nlf3CDBaIiIjkUSplFGs8fhx4803p59mzzQqMevWSOp+0Xbok7Wfl7OJk9Rx5eHgYnYkmhIBCoYDSDfrp2HNERESlJas3Jy8PeOIJ4MQJ4JlngE2bUGzhtBIolUBUlO5raFMopNdMS3OPQpEW7TlKSUmxWMOIiIjcnezenFGjpMCoalVpdpqJJXN27jQcGAHS62dkSMd16GDy23BZsoKj9u3bW7sdREREbkGplHqM9I3bCCHFP3FxwIu3v4PHkiWAh4eURa2nxqAxmZmWPc5dmLVi7M2bN7F48WKcPHkSCoUC9evXx6BBgxAUFGTp9hEREbkUOb05fhn/QAx7Q9oxZQpgZidF1aqWPc5dmDyVf/v27YiKisJnn32Gmzdv4saNG/jss89Qo0YN1jkiIiIywlgvjQ/uYTV6w/N+HvDkk8D775v9Wm3bSjlFhkbjFAogIkI6jh4yOTgaMWIEevfujbS0NCQnJyM5ORnnzp1Dnz59MGLECGu0kYiIyGUY66WZizg0xlEUVKwCLFtWqkxpT08pwRsoHiCp78+d6x7J2KYwOTg6e/Ysxo8fD0+tT9LT0xPjxo3jwrNERERGlNSbMwBJeB1fQwUFPFcss8h4V2yslOBdrZru/vBwTuM3xOTgqGnTpjh58mSx/SdPnkSTJk0s0SYiIiKXZag353EcxJcYBgD4p08CPJ952mKvGRsLnD8PpKQAK1ZIt2lpDIwMkZWQffToUc3Po0ePxpgxY3DmzBm0aNECALB3717MmzcPs2bNsk4riYiIXIi6N0dd5ygI17EOPeGDfGRGP48Gy83PMzLE05PT9eUyqQiksUNZBJKIiEg+pRLYmapE3XHPoerRLRC1akGxfz9QoYK9m+aSLFoEMi0tzWINIyIiclSylvOwIE9PoMP2BODoFsDXF4rkZAZGDkBWcBQZGWntdhAREdmVXRZn/fFHYNo06eeFC4HHHrPSC5EpzCoCCQAnTpxAeno6CgoKdPZ369at1I0iIiKyJbssznr0KNCvn/TzqFFAv34277ki/WTlHGk7d+4cevTogWPHjunkIakXpmXOERERORO7LM569SrQvDlw4QLw1FPA5s1I/qmM7Xuu3Izc67fJU/nHjBmDGjVq4MqVK/Dz88Px48exY8cONGvWDKmpqaVpMxERkc3JXZw1Ph5ITZWCqVIpKAB69pQCo0ceAdasQfJPZdCrV/F2qHuukpNL+ZpkEpODoz179mDq1KkIDg6Gh4cHPDw80KZNGyQmJmL06NHWaCMREZHVyF10dfp0oGNHqZfJ7GBFCGD4cCkiCwgAfv4ZysCgEheiBaSFaN1gYMZhmBwcKZVKlC9fHgBQuXJlXL58GYCUtH3q1CnLto6IiFyaUin1xqxcaaFeGTOYWoTa3N4cpRI4PeozYPFiCA8PKJevAurVk91ztXOnaa9H5jM5OGrYsKGmKGRMTAxmz56NXbt2YerUqahZs6bFG0hERK4pOVnqhenYEejb1wK9MmYytjhrUeb05iQnA0NCfkbNeeMAAONVHyLqja5ITpbfcyX3OCo9k4OjiRMnQqVSAQCmT5+OCxcuoG3btti0aRM+++wzizfQFPHx8VAoFDpbaGio5nEhBOLj4xEWFgZfX1906NABx48ft2OLiYjck3p2mCPk2JS0OKsh6t6czz83HiAlJwOzeu7DF9f7wBMqLMQQfIKxmvd6+rS817TAMmskk8mz1fS5ceMGKlasqJmxZi/x8fFYu3Ytfv31V80+T09PBAcHAwA++OADzJgxA0lJSahTpw6mT5+OHTt24NSpU/D395f9OpytRkRkPrvMDpNBX50jOUqaUaZUAm3D07A+qwVCkI3N6IIX8DMKURaA9F7VC8JeuqQ/78hen4crstpsNX2CgoLsHhiplSlTBqGhoZpNHRgJITB37ly8//77iI2NRcOGDbF06VLcvXsXK1assHOriYjch6Pm2GgvzjpxovznldTbtWfTTSzOehYhyMZhNMZL+F4TGAHSe714ERg6VLpf9FKqvj93LgMjW5JVBDI2NhZJSUkICAhArJFiC8l2nm94+vRphIWFwdvbGzExMZg5cyZq1qyJtLQ0ZGVloXPnzppjvb290b59e+zevRuvv/66wXPm5+cjPz9fcz83N9eq74GIyJU5co6NenHWtm2BpCTDvTnahJCCmLg4oHt3rSAmPx+13+mBEPyDDITjOWzEHegfpahdW3chWrXwcCkwYp0j25IVHAUGBmp6hgIDA63aoNKIiYnBt99+izp16uDKlSuYPn06WrVqhePHjyMrKwsAEBISovOckJAQXLhwocTzJiYmIiEhwWrtJiJyJ3JzZ+yZY6POQ+rVSwp85ARI6t6uDh0gjae9+ipCTm5HDgLwLDbhMqoZfH7VqtLzundnhWxHYFLOkRAC6enpCA4Ohp+fnzXbZRF5eXmoVasW3n77bbRo0QKtW7fG5cuXUVXrX9zQoUORkZGBzZs3GzyPvp6jiIgI5hwREZlBnXPkDDk2puYhrVgBvNJHAG+8AXz1FUTZsugbuAmrr3dy+PfqDqyScySEQO3atXHp0qVSN9AWypUrh0aNGuH06dOaWWvqHiS17OzsYr1JRXl7eyMgIEBnIyIi85Q0O8zRcmzUeUiffCLv+KpVAUyaBHz1FaBQQLFiBV76qhMA89+rI9SCcjcmBUceHh6oXbs2rl+/bq32WFR+fj5OnjyJqlWrokaNGggNDcW2bds0jxcUFGD79u1o1aqVHVtJROR+YmOlHJtqRUaawsOttMhrKXh6SuvCllQLSaEAIiKAdgfnAjNmAABU8xYgtXIv5OdLS4+Y814dpRaU2xEm2rBhg2jTpo04duyYqU+1uvHjx4vU1FRx7tw5sXfvXvH8888Lf39/cf78eSGEELNmzRKBgYEiOTlZHDt2TLzyyiuiatWqIjc316TXycnJEQBETk6ONd4GEZHbKCwUIiVFiBUrpNvCQnu3yLB164RQKKRNGhCUNvW+v0Z9q9n5d98ZIjxc97hq1YRISJD/XtWvp30O7ddbt84mb9ulyL1+m1znqGLFirh79y4KCwvh5eUFX19fncdv3LhhwdDNNH369MGOHTtw7do1BAcHo0WLFpg2bRoaNGgAQBoWTEhIwFdffYWbN28iJiYG8+bNQ8OGDU16HdY5IiJyT/pykCIigDW916LFJ30ApRKnnx+LuhvmQEC3m0nd6ySnZ8xRa0E5O7nXb5ODo6VLl5b4+IABA0w5nVNicERE5L6UyiIzym7+CI+Xe0FRWIizbQei1cnFyL6mP2tFblCTmioNoRmTkvLf7DiSRe71W9ZUfm3uEPwQEREZoq6FBADYtAmql1+CorAQy9APA3YugqqEdN5iU/4NcORaUO7A5OBI27179/DgwQOdfexJISIit7BtG5QvxsKz8AHW4CUMRBJUkDfGZSyocYZaUK7M5OVD8vLyMHLkSFSpUgXly5dHxYoVdTYiIiKX9/vvEN26wfNBPtbjRfTDcihN6G8wFtS0bStvdlzbtia0mWQzOTh6++238fvvv2P+/Pnw9vbGokWLkJCQgLCwMHz77bfWaCMREZHj2LwZeO45KO7fxwY8h95YrbNeWknkBjXOVAvKFZkcHP3888+YP38+evXqhTJlyqBt27aYOHEiZs6cieXLl1ujjURERI7hxx+lNT7u38fFpi+gF9biAbxkPdXUoMaZakG5GpODoxs3bqBGjRoApPwi9dT9Nm3aYMeOHZZtHRERkaP4/ntpsbWCAqBXL5ydtRb58JH9dHOCGnWF7pQUaWmSlBRpphsDI+syOSG7Zs2aOH/+PCIjI9GgQQOsWbMGTzzxBH7++WdUqFDBCk0kIiKys+++AwYOBFQqoF8/ICkJbRRlEB5ueI04AAgOlpYeqVbN/EVkdWbHkU2Y3HM0aNAgHDlyBAAwYcIETe7R2LFj8dZbb1m8gUREZB6uyWUhn38ODBggBUaDBwNLlwJlyhjNC1IogC+/lGKpDh2YH+RMZBeBjIuLw5AhQ4pVk05PT8f+/ftRq1YtNG7c2CqNdDQsAklEjk5fJefwcOliziEZmYSQFpH9b600jBwpfYAeuv0Khqpmz53Lz9rRWLxCdr169XD69GlER0djyJAh6NOnj9sGBgyOiMiRJSdLqTFF/7qbsnyF2yssBIYNAxYvlu5Pmwa8/77BufXFqmabOYRG1mWV5UN27dqFb775Bt9//z1UKhViY2MxZMgQtGvXziKNdhYMjojIUXFNLgu4dw945RVpZpqHhzQ2NnSovVtFFiD3+m1SzlHr1q2xePFiZGVl4fPPP8f58+fRoUMH1K5dG7NmzcLly5dL3XAiIjLfzp2GAyNAd/kK0uPqVaBTJykw8vaWutkYGLkdkxOyAcDPzw+DBg3Cjh07cPr0abz88suYPXs2oqKiLNw8IiIyhSXW5DInkduayd/6zm2V1/vnH6BFC2D3biAwENiyBejRwwInJmdTqrXV8vLysH37dmzfvh23bt1C3bp1LdUuIiIyQ2nX5DInkduayd/6zl2pknR7/boFX+/334GePYFbt4AaNYCNG4H69c1tNjk5s3qOduzYgUGDBiE0NBRjxoxBnTp1sHPnTpw8edLS7SMiIhOUZk0udSJ30WG5S5ek/cnJlnmOXIbOff26bmBU6tdbsgTo0kUKjFq2BP78k4GRm5OdkH3x4kUsXboUSUlJOHv2LGJiYjB48GD06dMH5cuXt3Y7HQoTsonIkamDCkB3xlpJs9XMSeS2ZvK3sXOb83rFZpS1LITnhLelKo0A0KePFCj5yK96Tc5F7vVb9rBaVFQUKlWqhFdffRWDBw9GfUbVROTGHHnqtnpNLn1DXYZq75iSyK2u1mzOc+Qydm5TX6/o8FxlXMUP3r3ROj8FAPB3j0m4NjQebct6wEG+RrIj2cHRmjVr0K1bN5QpU6o0JSIip+cMBRZjY6X1UeUGcOYkclsi+duSzzH03KJ1n5rgEH7Ai4jMT8dtlMcALMX69bHAesf7Hsk+ZEc6sfxNISIyWGBRnfPiSAUWTVmTy5xE7tImf1v6Ofqeq1RKgaz6++qHZfga/wc/3MNpPIIX8QNO4FHN8Y74PZLtmVQEkiTMOSJyT65cYFH93gwtolpSzpEpz7FUe/TR93qpqUDHjoAv7uIzjMYQSBWvN6Er+mE5bqGiRdtNjs0qRSCJiNyZrQos2mPBWGOLqAJSvpJ2sGDOcyzRHn0MvV5mJlAX/+BPxGAIFkMFBRIwGS/gZ72BEcBCmcTgiIhINmvm2KglJ0s9Jh07An37SrdRUaWbEi+XOpG7WjXd/eHhhoeZzHlOadtTqdLDWkfGXq/x38uxH83QCH8jCyF4GtsQjwSoZKRdl+Z7tDV7BNSuzORhtddeew2ffvop/P39dfbn5eVh1KhR+OabbyzaQEfEYTUi96QeojEmJcX02VmA4ywYa85MPGvO3tN3bsDI6+XkACNHAsuWAQB+w5Poh+W4glDZr2vu92hrzjBBwFFYZeFZAPD09ERmZiaqVKmis//atWsIDQ1FYWGheS12IgyOiNyTLXJsbJ3P5MglCcy2fTvQvz+Qng54eOBkr0lotGYSVApPWflLzpRz5CgBtbOweM5Rbm4ucnJyIITA7du3kZubq9lu3ryJTZs2FQuYiNwNu7ZdmzVzbOyxYKw9h/CsIj8fePtt6Y2kpwM1awI7d6L+6nisWedZbHhOn9J+j7ZUdCaeNvW+uDj+HTKLkEmhUAgPDw+Dm6enp5g+fbrc0zm1nJwcAUDk5OTYuynkQNatEyI8XAjpz5K0hYdL+8m16PuuIyJK912vWKF7PkPbihWWew8KRfHzKxTS5nS/t/v2CdGo0cM3MniwELm5OocUFgqRkiJ9hikpQnz/veW/R1tKSZH3O5OSYu+WOg6512/ZdY5SUlIghMCTTz6JdevWISgoSPOYl5cXIiMjERYWZoXwjcjxOVPtGyo9UwssymHNmkFFGetxUCikHofu3R2/9wT37gHx8cBHHwEqFVC5MrBwIfDii8UO1Vf3qUcP5x1WtMUEAXdlcs7RhQsXEBERAQ8P953oxpwj0ubKtW/IdqyZz1SUtRPLbWbnTmDwYOD0ael+nz7AZ58BwcH2bZeNuMz3aEMWX1tNLTIyErdu3cJff/2F7OxsqFQqncf79+9vemuJnJg115cqiUsm0roxdT5Tr15SIKRvwVhL5cE4fY/D9evAhAlSDxEg/QP48kugWzf7tsvG2raVAmZjAbV6dh/JZ3Jw9PPPP6Nfv37Iy8uDv78/FFpZiQqFgsERuR17XGg4ddc1mbNgrDlsOYRnUSoV8M03wDvvADduSPsGD5aG1CpUsGvT7MGWAbW7MXlYrU6dOnj22Wcxc+ZM+Pn5WatdDo3DaqTN1l3bpkzdZe+S45HznVj7e7PlEJ7FHDwIjBgB7N0r3W/UCJg3j90i0P+fpYgIywbUrsJqdY7KlSuHY8eOoWbNmqVupLNicETarHGhMXRxNCW/6ccf2btkS3ICGkfq8VMH2YD+HgeHmURw+TIwcSKQlCQ1tHx5YOpUqcBj2bL2bp3D4H+E5JF9/TZ1GlyPHj3E6tWrTZ8/50I4lZ+KUk+LLjo12pxp0SWVBJA7dTchwcWmaTs4OWUcHHHqfGlKEhSdFl9YaOHG3bkj/SL7+T1sXJ8+Qly8aOEXInci9/ptcs/R4sWLMXXqVAwaNAiNGjVC2SKRezc3SIhjzxHpY4mubWNDZmPGSOczJijoYUpGUQ45ZGIltvjftJxhzu7dHXdGozmfkVV7wB48AJYuBaZMkXqNAKBlS+Djj4EWLUp5cnJ3VhtWK2kKv0KhgNINSnEyOCJDSnMxljNkVrkycPWqZdrq6tN7bTGEJXeYc8kSoFMn4+dzhu/EastVKJXAqlVSzaIzZ6R9NWoAs2YBL71UvCS5nqdzWImMsdpU/qJT94noIX1F5uSSUxLg6lWphMu1a4bzmypWNNxrpM1hp2lbQGmLcsq90Mot45CaKq/djv6dWKV4pEoFrF8v9RQdPy7tCw4G3nsPGDYM8PExegpHyuUi11CqSo7379+3VDuI3J7cC2O/ftKtobW9xoyRdx6Hm6ZtIaVdb8qU9cYsHcw4+ndi0fXfCguBZcukWWe9ekmBUYUKwIwZwLlz0pckMzDq1at4u9SBsNOuE0d2ZXJwpFQqMW3aNFSrVg3ly5fHuXPnAACTJk3C4sWLLd5AInch98LYvbvU81F0Ec3wcGn/++9LPxsahVAopFwoV50BXZoLuKkXWrnfWYcOrvGdWKSm1/37UsHGOnWAV18FTpwAAgKkGWlpaVKPUfnysl6HC6+StZgcHM2YMQNJSUmYPXs2vLy8NPsbNWqERYsWWbRxRO5EXe22pNSK4GDpQh0UBJw9K+WorFgh3aalSUMI1lw53hmYewE350Jr7DtTBz0dOrjGd1Kq4pFZWdLQWfXqwBtvSL+wwcHAzJlAejowbZrJhRwt2pNFpM3UaXC1atUSv/76qxBCiPLly4uzZ88KIYQ4efKkqFChgqmnc0qcyk/WYqgkgL6t6FRxfedy5hXHzWXuSuXmPs+UMg7O/p0UFkrtN/T7qVBI70dnWv/Bg0L07y9E2bIPD6xeXYjPPhMiL69U7VmxQt53tmJF6d43uQ6512+Te44uXbqERx55pNh+lUqFBw8eWCBcI3Jf6uUjig6Z6WMspyI2Fjh/Xn/vkj0plVKC8sqV0q2lhzzk9uYUHcIyt8fJ0HemHubU/rwd9TuRS3av5P08YPFiICYGaNoU+PZbaYp+q1bAmjVSt+eoUUApV1lw2mVQyPGZGnVFR0eL7777Tgih23MUHx8v2rRpY0Yc53zYc0TWpi6wt2yZEMHBhv9HrPd/6g5MTrFES72OqUU5ze05UrN6UUQHorcHLFwlfvvwgBDDhwsREPDwgbJlpeKNf/5p8XaY1ZNFbk3u9dvk4Oinn34SgYGBYtasWcLPz098+OGHYsiQIcLLy0ts3brV7AY7EwZHzsWZL1qlvWA7EltXiDZ1CIsXWtOo/12t/zxDnPm/WULVoIHuB1arlhAffCDElStWbYclq9OT67NacCSEEJs3bxbt2rUT5cqVE76+vqJ169Ziy5YtZjXUGTE4ch626qmwFlfJqVAHHrbuATM1MHamC61dg/7sbCG++kqIJ5/U/bC8vYXo3VuIX38VQqm0WXMMBcJr1jjvf4zIOqwaHLk7BkfOwVBPhXqLi3P8P5iu0nPkTO/DGZKm7RL0Z2YKsWCBFBB5eOi+eLt2QixaJMStW1ZsQMmKBovff+/c/zEi67Da2mrE5UOcgbFlHbQ5ciVd9fu4dEn6816Us6yTtnKlVFDRmBUrgFdesX57jHHkpSistnxHUUIAhw8DGzZI219/6T4eHS0t69G7t/RL6kBs9hmR07Ho2moVK1aEwsi6Nmo35Kxb4OQYHDm+1FSpsrEcjv4HU/2HHtD9Y+/o7dYm9/twhrXF7EnuWm5mB8tXrwK//gps2wZs3SpF5dqaN5d+GXv1AmrWNOMFrM/qnxE5NYuurTZXaxnw69evY/r06ejSpQtatmwJANizZw+2bNmCSZMmla7VRBZiyrIOQpi5JpSNqKeK61s7au5c3cDIUXs81NPrjfWAOXqFaHszpeihrCDz+nXgjz+kJ/z2m9RTpM3XF3j6aeCFF4DnnrPJnPjS/g5b/DMityQrOBowYIDm5549e2Lq1KkYOXKkZt/o0aPxxRdf4Ndff8XYsWMt30oiE5n6N9zR/2DGxkqBW0kXDUdefFNdH6dXLykQ0tcD5gwVou2tVMt3qFTAv/8Cf/4J7Nkj/TKdOFH8uMaNgU6dpKCoXTspQLIRS/wOW2SJE3J7soIjbVu2bMEHH3xQbH+XLl3w7rvvWqRRRKVlrKfCEEf+g+npaThwK+0q9LZgSg+YNTlq75ocsosehqiAf89IPUGHDwP79klbTk7xg+vXl4Kgdu2Ap54CQkIs2WTZLPU7zMKQZAkmJ2RHRkZi5MiReOutt3T2f/jhh/jiiy9w4cIFizbQETHnyDkYytUpiTPmvDhbjoU9gxNH7l2To3iCvkA1XEIDnPhvO4mmXn8juuwRKPLyip/A11dKpH7iCaBNG2kLDrbxuyjOkr/DrjKJgazDojlH2hISEjB48GCkpqZqco727t2LzZs3c+FZciiGeir0ceacF2fLsSipB8yanKF3Ta/CQukLvnABnmlp2PbEaRxJPoPaOI1HcAYBuK17fMF/m48P8NhjQJMm0hIeMTHAo48CZcva4U2UzJK/wxzCJUswOTgaOHAg6tevj88++wzJyckQQqBBgwbYtWsXYmJirNFGIrNp5+r8+KP0R9HV/mCWNsfCmYeZ5FIqpSBZX0+C3RLyhQBu3QKys4ErV6Qv4PJlKVpTbxcuSLdaC9DV+29TK4QnTqM20nwboOZzDVAvtoEUENWuDZQx+U+8XVg6T8hRhnDJeZn1LycmJgbLly+3dFuIrELdU9Ghg3Thd7U/mKXJsXD2YSa5rNK7plIB9+4Bd+5I2+3bD29v3ZLye27dkrabN6WZYdevAzduSLfZ2dJirHJ4eQGRkdJ40SOPALVrQ1njERzIeQRpHrUQEuGFLk4Q1BoKxK2RJyRnEgORIWYVgVSpVDhz5gyys7OhUql0HmvXrp3FGueomHPk3Fytp8TcHAunKJSnUgH5+dJ2/750W1Cguz14UPy2yLZ/zwMsS3qAsngALxSgLB7+rL7vjXw81TofUWEFuq+p3u7dk7a7d6Xt3j3LvMfAQCkJOiQEqFZN2sLCpNvq1aUvNyQE8PCwzOvZSUmBePfuzBMi27BoEUhte/fuRd++fXHhwgUUfapCoYBSq/vXVTE4IkdjaqFIqyVxFxZKPSM3bz7c1L0nt28DubnSpu5lyct7uKkDDvV2/74U7DiD8uWlzd9f2gIDgQoVHt5WrAhUqgQEBUm3lSoBVapIm7e3vVtvdXICccD5i52S47NacNSkSRPUqVMHCQkJqFq1arHK2YGBgea12Mbmz5+PDz/8EJmZmXj00Ucxd+5ctJWZjcvgiByRvv+ZR0ToHzI0qWJ1O5U0BHTxorRlZelu2dnAtWvSdvOmJd9Scd7e0ubl9XArW/bhrXorcl+UKYsfN5VFzr2yKIAXHqDsf31GXpo+JN/AsnjrfW94+Ho/fB0fH2nz9X34c7lygJ+f7ubkvTrWZEog/uOP8n+Hicxhtdlqp0+fxtq1a/HII4+UqoH2tHr1asTFxWH+/Plo3bo1vvrqK3Tt2hUnTpxA9erV7d08IrOYkmOhm9gqEIIrqI3TqIE0nS365XTg1iX5uTFqgYFSb4m61yQwEAgIeLj5+0s9LeXKPdzUgYY6GFEHJOogpWzZh90IJlIAUCUDg0rqmfgG8OAF2OJMyfdinhA5CpODo5iYGJw5c8apg6OPP/4YgwcPxpAhQwBIy6Ns2bIFCxYsQGJiYrHj8/PzkZ+fr7mfm5trs7YSmaLEafJKJXDuHPD332ix7W8swz+og39RB/8iEAZ+p6/+d6tQSFeq8HDpNjT04ValilQrp3JlaatY0SFnSTnzDCZnzpMzdSaavUo9EGkz+S/YqFGjMH78eGRlZaFRo0YoW6RmxmOPPWaxxllDQUEBDhw4UKyad+fOnbF79269z0lMTERCQoItmkdkGXfvAkePAgcPStvhw9JSEf8lEdf4b1NTQYELiMRZ1EIaauACopATVANz10fCMypCuiI7YH0cUzljz4QlZxTaI8hixWpyRibnHHnoGVtXKBQQQjhFQvbly5dRrVo17Nq1C61atdLsnzlzJpYuXYpTp04Ve46+nqOIiAjmHJFjUKmAf/4B9u6V1szau1cKhIrMJAUgDU81aAA0bIi/lfUxeXldnEJdnEVN5MMHABNgHYklZxTaq2wDK1aTI7FazlFaWlqpGuYoiiaSq4M7fby9veHtBjNKyEkUFgKHDgHbt0uZ1bt2SbPBigoJkZaKaNoUePxxqVpyjRqaK1BDAP+LlS6Y+U42zORKDPXmWLJwpT2rg7NiNTkjk4OjyMhIa7TDZipXrgxPT09kZWXp7M/OzkaInRZcJCqRENJq6lu2SNvOndJUeG2+vkDz5kDLltLWvLlUK8eI0gwzOWIejDltctS13oKCLFO40p7VwdWfbX4+EB8PLFzofPle5KaEGb799lvRqlUrUbVqVXH+/HkhhBCffPKJ+OGHH8w5nc098cQT4o033tDZV79+ffHuu+/Ken5OTo4AIHJycqzRPCIh8vKE+PFHIV5/XYjISCGk69jDrUIFIbp1E2LOHCH27xeioMDqTSosFCIlRYgVK4RISBAiPFy3SeHhQqxbZ/VmGLRuneltMuc5lmyvQlH8q1UopC0urvhj+rYVK0p+nZQUeedJSbH8+yv62VarJv3urFghvV5hoWVfk8gYuddvk4Oj+fPni8qVK4vp06cLX19fcfbsWSGEEEuWLBEdOnQwr7U2tmrVKlG2bFmxePFiceLECREXFyfKlSunCfSMYXBEVpGdLcQ33wjRvbsQvr66VxUvLyGeekqI2bOFOHjQ5lcVfRc6Qxd1ewRIxgINfW0y5TnagaElLuqFhSV/ngqFEMHBlglqVqywTJBlCnO+DyJbsFpwVL9+fbF+/XohhBDly5fXBEfHjh0TlSpVMr2ldjJv3jwRGRkpvLy8RNOmTcX27dtlP5fBEVnM9etCLFwoBT4eHrpXkurVhRg5UogNG4S4c8duTTR0oTN0UY+IsG3sJifQKNomU55jjd4lub05wcGGP3u5n7Wte47M+T6IbMVqwZGPj4+mh0U7OPr333+Fj4+PGU11PgyOqFTy8oRYtkyIZ58VokwZ3SvH448LER8vxKFDQqhU9m6p0QudrYZoSmLOxV/ucxISrNMDIrc3Jy7u4WuZ+/rq77C0QZZc9hrGI5JD7vXb5Jr3NWrUwOHDh4vt/+WXX9CgQYPSpD8RuS4hgN27gaFDpcKJ//sfsGmTNPOscWMgMRE4e1aqSTRlCtCkidnVoC3JWHVjQ+QW/rMEU4sMmvKcTz+Vvrqi1Pvi4qSkY1PJrenTvbs0k6xaNd394eHyZ5ipZ4sBxX+lrDFbzJzvg8jRmDxb7a233sKIESNw//59CCHw119/YeXKlUhMTMSiRYus0UYiAI45O8qo69eBpCTg66+lGWdqNWoA/fsDffoA9erZrXnGmHsBs2VBP3OKDMp9zo0bhh8TQt5sMX3atpUCHGO1f9S/46UtXGnL6uAs+kguwZxuqa+//lpUr15dKBQKoVAoRHh4uFi0aJE5p3JKHFazPXvOKjKZSiXE3r1CDBgghLf3wwb7+Un7UlOFUCrt3UpZ5A6R2DOfxJxhIznPCQqS957NTWRW53KVZsjMVJZOLDf0GrYcxiMyhdVyjrRdvXpVXLlypTSncEoMjmzLHjNfzLqIFBRIT4iOLp5H9PXXQuTmWr6hVmbsQmer78MYcwINY89JSLB+7oy+oD8iwkGDfhPYI/AjksPqwdGVK1fEjh07xM6dO0V2dra5p3FKDI5sxx4zX0zupcrJkeoNRUQ8fIK3txD9+0s9SA6QWF0ahi50RbeICCHWrLF+z0RJ7TQ10CjpObbqAbFFb449uGrgR85N7vXb5LXVcnNzMWLECKxcuRKq/9Zu8vT0RO/evTFv3jwEBgZaeODP8chdm4VKLzUV6NjR+HEpKZZZyduktayuXgU++QSYNw/I/W9V+ypVgJEjgTfekFaodxGGKjkPHQrUri3lj1y7Bowda/u1u7RZukK2+vcB0P2d4Ppz8jhlniC5NNnXb1OjrpdeeknUrl1bbN68WeTk5Ijc3FyxefNmUbduXfHSSy+ZGcs5F/Yc2Y4tC9jJ7qW6lCXEm29KOUTqB+vVk+oV3btX+oY4qJJ6OFy56B97QIhch9V6jsqVK4ctW7agTZs2Ovt37tyJZ555Bnl5eWbEcs6FPUe2Y8ueI2OvFYxsTEAiRnt9Cc+C+9LO6Ghg0iTghRcAD5MrY7gE9arrhqb8u8Kq6+wBIXINcq/fJk/lr1Spkt6hs8DAQFSsWNHU0xGVyJQpz6WhVAK//ab/MX/kYjzmYDzmoDzygAIAMTHA5MlA164OUY/InozVQhLC/CnvjsLT0/HbzgCOyHJM/q/uxIkTMW7cOGRqFUDJysrCW2+9hUmTJlm0cUS2KGCXnCz1fEyfrrvfC/kYg7k4i1qYgqkojzzsQzMcmb0F2LMHePZZtw+MABb9cwTq3+GOHYG+faXbqChpPxGZzuRhtccffxxnzpxBfn4+qlevDgBIT0+Ht7c3ateurXPswYMHLddSB8JhNdvTlxAcEQHMmQMEB5v/v2X9CdgCPbAeH+FN1EQaAOAU6mAiZuDP8J5IO6/g/8i12DppnnSZNImAyM1ZbVjtxRdfLE27iMwSG1u8SnBpZ0cplVLApX1RaYSjmIs4PIkUAMBlVMUUJCAJg6BUlMHaTzlUUZSthj6pOH2/w2pCSJ99XJz0b4e/t0TymdxzROw5cgSW+N+ydo9HRdzADLyP/8PX8IQK9+GND/EWPsA7yEN5RERYfpkFV8Ip7/bBXjsi08i9fps1vebWrVtYtGgRJkyYgBv/LT508OBBXLp0ybzWEpnA2P+WAXkLgko5MAL/w3f4B/XwBr6EJ1RYg5dQD/9gMqYhD+UxcaI008pVLu5KpXRRXblSujVn4dSi1Gt3lWaBVFNZ4304G+Z7EVmHycNqR48eRadOnRAYGIjz589j6NChCAoKwvr163HhwgV8++231mgnkYalZkfVfHAKv+ENzRDacTTAcMzHDrTXOe6pp1xnSMJQMceiQ5HmzHzSN/RprRlTct+Hq+Mir0RWYmoBpaeeekq89dZbQgghypcvL86ePSuEEGLXrl0iMjLS1NM5JRaBtK9SF4bMzxciPl6ovLyEAMRd+Ih3MVOURb7VlyaxJ7mFGh19kV9XLjhpKi7ySmQauddvk4fV9u3bh9dff73Y/mrVqiErK8sC4RpRyUr1v+UjR4AnngDi46EoKEDW413REMfxgWICHsBLc5ilygQ4CrlDkWvXSrlDRXvmLl2S9tt7arilhlRtxdpDf7YodUHkjkwOjnx8fJCrXkdKy6lTpxAcHGyRRhGVRD07ylCJIYVCmuavMzvqwQMgIQFo1kwKkIKCgBUrEHpgIz5cV9OmuTL2IHcocvhw2wce+gIIQ0GFKUOq9mar2kP2yPcicnUm5xx1794dU6dOxZo1awAACoUC6enpePfdd9GzZ0+LN5CoKPX/lnv1kgIhfbOjdP63fPw48OqrwKFD0v0ePYAFC4CQEAC2zZWxF7kJuVevGn7MGpWu9eUOVaok3V6//nCfOp8oP1/eee2dgGxoNqW6B87SQYs7/A4T2ZQ543WtW7cWFSpUEJ6eniIiIkKULVtWtGvXTty5c8fscUBnwpwjyytpUVNDjC4IqlIJ8cUXQvj4SA8GBUkvoFJZ8Z04ppQUeXlatlrkVwjDuUOGcmcUCiESEuQdn5JimTaaQ/YCxswDIrI5qy08q/b777/j4MGDUKlUaNq0KTp16mTZqM2Bsc6RZZVm5pHBWVVXrwKvvQZs2CAd+MwzwJIlQGio1d6HI1MvDltSocbKlUvuOVKzRM0cY4vV6qNQPBw6MlZw0p6L3LL2EJHjslqFbLUnn3wSTz75pLlPJzdS0rTw0g4/6F0QdNs2oH9/ICsL8PICZs8GRo0CPMwq6+US5AxFzpsHjBtnm0rXxnKH9BFCek5CAhAfL3NI1Q5Ye4jI+Zl0tVCpVPjmm2/w/PPPo2HDhmjUqBG6deuGb7/9FmZ2QJGLKykp1eIzj5RKYMoUoEsXKTBq0ADYt096ESsERs5WhNBY4u5LL9lu5lNpAoPatR07AZm1h4hcgNxxOpVKJZ577jmhUChEkyZNRJ8+fUTv3r3FY489JhQKhejevXupxgGdCXOO5DFWj8ai+SPZ2UJ06vTwSa+/LsTdu1Z9b3JqAZmTS2VtxtpkNJfLAkqTA6X+fXDEz1YI1h4icmRyr9+yg6NvvvlG+Pv7i99//73YY7/99pvw9/cXS5cuNb2lTojBkXHGklIBIcqVs1AC8K5dQlSrJgQgVH5+4sR731n1gukqxRRLYu3Aw1gA4exBhfp3pOj7c8dClUSOxOLB0dNPPy0SExMNPj5jxgzRuXNn+S10YgyOjLPk7CiDPUfq2WhlyggBiNywuuLJkL+tGozInYn0/fes4myMoQDC0OfqbJ+bLXrgiMg0Fp+tFhoais2bN6NJkyZ6Hz906BC6du3qFlWyOVvNuJUrpRyj0ihx5lFBATByJLBwIQAgo3VvPLprIW7Dv9g5AMvlosidiRQcbHjmlyPMqLIVY2u0ya1zFBEh5TvZO5/IVOasUUdE1mPx2Wo3btxAyH9F8/QJCQnBzZs3TWsluazSJpuWmACcnQ307An88QegUEA1azZafTYet1G8ZLYQ0rni4qQieaW9MFmymGJ8vLSorateMOWUaDBUvBBwjaBC72xKInJ4snuOPD09kZWVZXCJkCtXriAsLAxKR5+yYwHsOTLOWF0dYwz2FBw+LF1N09OBgABg5Uqk+j1rs7oycnuOTOGKq8kbKtFg6Z48sg32gJGrsHjPkRACAwcOhLe3t97H8+XW9Se3UFJdnZKMHCl1Cun947thA9C7N3D3rjSf+6efgHr1kLlS3rktUVdGva6bJYopqllrSQl7MVaiwZI9eWR9pSnSSuSsZBd/GTBgAKpUqYLAwEC9W5UqVdC/f39rtpWcjKG6OiXp2VPq3Sl20Zw/X7qa3r0LdOoE/PknUK8eANvWlZGzCvq8eSUvjFuUOohwpNXkS8OZFoelkql7AIt+n+qA3tKL6BI5DOvnhrsezlYzTWGhEL/+Ki1tZvI0baVSiDfffHjga68JUVBQ7Py2ritjbCaSKTOxZM3McyIrVlioRAPZFdeII1ck9/rtvuspkM14ekqJxwsXSr0psqsv378P9OkDfPSRdH/aNGDRIqBs2WLnt1VlZ7XYWOD8eSmPacUK6TYtTTfR2NReM8A1lpRghWjXwB5AcmcMjshmjC1foZO/kJsrLRb7/fdSMPTtt8DEiQbHqkw6t4WoZyK98or+oUDtAGriRHnndIWAQZ2XZWhYUaGQEu4tsUYbWQ/XiCN3Jnu2Gj3E2WqlY3Tmy9WrUmB08CDg7w/88AMgc5FjR51VY2z2nqvVPlLnqgC675ez1ZyH3JmZlpgFSmQrcq/fDI7MwODIitLTgc6dgVOnpEqKmzcDTZvau1UW4W4Bg75ZTs5azNEduVtAT+5B7vWbw2rkOP75B2jdWgqMqleXijy6SGAElDz0t3o1EBQkVRZPTXWNWWvG8rLIsdkjl4/IUbDnyAzsObKCI0ekKfrXrgH16kH5y1bsPB/hcMNjllB06O/aNWDsWNaRIcfEHkByJRxWsyIGRxZ26JAUGN24AURHY8PIzXhjUmW3CBZYSZqcgaPm8hGZisGRFTE4sqADB6TA6NYtICYGP4/YjO4DKrhFsKDO6TA0XZo5HURElsWcI3J8f/0lFUC6dQto2RLKX7Zi+HvFAyPA9apIA6wjQ0TkqBgckX38+Sfw9NNATg7Qpg2wZQt2Hglwq2CBdWSIiBwTgyOyvYMHgS5dpEKP7doBv/wC+Pu7XbDAStJERI6pjL0bQG7m77+lOkbqHqNNm4By5QA4frBg6aRUdSVpY3VkWEmaiMi22HNEtnP6tJR8ff060Lw5sHGjJjACHHvZieRkKXm6Y0egb1/pNiqqdKuSs44MEZFjYnBEtnH+vJR8feUK8NhjUuXrIjMFHDVYUE+3L5oPdemStL80AZI91oQjIqKScSq/GTiV30SZmdIQ2rlzQN26wI4dQJUqBg93pKJztppuzzoyJePnQ0SWwDpHVsTgyAQ5OVLS9dGjQI0a0hWuaDeJHo5yMeTim/anL1h21aKgRGRdcq/fTMgm67l/H+jeXQqMQkKAbdtkBUaAFAg5QrDhbjPoHI2hCuLqIU0OPRKRNTDniKxDqQT+9z9g+3bA31+arl+rlr1bZTJHn0HnypRKqcfIXYqCEpHjYHBElicEMGoUsG4d4OUF/PAD8Pjj9m6VWRx5Bp2rYwVxIrIXBkdkeTNmAAsWSJHDd98BTz5p7xaZzVFn0LkDDmkSkb0wOCLLWr4cmDRJ+vmzz4CXX7ZveyyA0+3tg0OaRGQvnK1mBs5WM2DnTqnIY0EB8NZbwOzZ9m6RRTnKDDp3oS6jYKyCeGnLKBCR++BsNbKtM2eAHj2kwCg2Fpg1y94tsjhHmUHnLtRDmr16SYGQdoDEIU0isiaXGlaLioqCQqHQ2d59912dY9LT0/HCCy+gXLlyqFy5MkaPHo2CggI7tdhFXL8OPPvsw2VBvvsO8HCpXy2yEw5pEpE9uFzP0dSpUzF06FDN/fLly2t+ViqVeO655xAcHIw//vgD169fx4ABAyCEwOeff26P5jo/dU/R6dNA9erATz8Bfn72bhW5kNhYqVwWhzSJyFZcLjjy9/dHaGio3se2bt2KEydOICMjA2FhYQCAOXPmYODAgZgxYwbzh0wlBDB8uLQcSECAtJCsgc+eqDQ4pElEtuRyYx8ffPABKlWqhCZNmmDGjBk6Q2Z79uxBw4YNNYERAHTp0gX5+fk4cOCAwXPm5+cjNzdXZyMA8+cDixdLQ2irVwMNG9q7RURERKXmUj1HY8aMQdOmTVGxYkX89ddfmDBhAtLS0rBo0SIAQFZWFkJCQnSeU7FiRXh5eSErK8vgeRMTE5GQkGDVtjud1FSpfDEAfPAB8Mwzdm0OERGRpTh8z1F8fHyxJOui2/79+wEAY8eORfv27fHYY49hyJAh+PLLL7F48WJcv35dcz6FnlLHQgi9+9UmTJiAnJwczZaRkWH5N+pMzp+XphAplUC/fsD48fZuERERkcU4fM/RyJEj0adPnxKPiYqK0ru/RYsWAIAzZ86gUqVKCA0NxZ9//qlzzM2bN/HgwYNiPUravL294e3tbVrDXVVeHvDii9LMtKZNgYULDa+tQURE5IQcPjiqXLkyKleubNZzDx06BACo+l8J3ZYtW2LGjBnIzMzU7Nu6dSu8vb0RHR1tmQa7MiGA114DjhwBqlSR1kzz9bV3q4iIiCzK4YMjufbs2YO9e/eiY8eOCAwMxL59+zB27Fh069YN1atXBwB07twZDRo0wKuvvooPP/wQN27cwJtvvomhQ4dyppocc+cCa9YAZcpIi8pGRBQ7hFWkiYjI2blMcOTt7Y3Vq1cjISEB+fn5iIyMxNChQ/H2229rjvH09MTGjRsxfPhwtG7dGr6+vujbty8++ugjO7bcSezaBag/y48/Btq0KXZIcrKUo629knp4uFTlmMX6iIjIWXBtNTO43dpq2dnA448Dly8DffoAK1YUyzNKTpZytIv+NqkPYzVjIiKyN7nXb4efrUZ2plQCr7wiBUb16ulNwFYqpR4jfWG2el9cnHQcERGRo2NwRCWbPBn4/XegXDkpz0hrORa1nTt1h9KKEgLIyJCOIyIicnQMjsgg5U8bgZkzAQAnxi2Csm4DvcdlZso7n9zjiIiI7InBEQGQhrxSU4GVK6XbDV9dQk6PAQCALzACj07rg6goKbeoqP+qIhgl9zgiIiJ7YkK2GVwtIbvoLDMPKPErOqEjUnEQj6Ml9qAA3gaTq5VKICoKuHRJf96RQiHNWktL47R+IiKyHyZkkyzqWWbaOUMTkIiOSMUdlEMfrEIBpOrghpKrPT2l6fpA8WLZ6vtz5zIwIiIi58DgyI3pm2XWGn8gHvEAgOGYj9Ooo/McQ8nVsbFSj1K1arr7w8M5jZ+IiJyLyxSBJNMVnWVWETewAn1RBkp8h//hO/Q3+Nzffite/To2FujenRWyiYjIubHnyI3pzh4TWIihqI4MnMYjGI75JT53+nToTdD29AQ6dJBKI3XowMCIiIicD4MjN6Y9e+w1fIOeSEYByqIPVuEO/I0+/9IlKV9J3ww2IiIiZ8XgyI21bSvlBNXCWXyKMQCAiZiOg4iW9XxWvyYiIlfE4MiNeXoCn36sxFL0R3nkYTvaYQ7Gm3QOdYJ2fLxUH4lBEhEROTsGR24u9vQHaI3duK3wxwAshQpSklBEBLBmDTBxorzzTJ8OdOyoPw+JiIjImbAIpBlcpgjkwYNATAxQWAjVkqXYEdW/2Cyz1FQp6JHLUKFIIiIie5N7/WZwZAaXCI7u3QOio4GTJ4GePYHvvy9ewRHGq1/rw4rYRETkiFghmwxSKoGM/u8BJ08iPygUynlf6g2MgJKrXxtiqFAkERGRM2Bw5GaSk4GXqv6BamuliKfHjcWIala5xDwhQ9WvjdGto0REROQcGBy5keRk4NWedzHr6mvwgMA3GIRf8KysekWxscD580BKivwkbe06SkRERM6COUdmcMacI3Xu0JiLb+JNzMElhOFRHEcOKgAwLU/IWB4Sc46IiMgRMeeIdOzcCURc3I1x+BgA8H/4WhMYAablCZWUh6S+P3cuAyMiInJODI7cRPaFe/gG0nDaUvTHJjyn9zi5eUKG8pDCwzmNn4iInFsZezeAbKPFL1NQHadwGVURh7kGjzMlTyg2FujeXeptKlofiYiIyFkxOHIH+/Yh4vs5AIBh+Aq3ULHYIeo8obZtTTu1pyfQoYMF2khEROQgGBy5GKWySE9OiwfwHDoUCpUK6W37YsMfL0AB3URq5gkRERE9xJwjF5KcLM0i69gR6NtXuk0MnQscOQIEBaH62k+YJ0RERGQEe45cRHKyVKtIu0eoBs5hXM4UAMCBVz5CdJUqzBMiIiIygsGRC1AqgTFjitYcEliAN+CHe0hBBwz4cSDSPpWCIOYJERERGcZhNRewcydw8aLuvr5YgS7Yivvwxuv4ChkXFVzrjIiISAb2HDmIYonUJgx1Fa1NFITrmIs4AMA0TMJp1NF7HBERERXH4MgBJCdLw2LavT/h4VIVajlJ0kVrE32ItxCMa/gbj+JDvGXwOCIiIiqOw2p2pk6kLjosJmcxWLW2baVgSqEAWmEXXsMSANISIQ/gBYUCiIgwvYYRERGRO2JwZEf6E6kl6n1xcdJxJVGvdeYpCjEfwwEAizAYe9CKNYyIiIhMxODIjvQlUmszZTHY2Fhg/6B5aIyjuIGKeBezALCGERERkamYc2RHchOkZR2XmYnG6yYDAK6OTcTnzSuzhhEREZEZGBzZkdwEaVnHvfUWkJsLNG+Ouh8OQV0GRERERGbhsJodaSdS6yM7kXr7dmD5cukJ8+ezq4iIiKgUGBzZkTqRGigeIMlOpH7wABgxQvr59deBZs0s3UwiIiK3wuDIzmJjUbrFYOfNA44fBypXBmbM0HuIUgmkpgIrV0q3xma/ERERuTPmHDkAsxeDvXoViI+Xfp45EwgKKnZIaQtMEhERuRsGRw7CrMVgJ08GcnKAxx8HXnut2MPqApNF6yipC0xyij8REVFxHFZzVkeOAF9/Lf386afFupksVWCSiIjI3TA4ckZCSJGNSgW8/LLe6WyWLDBJRETkThgcOaPkZCmz2scHmD1b7yEWLTBJRETkRphz5MCUSj1J2g/uA2++KR3w1ltAZKTe51q0wCQREZEbYXDkoAzNMtvc7mM8ev68NPf/nXcMPl9dYPLSJf15RwqF9LjRApNERERuhsNqDkg9y6xozlDhxSxErpgp3fngA6BcOYPnsEiBSSIiIjfE4MjBlDTLbAriUR55OOT1BJS9+xo9V6kLTBIREbkhhRD6LsNUktzcXAQGBiInJwcBAQEWPXdqKtCxY/H99XECR/EYykCJttiBaSltZddF0pu7xB4jIiJyM3Kv38w5cjCGZo99gHdQBkqsx4v4A21NmmVmVoFJIiIiN8VhNQejb/ZYB6TgBWxAITzxLmYZPI6IiIhKj8GRg1HPMlMnTSugwkeQpu5/iWE4raiLiAjOMiMiIrIWBkcOpugss1ewEtE4iFz4YyqmAOAsMyIiImticOSA1LPMaobdx0y8BwBIxAT4RARzlhkREZGVMThyULGxwL+jv0Ak0pEXFI6um+OQlsbAiIiIyNo4W81R5eTA44NEAEC5j6aiXRdfOzeIiIjIPbDnyFF99BFw4wZQvz7w6qv2bg0REZHbcJrgaMaMGWjVqhX8/PxQoUIFvcekp6fjhRdeQLly5VC5cmWMHj0aBQUFOsccO3YM7du3h6+vL6pVq4apU6fC4epgXrkCfPKJ9PP06UAZwx18SqVUOHLlSulWqbRJC4mIiFyW0wyrFRQU4KWXXkLLli2xePHiYo8rlUo899xzCA4Oxh9//IHr169jwIABEELg888/ByBVxnz66afRsWNH7Nu3D//++y8GDhyIcuXKYfz48bZ+S4bNmAHk5QHNmwM9ehg8zNDitJ9+ytwkIiIicznd8iFJSUmIi4vDrVu3dPb/8ssveP7555GRkYGwsDAAwKpVqzBw4EBkZ2cjICAACxYswIQJE3DlyhV4e3sDAGbNmoXPP/8cFy9ehKLoCq0GWHP5EJw/D9SpAzx4APz6K/DUU5qHtJcBOX0aiI8vvgab+i1wVhsREZEuuddvpxlWM2bPnj1o2LChJjACgC5duiA/Px8HDhzQHNO+fXtNYKQ+5vLlyzh//rzBc+fn5yM3N1dns5r4eCkweuopncAoORmIipLWXevbF5gyRf/itOp9cXEcYiMiIjKHywRHWVlZCAkJ0dlXsWJFeHl5ISsry+Ax6vvqY/RJTExEYGCgZouIiLBw6/9z/Djw7bfSzzNnanYnJwO9eukOn5VECCAjQ+plIiIiItPYNTiKj4+HQqEocdu/f7/s8+kbFhNC6Owveox6VLGkIbUJEyYgJydHs2VkZMhuk0kmTpQimx49gCeeACD1/owZo7+XyBhTFqclIiIiiV0TskeOHIk+ffqUeExUVJSsc4WGhuLPP//U2Xfz5k08ePBA0zsUGhparIcoOzsbAIr1KGnz9vbWGYqzijNngB9/BDw8pBlq/9m5U36PUVFcnJaIiMh0dg2OKleujMqVK1vkXC1btsSMGTOQmZmJqv9FBVu3boW3tzeio6M1x7z33nsoKCiAl5eX5piwsDDZQZjVPPIIcOCAFA01aKDZbU7vj0IhzVrj4rRERESmc5qco/T0dBw+fBjp6elQKpU4fPgwDh8+jDt37gAAOnfujAYNGuDVV1/FoUOH8Ntvv+HNN9/E0KFDNRnpffv2hbe3NwYOHIi///4b69evx8yZMzFu3DjZM9Ws6vHHgdGjdXaZ2vujfhtcnJaIiMg8TjOVf+DAgVi6dGmx/SkpKejQoQMAKYAaPnw4fv/9d/j6+qJv37746KOPdIbEjh07hhEjRuCvv/5CxYoVMWzYMEyePNmk4MiqU/mLUCqlWWqXLsnLO4qIkAIjTuMnIiLSJff67TTBkSOxZXAEPJytBugGSAqFdD8hAahdW+platuWPUZERET6yL1+O02FbHcWGysVddRXDZu9RERERJbF4MhJxMYC3bs/rJDNXiIiIiLrYHDkRDw9gf/Sq4iIiMhKnGa2GhEREZEtMDgiIiIi0sLgiIiIiEgLgyMiIiIiLQyOiIiIiLQwOCIiIiLSwuCIiIiISAuDIyIiIiItDI6IiIiItLBCthnUa/Xm5ubauSVEREQkl/q6LbRXcdeDwZEZbt++DQCIiIiwc0uIiIjIVLdv30ZgYKDBxxXCWPhExahUKly+fBn+/v5QKBT2bo7d5ebmIiIiAhkZGQgICLB3c1waP2vb4WdtO/ysbcfdP2shBG7fvo2wsDB4eBjOLGLPkRk8PDwQHh5u72Y4nICAALf8x2YP/Kxth5+17fCzth13/qxL6jFSY0I2ERERkRYGR0RERERaGBxRqXl7e2PKlCnw9va2d1NcHj9r2+FnbTv8rG2Hn7U8TMgmIiIi0sKeIyIiIiItDI6IiIiItDA4IiIiItLC4IiIiIhIC4Mjsor8/Hw0adIECoUChw8ftndzXM758+cxePBg1KhRA76+vqhVqxamTJmCgoICezfNJcyfPx81atSAj48PoqOjsXPnTns3yeUkJiaiefPm8Pf3R5UqVfDiiy/i1KlT9m6WW0hMTIRCoUBcXJy9m+KwGByRVbz99tsICwuzdzNc1j///AOVSoWvvvoKx48fxyeffIIvv/wS7733nr2b5vRWr16NuLg4vP/++zh06BDatm2Lrl27Ij093d5Ncynbt2/HiBEjsHfvXmzbtg2FhYXo3Lkz8vLy7N00l7Zv3z58/fXXeOyxx+zdFIfGqfxkcb/88gvGjRuHdevW4dFHH8WhQ4fQpEkTezfL5X344YdYsGABzp07Z++mOLWYmBg0bdoUCxYs0OyrX78+XnzxRSQmJtqxZa7t6tWrqFKlCrZv34527drZuzku6c6dO2jatCnmz5+P6dOno0mTJpg7d669m+WQ2HNEFnXlyhUMHToU3333Hfz8/OzdHLeSk5ODoKAgezfDqRUUFODAgQPo3Lmzzv7OnTtj9+7ddmqVe8jJyQEA/g5b0YgRI/Dcc8+hU6dO9m6Kw+PCs2QxQggMHDgQw4YNQ7NmzXD+/Hl7N8ltnD17Fp9//jnmzJlj76Y4tWvXrkGpVCIkJERnf0hICLKysuzUKtcnhMC4cePQpk0bNGzY0N7NcUmrVq3CwYMHsW/fPns3xSmw54iMio+Ph0KhKHHbv38/Pv/8c+Tm5mLChAn2brLTkvtZa7t8+TKeeeYZvPTSSxgyZIidWu5aFAqFzn0hRLF9ZDkjR47E0aNHsXLlSns3xSVlZGRgzJgxWLZsGXx8fOzdHKfAnCMy6tq1a7h27VqJx0RFRaFPnz74+eefdS4iSqUSnp6e6NevH5YuXWrtpjo9uZ+1+g/c5cuX0bFjR8TExCApKQkeHvz/TmkUFBTAz88P33//PXr06KHZP2bMGBw+fBjbt2+3Y+tc06hRo/DDDz9gx44dqFGjhr2b45J++OEH9OjRA56enpp9SqUSCoUCHh4eyM/P13mMGByRBaWnpyM3N1dz//Lly+jSpQvWrl2LmJgYhIeH27F1rufSpUvo2LEjoqOjsWzZMv5xs5CYmBhER0dj/vz5mn0NGjRA9+7dmZBtQUIIjBo1CuvXr0dqaipq165t7ya5rNu3b+PChQs6+wYNGoR69erhnXfe4VCmHsw5IoupXr26zv3y5csDAGrVqsXAyMIuX76MDh06oHr16vjoo49w9epVzWOhoaF2bJnzGzduHF599VU0a9YMLVu2xNdff4309HQMGzbM3k1zKSNGjMCKFSvw448/wt/fX5PTFRgYCF9fXzu3zrX4+/sXC4DKlSuHSpUqMTAygMERkRPaunUrzpw5gzNnzhQLPNkZXDq9e/fG9evXMXXqVGRmZqJhw4bYtGkTIiMj7d00l6IuldChQwed/UuWLMHAgQNt3yAiLRxWIyIiItLC7E0iIiIiLQyOiIiIiLQwOCIiIiLSwuCIiIiISAuDIyIiIiItDI6IiIiItDA4IiIiItLC4IiIiIhIC4MjIjKZQqHADz/8YO9myBIfH48mTZrYuxkW16FDB8TFxck+PjU1FQqFArdu3TJ4TFJSEipUqFDqthE5OwZHRG5k4MCBePHFF+3dDKcnJ4iYM2cOAgMDcffu3WKP3b9/HxUqVMDHH39sdhuSk5Mxbdo0s59PRIYxOCIisoL+/fvj3r17WLduXbHH1q1bh7t37+LVV181+bwPHjwAAAQFBcHf37/U7SSi4hgcEbmxDh06YPTo0Xj77bcRFBSE0NBQxMfH6xxz+vRptGvXDj4+PmjQoAG2bdtW7DyXLl1C7969UbFiRVSqVAndu3fH+fPnNY+re6wSEhJQpUoVBAQE4PXXX0dBQYHmGCEEZs+ejZo1a8LX1xeNGzfG2rVrNY+rh4V+++03NGvWDH5+fmjVqhVOnTql05ZZs2YhJCQE/v7+GDx4MO7fv1+svUuWLEH9+vXh4+ODevXqYf78+ZrHzp8/D4VCgeTkZHTs2BF+fn5o3Lgx9uzZo2nHoEGDkJOTA4VCAYVCUewzA4Dg4GC88MIL+Oabb4o99s0336Bbt24IDg7GO++8gzp16sDPzw81a9bEpEmTNAEQ8HBY8JtvvkHNmjXh7e0NIUSxYbVly5ahWbNm8Pf3R2hoKPr27Yvs7Oxir71r1y40btwYPj4+iImJwbFjx4odo+3nn39GdHQ0fHx8ULNmTSQkJKCwsLDE5xA5PUFEbmPAgAGie/fumvvt27cXAQEBIj4+Xvz7779i6dKlQqFQiK1btwohhFAqlaJhw4aiQ4cO4tChQ2L79u3i8ccfFwDE+vXrhRBC5OXlidq1a4vXXntNHD16VJw4cUL07dtX1K1bV+Tn52tet3z58qJ3797i77//Fhs2bBDBwcHivffe07TlvffeE/Xq1RObN28WZ8+eFUuWLBHe3t4iNTVVCCFESkqKACBiYmJEamqqOH78uGjbtq1o1aqV5hyrV68WXl5eYuHCheKff/4R77//vvD39xeNGzfWHPP111+LqlWrinXr1olz586JdevWiaCgIJGUlCSEECItLU0AEPXq1RMbNmwQp06dEr169RKRkZHiwYMHIj8/X8ydO1cEBASIzMxMkZmZKW7fvq338964caNQKBTi3Llzmn1paWlCoVCITZs2CSGEmDZtmti1a5dIS0sTP/30kwgJCREffPCB5vgpU6aIcuXKiS5duoiDBw+KI0eOCJVKJdq3by/GjBmjOW7x4sVi06ZN4uzZs2LPnj2iRYsWomvXrprH1Z9f/fr1xdatW8XRo0fF888/L6KiokRBQYEQQoglS5aIwMBAzXM2b94sAgICRFJSkjh79qzYunWriIqKEvHx8fp/wYhcBIMjIjeiLzhq06aNzjHNmzcX77zzjhBCiC1btghPT0+RkZGhefyXX37RCY4WL14s6tatK1QqleaY/Px84evrK7Zs2aJ53aCgIJGXl6c5ZsGCBaJ8+fJCqVSKO3fuCB8fH7F7926dtgwePFi88sorQoiHF/dff/1V8/jGjRsFAHHv3j0hhBAtW7YUw4YN0zlHTEyMTnAUEREhVqxYoXPMtGnTRMuWLYUQD4OjRYsWaR4/fvy4ACBOnjwphCgeRBhSWFgoqlWrJiZPnqzZN3nyZFGtWjVRWFio9zmzZ88W0dHRmvtTpkwRZcuWFdnZ2TrHFQ2Oivrrr78EAE3gpv78Vq1apTnm+vXrwtfXV6xevVrv+2rbtq2YOXOmznm/++47UbVq1ZLfOJGTK2OnDisichCPPfaYzv2qVatqhmNOnjyJ6tWrIzw8XPN4y5YtdY4/cOAAzpw5Uyz/5f79+zh79qzmfuPGjeHn56dznjt37iAjIwPZ2dm4f/8+nn76aZ1zFBQU4PHHHzfY3qpVqwIAsrOzUb16dZw8eRLDhg3TOb5ly5ZISUkBAFy9ehUZGRkYPHgwhg4dqjmmsLAQgYGBsl6nXr16kMvT0xMDBgxAUlISpkyZAoVCgaVLl2LgwIHw9PQEAKxduxZz587FmTNncOfOHRQWFiIgIEDnPJGRkQgODi7xtQ4dOoT4+HgcPnwYN27cgEqlAgCkp6ejQYMGOp+HWlBQEOrWrYuTJ0/qPeeBAwewb98+zJgxQ7NPqVTi/v37uHv3rs73SeRKGBwRubmyZcvq3FcoFJoLqxCi2PEKhULnvkqlQnR0NJYvX17sWGMX9KKvt3HjRlSrVk3ncW9vb4PtVbdF/Xxj1MctXLgQMTExOo+pgxVLvI621157DYmJifj9998BSMHKoEGDAAB79+5Fnz59kJCQgC5duiAwMBCrVq3CnDlzdM5Rrly5El8jLy8PnTt3RufOnbFs2TIEBwcjPT0dXbp00cnrMqTod6qmUqmQkJCA2NjYYo/5+PgYPS+Rs2JwREQGNWjQAOnp6bh8+TLCwsIAQJOYrNa0aVOsXr1ak2htyJEjR3Dv3j34+voCkAKD8uXLIzw8HBUrVoS3tzfS09PRvn17s9tbv3597N27F/3799fs27t3r+bnkJAQVKtWDefOnUO/fv3Mfh0vLy8olUpZx9aqVQvt27fHkiVLNInUtWrVAiAlR0dGRuL999/XHH/hwgWT2/PPP//g2rVrmDVrFiIiIgAA+/fv13vs3r17Ub16dQDAzZs38e+//xrsDWvatClOnTqFRx55xOQ2ETkzBkdEZFCnTp1Qt25d9O/fH3PmzEFubq7OhRwA+vXrhw8//BDdu3fH1KlTER4ejvT0dCQnJ+Ott97SDMkVFBRg8ODBmDhxIi5cuIApU6Zg5MiR8PDwgL+/P958802MHTsWKpUKbdq0QW5uLnbv3o3y5ctjwIABsto7ZswYDBgwAM2aNUObNm2wfPlyHD9+HDVr1tQcEx8fj9GjRyMgIABdu3ZFfn4+9u/fj5s3b2LcuHGyXicqKgp37tzBb7/9phkuLGmISXsYb9GiRZr9jzzyCNLT07Fq1So0b94cGzduxPr162W1QVv16tXh5eWFzz//HMOGDcPff/9tsAbS1KlTUalSJYSEhOD9999H5cqVDda+mjx5Mp5//nlERETgpZdegoeHB44ePYpjx45h+vTpJreTyFlwKj8RGeTh4YH169cjPz8fTzzxBIYMGaKTfwIAfn5+2LFjB6pXr47Y2FjUr18fr732Gu7du6fTk/TUU0+hdu3aaNeuHV5++WW88MILOlPgp02bhsmTJyMxMRH169dHly5d8PPPP6NGjRqy29u7d29MnjwZ77zzDqKjo3HhwgW88cYbOscMGTIEixYtQlJSEho1aoT27dsjKSnJpNdp1aoVhg0bht69eyM4OBizZ88u8fiePXvC29sb3t7eOkNU3bt3x9ixYzFy5Eg0adIEu3fvxqRJk2S3Qy04OBhJSUn4/vvv0aBBA8yaNQsfffSR3mNnzZqFMWPGIDo6GpmZmfjpp5/g5eWl99guXbpgw4YN2LZtG5o3b44WLVrg448/RmRkpMltJHImCqEvqYCIyIIGDhyIW7duOc2SI0Tk3thzRERERKSFwRERERGRFg6rEREREWlhzxERERGRFgZHRERERFoYHBERERFpYXBEREREpIXBEREREZEWBkdEREREWhgcEREREWlhcERERESk5f8BHsysnyTWhYYAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ "
"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "x = np.arange(-5.0, 5.0, 0.1)\n",
+ "\n",
+ "##You can adjust the slope and intercept to verify the changes in the graph\n",
+ "y = 1*(x**3) + 1*(x**2) + 1*x + 3\n",
+ "y_noise = 20 * np.random.normal(size=x.size)\n",
+ "ydata = y + y_noise\n",
+ "plt.plot(x, ydata, 'bo')\n",
+ "plt.plot(x,y, 'r') \n",
+ "plt.ylabel('Dependent Variable')\n",
+ "plt.xlabel('Independent Variable')\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "As you can see, this function has $x^3$ and $x^2$ as independent variables. Also, the graphic of this function is not a straight line over the 2D plane. So this is a non-linear function.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Some other types of non-linear functions are:\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Quadratic\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "$$ Y = X^2 $$\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "tags": []
+ },
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjUAAAGwCAYAAABRgJRuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAABslUlEQVR4nO3dd3yT5frH8U9aoICUInu0LEUFURBQhAMCHgVREawDxKOgiPI7THFPhmxXXag4GCqIQnGA4izIETgKihNRoIzDkN2ybGl6//64TWnatE3apBn9vl+vvJo8efLkatok13OP63YYYwwiIiIiYS4q2AGIiIiI+IOSGhEREYkISmpEREQkIiipERERkYigpEZEREQigpIaERERiQhKakRERCQilAt2AKUpOzubnTt3Ehsbi8PhCHY4IiIi4gVjDIcPH6Z+/fpERRXcHlOmkpqdO3eSkJAQ7DBERESkGLZv3058fHyB95eppCY2NhawL0rVqlWDHI2IiIh4Iz09nYSEhJzv8YKUqaTG1eVUtWpVJTUiIiJhpqihIxooLCIiIhFBSY2IiIhEBCU1IiIiEhGU1IiIiEhEUFIjIiIiEUFJjYiIiEQEJTUiIiISEZTUiIiISERQUiMiIiIRoUxVFBYRERHfOJ2wYgXs2gX16kHnzhAdHeyoPFNSIyIiIh4lJ8PIkfC//53cFh8PzzwDiYnBi6sg6n4SERGRfJKT4dpr3RMagB077Pbk5ODEVRglNSIiIuLG6bQtNMbkv8+1bdQou18oUVIjIiIiblasyN9Ck5sxsH273S+UKKkRERERN7t2+Xe/0qKkRkRERNzUq+ff/UqLkhoRERFx07mzneXkcHi+3+GAhAS7XyhRUiMiIiJuoqPttG3In9i4biclhV69GiU1IiIikk9iIixYAA0auG+Pj7fbQ7FOjYrviYiIiEeJidC7tyoKi4iISASIjoauXYMdhXfU/SQiIiIRQS01JRROC32JiIhEMiU1JRBuC32JiIhEMnU/FVM4LvQlIiISyZTUFEO4LvQlIiISyZTUFEO4LvQlIiISyZTUFEO4LvQlIiISyZTUFEO4LvQlIiISyUIiqZk8eTLnn38+sbGx1K5dmz59+rBhwwa3fQYOHIjD4XC7XHjhhUGJN1wX+hIREYlkIZHULF++nKFDh7J69Wo+++wzsrKy6N69O0ePHnXb77LLLmPXrl05l48++igo8Xpa6MtBttvtUFzoS0REJJKFRJ2apUuXut2eOXMmtWvXZu3atVx00UU522NiYqhbt67Xx83IyCAjIyPndnp6esmD/Ztroa+RIww37HicIbxEN1Iw8Y1ISlKdGhERkdIWEi01eaWlpQFQvXp1t+3Lli2jdu3anHHGGQwePJg9e/YUepzJkycTFxeXc0lISPBrnImJsGWrgwfafEpTUlnR9wVSU5XQiIiIBIPDGE/VVoLHGEPv3r05ePAgK3LNiZ4/fz5VqlShUaNGpKam8sgjj5CVlcXatWuJiYnxeCxPLTUJCQmkpaVRtWpV/wW9eDH06gXVqtm53qec4r9ji4iIlHHp6enExcUV+f0dcknN0KFDWbJkCf/5z3+Ij48vcL9du3bRqFEj3n77bRK9bBrx9kXxWXY2nHkmbNwI06fD//2f/44tIiJSxnn7/R1S3U/Dhw/ngw8+ICUlpdCEBqBevXo0atSIP/74o5SiK0RUFIwYYa8/84xNckRERKRUhURSY4xh2LBhJCcn8+WXX9KkSZMiH7N//362b99OvVApBjNwIFStChs2wCefBDsaERGRMickkpqhQ4fy5ptvMnfuXGJjY9m9eze7d+/m+PHjABw5coS7776bVatWsWXLFpYtW0avXr2oWbMmV199dZCj/1tsLNx2m72elOR2l9MJy5bBvHn2p9aEEhER8b+QGFPjKKCK3cyZMxk4cCDHjx+nT58+fP/99xw6dIh69erRrVs3HnvsMZ9mNAVsTI1Laiqcfrrtfvr5Zzj7bJKT7eKXudeKio+3vVSaJSUiIlK0sB0oHEgBT2oArrkGkpPh9ttJ7vEy116bfzVvVw63YIESGxERkaKE5UDhiDBqFADOWXO4d9D+fAkNnExyRo1SV5SIiIi/KKnxs+Q9nfixfBuiM//iukMzCtzPGNi+HXKV4hEREQlfX3wBH38c1BnASmr8KDkZrr3OweMnRgEwjOcpT2ahj9m1qxQCExERCSRj4N574fLLbb22IFFS4ydOpx0QbAy8w/Xsoi4N2Ml1vFvo40JlRrqIiEixLV8O330HlSrBDTcELQwlNX6yYsXJGU6ZxPA8wwAYzVNA/oE1DgckJEDnzqUYpIiISCA89ZT9OXAg1KgRtDCU1PhJ3m6klxjCMSrRlu/ownK3+xwO26Jz223wzjuqXSMiImHs99/hww/t9b8nywSLkho/yduNdIAazGIg4GqtOal6dZvIjhkD/ftDt27QuLEdkyMiIhJWXAVne/WCM84IaihKavykc2dbVC93HcEkRgFwFR/SjN+pXt0mMgcOwP797o/fsQOuvVaJjYiIhJH9+2HWLHt99OighgJKavwmOtpWCYaTic0fnMEH9ALgTpJ46SV47bX8xfhAtWtERCQMvfQSHD8O550HXboEOxolNf6UmGirBDdocHLbU9jMdXCFWdSrsN9tuYS8VLtGRETCRkYGPP+8vX7XXe5dFUGipMbPEhNhyxZISYG5c2Hsl10wbdpQLvM4sXNf8uoYql0jIiIh7+23YfdueyZ/3XXBjgaAcsEOIBJFR0PXrq5bDtvP+K9/cdbnz1OBu8kkptDHq3aNiIiENGPgySft9eHDoUKF4MbzN7XUlIbrroMGDYg5sJuhp84rsIVOtWtERCQsfPEF/PQTVK4Mt98e7GhyKKkpDRUqwIgRAIyJfRKMyZfYuG4nJdmWHhERkVBlpj0OwO+dbmXZD6eSmWlrrs2bF9zaa0pqSsvtt0OVKsRt+5kVD3/iNpgY7HTwBQvsmBwREZFQ9flTP+L47FOcRNHj09F062YbbLp1C37tNSU1paVaNRg8GIB/rHzcbTBxSgqkpiqhERGR0JacDDvvegKABVzLFpoA+VtmglV7zWGMp6opkSk9PZ24uDjS0tKoWrVq6QewbRs0bWr/+mvXQps2pR+DiIhIMTidcGH8/1i5uwnlyeJ8vmEN5xe4v8NheyFSU0s+rMLb72+11JSmhg2hb197/YknghuLiIiIB06n5/ExK1bA9bufoTxZLKNLoQkNBKf2mpKa0nb33fbnO+/A1q3BjUVERCSX5GQ7HsbT+Jh9m9K4g5cBeIK7vT5madZeU1JT2s47D/75T5v6uhYBExERCbLkZDsOJm/le9f4mLh3XqEqh/mV5nzE5V4ftzRrrympCYZ77rE/X3kFDh4MbiwiIlLmOZ0wcmTBaxOWN5m0/CIJgCe5G+NF+hCM2mtKaoKhe3c45xw4ehRefjnY0YiISBm3YkX+Fprcrmc+9Zw7OFylLm9xY5HLPAWr9pqSmmBwOE6OrXnmGbsomIiISJAUPu7FcDd2csvmK0Ywd2FMvlpreROXYNVeU1ITLP362UXAdu+GN94IdjQiIlKGFTbu5TKW0oofOUwVDt84JN/CzSkpcOxYaNReU52aYHrqKbtc+xlnwK+/an0EEREJCqfTznLasSP/uJoUutKV5cyoMppBh54MyleV6tSEg8GDbaXh33+H998PdjQiIlJGRUfb0RCA23iZC/gvXVlOJuVJeOrOkD/3VlITTLGxMHSovT51qudh5yIiIqUgMdGOg8k9XuY+pgKwq9uN9BwcH6TIvKfup2DbswcaNYK//rIdkV27BjsiEREpw5xOOxvqyNoNXHFPcxzG2CESzZsHLSZ1P4WL2rXhllvs9alTgxuLiIiUedHR9vz6yvWP24TmqquCmtD4QklNKLj7boiKgqVLYd26YEcjIiJl3Y4dMGeOvX7ffcGNxQdKakJB06Zw3XX2+rRpwY1FREQkKQlOnIBOnaBjx2BH4zUlNaHClQnPn28n+IuIiATDoUMnq92HUSsNKKkJHeedB5deCtnZ8MQTwY5GRETKqhdfhMOH4eyz4XLvF64MBUpqQsn999ufr78Of/7pcRenE5Ytg3nz7E+ns9SiExGRSHfsGDz9tL1+3312vGcYCa9oI123btC+vZ3enZSU7+7kZFvxsVs36N/f/mzc2G4XEREpsddfh7177ZdLv37BjsZnSmpCicMBDz5or7/wgu3X/FtyMlx7bf5VVHfssNuV2IiISIlkZp6crHLvvVC+fHDjKQYlNaHmyiuhZUvbn/nCC4DtYho50nPBYde2UaPUFSUiUlb5ZWjC3LmwfTvUqXOyflqYUVITaqKiTo6tSUqCY8dYsSJ/C01uxtj/wxUrSiVCEREJIX4ZmuB0wpQp9vro0VCxYgAiDTwlNaGob19o0gT27YNXX2XXLu8e5u1+IiISGfw2NOG992DDBrvI8pAhfo6y9CipCUXlyp2sDfD449SvmenVw+rVC2BMIiISUvw2NMEYmDTJXh8+HEJlbcRiUFITqgYMsFnK//5H561vEh/vvhx8bg4HJCRA586lG6KIiASPt0MTxo4tYpzNp5/Cd99B5cowYkQAIi09IZHUTJ48mfPPP5/Y2Fhq165Nnz592LBhg9s+xhjGjh1L/fr1qVSpEl27duWXX34JUsSloGJF268JRD0+lWeesv+NeRMb1+2kJLsImYiIlA3eDjmYMKGIcTaTJ9uft98ONWv6K7ygCImkZvny5QwdOpTVq1fz2WefkZWVRffu3Tl69GjOPtOmTeOpp57i+eef59tvv6Vu3bpceumlHD58OIiRB9gdd8Cpp8Lvv5OYvYAFC6BBA/dd4uNhwQJITAxOiCIiEhy+DjnwOM5mxQpYvtxO377rLr/GFwwOYzz1xgXX3r17qV27NsuXL+eiiy7CGEP9+vUZNWoU9/091iQjI4M6deowdepU7rjjDq+Om56eTlxcHGlpaVQNlz7D8eNhzBg7zfuHH3CaKFassBl6vXq2y0ktNCIiZY/TaVtfduzwPK7GE4fDngynpv793XHZZfDJJ7aVxrXeUwjy9vs7JFpq8kpLSwOgevXqAKSmprJ79266d++es09MTAxdunRh5cqVBR4nIyOD9PR0t0vYGT4cYmPh55/hgw+IjoauXeGGG+xPJTQiImVTdDQ884y9XtCYy7zcSoB8841NaKKjw27hyoKEXFJjjGH06NF06tSJli1bArB7924A6tSp47ZvnTp1cu7zZPLkycTFxeVcEhISAhd4oJx6qk1swHaMhl7DmoiIBEliIh6HJhRl1y5g4kR741//gqZN/R5bMIRcUjNs2DB+/PFH5s2bl+8+R55U1BiTb1tuDzzwAGlpaTmX7du3+z3eQHJViExuOApnxcqwdi0sXRrssEREJIQkJsKWLZCSAg8/7N1jTj/6A3zwgW3ieeCBgMZXmkIqqRk+fDgffPABKSkpxMfH52yvW7cuQL5WmT179uRrvcktJiaGqlWrul3CRe4KkdcMqUXSX7YY0v47H1NrjYiIuHENTRg7Fq9KgLT95O9WmuuvhzPPLK0wAy4kkhpjDMOGDSM5OZkvv/ySJk2auN3fpEkT6taty2effZazLTMzk+XLl9OxY8fSDjfgPFWIfIK7+YsYamxYxYrxKcELTkREQlZh42xct1+7ez1RCxfYGw89VHrBlYKQSGqGDh3Km2++ydy5c4mNjWX37t3s3r2b48ePA7bbadSoUUyaNIlFixbx888/M3DgQCpXrkz//v2DHL1/FVQhcjf1eJXbAIiaPEGLV4qIiEcFjbNxlQC59NtJ9kumTx8455ygxBgoITGlu6BxMTNnzmTgwIGAbc0ZN24cL7/8MgcPHqR9+/a88MILOYOJvREOU7qXLbNdTp4ksI2NnE4FTvDds/+hzfB/lGpsIiISPpxO8pcASd1ou5uys2HNGmjbNthhesXb7++QSGpKSzgkNfPm2VVWCzKDwQzmVXad24N6P2jQsIiI+GDQIHj9dejZEz76yHPiE4KlQsK6Tk1ZVlSFyMk8QBbR1PvxE1i9unSCEhGR8Ld5M8yZY68/8ojbhJT+/YtYSiFMKKkJIU6nvfxdc9CjLY6mLDzlZntj3LjSCUxERMLfpEmQlQXdu5O8q0O+CSlQwFIKYURJTYhwZcyXXAIHDnjexzX0qNq0h2z74NKltiKkiIhIYbZsgdmzAXA+PMbjhBQ4uW3UqEJW9Q5hSmpCgKcp3J64Rq73+PdptgIkqLVGRESK5mqlueQSVjg7Fvp947aUQphRUhNkBU3hzq16dfj8c7sAWc5q3A8/bFtrPvpIrTUiIlKwLVtg5kx7fcwYu0SCF7zdL5QoqQmyFSuKbqE5cMDmL24j0k8/HW680V4fPz5g8YmISJibPNm20vzzn9CpU5ETUly83S+UKKkJshJlzA8/DFFRsGSJrTcgIiKS27Ztbq00YKdte7OUQufOpRSjHympCbISZczNmp0saqPWGhERyWvyZDhxws7X/jtL8WYphaSk0KxXUxQlNUFW4ozZ1Vrz4YcFtta4VvueN8/+DMcR7SIi4qNt2+C11+z1v1tpXIpaSiFn/GaYUVITZCXOmM8882Rrzdix+e6OxOJKIiLihYkTbStN167QpUu+E9zeve0Y4pQUmDvX/nSbkBKGtExCiEhOtrOgcg8aTkiwCU2R/2B//AHNm9smmFWr4MILc4557bX5Z1a5kqVwzsZFRKQQmzfbk96sLPjqK5L3ds73HRMfb0+qw+F7QGs/eRDKSQ0UsPiYt32at95qB4N17w6ffILTaVtkCppZ5XDYf+jU1PDsNxURkUK4vhMuvZTkIZ+G/QmukhoPQj2pKZFcWblz2Qqe+74Td95Z9MNSUmzLpIiIRIhcrffO/6yicb8Lw/4EVwtaljVNm8IttwCwusejXiU0EJ7FlUREpBDjx9um/8svZ8WJghMaCO/qwZ4oqYkgH7d9mEzK84+MFLqS4tVjfv1VM6JERCLG+vV21C/AuHERXT3YEyU1EcLphNsnNOQVBgMwjjFA0T2LEyZoRpSISMQYPx6ys+Gqq6Bdu4iuHuyJkpoI4VpuYRIP8hcxXMQKLuFzrx8f7svNi4iUeT//DPPn2+t/L3YcydWDPVFSEyFcTYc7acBLDAHgMR7Bm9YaCP/l5kVEyrwxY+yH+TXXQOvWQGRXD/ZESU2EyN10OIX7OUplLuS/XMlir48RaQPGRETKjLVrbVO7w5GvEGukVg/2RElNhMjdxPgndXmO4QBM4GEcZONwQPXq3h0rUgaMiYiUGQ8/bH/eeCO0bJnv7sTEyKse7ImSmgiRt4lxGveSRlVa8SN9eQewFYu9ESkDxkREyoQVK2DpUihXzuNyOS7R0bYu2Q032J+R0uWUm5KaCJK7ifEg1XmCuwGYUG4MC+dn8dBDZWvAmIhIxDMGHnrIXh80CE47LbjxBJmSmgiTu4nx3NdGkRlXk9Oyfufqw3PK3IAxEZGI9+mntqUmJuZkF1QZVuykJjMzkw0bNpCVleXPeMQPXE2M190aS4VHH7Abx42DjIwyNWBMRCSi5W6lGTrUfpCXcT4nNceOHWPQoEFUrlyZs88+m23btgEwYsQIpkyZ4vcApXB5l5LPNx37//7PZjDbtsGMGUDZGTAmIhLRFi2ys56qVIH77w92NCHB56TmgQce4IcffmDZsmVUrFgxZ/sll1zCfFfRHykVycm2EnC3btC/fwGVgStVgkcesdcnToSjR4GyMWBMRCRiOZ0nP9vvvBNq1QpuPCHC56Tmvffe4/nnn6dTp044cg3MaNGiBZs2bfJrcFKw5GRbATjvQmUeKwPfeqtd8PLPP08OqsmjyBYfEREJHW+9ZRfvO/VUuOuuYEcTMnxOavbu3Uvt2rXzbT969KhbkiOB43Ta6dnGQ7Fgj5WBy5e364EATJsGBw64PcarFh8REQkNGRnw6KP2+v33Q1xccOMJIT4nNeeffz5LlizJue1KZF555RU6dOjgv8ikQK51ngrisTLwDTdAq1aQlgaTJ+ds9qnFR0REgu/FF2HrVjtecvjwYEcTUsr5+oDJkydz2WWX8euvv5KVlcUzzzzDL7/8wqpVq1i+fHkgYpQ8irWUfFSUTWYuvxyeew5GjMBZP6HQFh+Hw7b49O6tMTciIr5yOu3J5a5dtqhp585++CxNT7fjI8EW2qtUqaRhRhSfW2o6duzI119/zbFjxzjttNP49NNPqVOnDqtWraJt27aBiFHyKPZS8pddBhddZJsux40rXouPiIgUKWDd+k8+Cfv2wZlnwsCBJQ80wjiM8XSeHpnS09OJi4sjLS2NqlWrBjucYnM67Ztjxw7PrSwOhy1XkJrq4axg9Wro0AGiolgy9WeuvKd5kc83d67tvRIRkaK5uvXzfj67hp0WuybYn3/aisFHj9qDXHNNiWMNF95+f3vVUpOenu71RQKvRJWBL7wQ+vSB7Gwu+OAhr55Pa0GJiHjH54kcXh5z2TL4/eYJcPQo5vwLVFisAF4lNdWqVePUU08t9OLaR0pHiSoDT5wIUVHUWrGIXrVWay0oERE/8Xe3vqsb69Zum2n86csA9E2dQvIizTb2xKuBwikpKYGOQ4ohMdEO4vV5IFqLFjBgAMycyWu176fO3hQcDofbmYXWghIR8V2xJnIUIHc31ps8QgVO8AndWbC/Gwuu1dI2nmhMTVm1fTs0awYZGax8cDF951zhdnaRkGATGr1hRES8t2yZHRRclJQUW829IK6xk//7H5zHd3yHnYjThrV8T5vCx05GIG+/v32e0g1w8OBBXnvtNdavX4/D4aB58+bccsstVK9evdgBSylLSLAdv9Om0fG9e9mysQcrVpXz79RDEZEypnNnm2wUNZGjqG79k91Yhse5B4A3uZHvaQO4d2MVlhyVNT5P6V6+fDmNGzfm2Wef5eDBgxw4cIBnn32WJk2aqE5NuHngAaheHX79leg3ZmktKBGREirRRI5cXN1Tl7GUf/IlGVTgYSYUuJ9YPic1Q4cOpW/fvqSmppKcnExycjKbN2+mX79+DB06NBAxSqBUq3ZyQbRHH81Z7FJERIqvRBM5/lavHkThZBr3AvAsI9hKY4/7yUk+j6mpVKkS69at48wzz3TbvmHDBlq3bs3x48f9GqA/aUyNBxkZ0Ly57Zh97DF4+OFgRyQiEhFKUlHY6YR7a83kyYO3coBTOY1NHOLkDGONqfHM55aaNm3asH79+nzb169fT+vWrX09nARbTAxMmmSvT50Ke/YENx4RkQgRHU2xu/WjM44xwWFb0ifxUL6EBjQ71ROvBgr/+OOPOddHjBjByJEj2bhxIxdeeCEAq1ev5oUXXmDKlCmBiVIC6/rrbentNWtg3Dh44YVgRyQiUrYlJVHpwA6O1mrEexWGwo6Td8XHa3ZqQbzqfoqKivq7jknhuzocDpy+lEnM5auvvuLxxx9n7dq17Nq1i0WLFtGnT5+c+wcOHMjs2bPdHtO+fXtWr17t9XOo+6kQKSlw8cU27f/lF7uuiIiIlL69e+1yCIcPw5tv4ux3o/8Xxgwzfp3SnZqa6rfACnL06FFatWrFLbfcwjUFrGdx2WWXMXPmzJzbFSpUCHhcZUa3bnDFFbBkCdx/PyxaFOyIRETKpnHjbEJz3nlwww1ER2natre8SmoaNWoU6Djo2bMnPXv2LHSfmJgY6tatG/BYyqxp02DpUnjvPVtBSu8iEZHStX495qWXcABfXP4k0V9FeWyZKckg5EhWrOJ7AL/++ivbtm0jMzPTbftVV11V4qAKsmzZMmrXrk21atXo0qULEydOpHbt2gXun5GRQUZGRs5tLbhZhBYt4I47YPp0GD3ajrGJ8nksuYiIFNOum+6hntPJe/Tm6ondYKIdQ/PMMyfH0CQn29qpuavA592nrPJ5SvfmzZu5+uqr+emnn9zG2Tj+Ho5d3DE1bkE5HPnG1MyfP58qVarQqFEjUlNTeeSRR8jKymLt2rXExMR4PM7YsWMZN25cvu0aU1OIvXvh9NMhPR1mzbJrRImISMCtGPM5ncdfygnKcTa/8AdnACdnOy1YYH+61oPKLfc+kZjYeDumxuekplevXkRHR/PKK6/QtGlTvvnmG/bv389dd93FE088QWc/LOnsKanJa9euXTRq1Ii3336bxAL+gp5aahISEpTUFGXaNLjvPls5asMGOOWUYEckIhKRXN1IO7c7aXVLG852/sgzjGAUz7jt53CcLOZX0CrgkVy7JmB1alatWsX48eOpVasWUVFRREVF0alTJyZPnsyIESNKFLQv6tWrR6NGjfjjjz8K3CcmJoaqVau6XcQLI0bYldR27LBTvUVExC+cTjtkcd48GD/eftR26wZf3DyLs50/cpBqjOfRfI8zxiYzBSU0rn1c60GVVT4nNU6nkypVqgBQs2ZNdu7cCdjBxBs2bPBvdIXYv38/27dvp55qRPtfxYq2EB/Yn3//jUVEpPiSk08mMf37w5gxNkmpwmEmYKu5j+dRDlCjRM9TlteD8jmpadmyZU4xvvbt2zNt2jS+/vprxo8fT9OmTYsdyJEjR1i3bh3r1q0D7DTydevWsW3bNo4cOcLdd9/NqlWr2LJlC8uWLaNXr17UrFmTq6++utjPKYW47jro0AGOHXNbOiH3WcayZfa2iIgULjnZjoXx1NJyL9Oox27+4HReoORrKJbpc33jo6VLl5qFCxcaY4zZtGmTad68uXE4HKZmzZrmiy++8PVwOVJSUgyQ7zJgwABz7Ngx0717d1OrVi1Tvnx507BhQzNgwACzbds2n54jLS3NACYtLa3YcZYpq1YZA8Y4HMasXWsWLjQmPt5ucl3i4435+99BREQ8yMrK/9npujRkizlGRWPA9CHZ4z6uj+H4eHtxOAreJyHBPl+k8fb72+eBwp4cOHCAU089NWcGVKhSReFi+Ne/4K232Ne8E7XXf4XB/W8c6SPuRURKWhNm2TLb5eTJPPrRj/mk0JWL+RLI/z3qafYTuM+AivTP4oANFPakevXqIZ/QSDFNmYKpXJma6//DdbyT727Xm2rUKHVFiUjkyTsOpls3ezs52ftjFDTGpRMr6Md8nEQxiiQ8JTRgZzS5kpXERHvdNRPK0z5lmVctNYmJicyaNYuqVasWOH3aJdmXv3QpU0tN8aTe+hhNZj7KNhI4i984TmWP+6WkqAixiEQO1ziYktaE8dRSE4WTbzmfNnzPS9zB//GS2/21asHTT9vkRRWF/bz2U1xcXE5LTFxcnH8ilLDxbZe7iZr5Ko3Yxj08znjGeNyvLI+4F5HI4nTaqr2eTvuNsYnNqFHQu3fRyUTnzrYlZceOk8e7hZm04XsOEccjPJazrytheumlwhOm6GidRHri05gaYwzbtm2jVq1aVK7s+Ww9lKmlpniWLYPp3d7hHfpyjEqcyQb+R0K+/dRSIyKRorBxMLl5+7nnavUBiDVp/M4Z1GEPd/IUSdyZs19CAiQlqRspr4CMqTHG0KxZM3bs2FHiACV8dO4Mqxpcx1d0pjLHmcp9bvc7HPaN6Idi0iIiIcHblmdv98s9FuZhJlCHPfzGmbzfYCjjxsHcuTZBSk1VQlMSPi1oGRUVRbNmzdi/fz/NmjULVEwSYqKj4ZlnHYy65hnW0Jb+zGM6/+ZrOuU0lSYlFdwEW9b6fkUk/Hlb68WXmjCJidC7+e84zn0GsiBz8lP8cU8FfR76kc+zn6ZNm8Y999zDzz//HIh4JEQlJsLDC8/j7VMGAfAsI4jCWeSIe3/MHBARKW2ucTAFTewtVgu1MUTfNYqorBNw2WWce//lSmj8zOc6NaeeeirHjh0jKyuLChUqUKlSJbf7Dxw44NcA/UljakrOuWsPptkZlDuaxu93vshpjw8p8E3pr5kDIiLBkHscjF9qwnz4IVx1FZQvDz/9BGee6bdYI13AVumePXt2ofcPGDDAl8OVKiU1fvLcc3bRy+rV4fffoUb+dUqcTtsiUxZXkxWRyJGcbGdB5f4s8zSYt8hu9r/+grPPhs2b4b77YMqU0voVIkLAkppwpqTGT7KyoE0be6YxZAi8+GK+Xfw9c0BEJFiKSlg8JT7x8fDMM7kSnwkT4JFHoH592LAB/l4YWrzj1zo1BTl+/DgnTpxw26ZkoQwoV8621nTtCi+/DIMH2yQnF3/PHBARCZbCasIU1M2+Y4fdvmABJLbdCpMm2TueeEIJTQD5PFD46NGjDBs2jNq1a1OlShVOPfVUt4uUEV26wA032HfysGGQne12dyBmDoiIhJKiCvSBLdBnRt8Fx4/DRRdBv36lGmNZ43NSc++99/Lll18yffp0YmJiePXVVxk3bhz169dnzpw5gYhRQtXjj8Mpp8CqVfDmm253BWTmgIhICFmxouBxg2ATmzO2f44jeaFt7nnuuYI/FMUvfE5qPvzwQ6ZPn861115LuXLl6Ny5Mw8//DCTJk3irbfeCkSMEqoaNIBHH7XX770X0tJy7oqOtv3JkP897Km2jdNpx+HMm2d/anFMEQl1RXWflyeTZxlhbwwdCueeG/igyjifk5oDBw7QpEkTwI6fcU3h7tSpE1999ZV/o5Og8irRGDXKTkv88087CC7X4zIyYOzYoleTVS0bEQlHRXWf38nTtGA9mdVqwbhxpRNUGefzQOGmTZuyZcsWGjVqRIsWLXjnnXe44IIL+PDDD6lWrVoAQpRg8Go0P0CFCvD883DppfDCC3zZcCADnmnj9rgGDez7uVmz/DMHvBpkp1o2IhKCPC1U6ZLANh5lPADlnn4C9P1YKnye0v30008THR3NiBEjSElJ4YorrsDpdJKVlcVTTz3FyJEjAxVriWlKt3eKVTTvhhvg7bdZTXs6shKTqxGwoMeplo2IhLuCCvQtJJFEFrGveWdq/rJcY2lKyO91akaNGsVtt91Gy5Yt3bZv27aNNWvWcNppp9GqVauSRR1gSmqKVtxEw7l9J8canUWsOcxgZvAqg4t8nGrZiEgkyNuyfTlLWMKVZEeXI2rd95Dne1N85/dVupcuXUqrVq244IILmDFjBunp6QA0bNiQxMTEkE9oxDvejObfvt3u5/a4TfV52DwGwFTuoyZ7i3ycatmISCRITIQtW+wJ2PxZx1lQbzgAUaPvVEJTyrxOan777Te++uorzjnnHO6++27q16/PzTffrMHBEaa4icauXfACQ1lHK6pzkCncX+jjnE47ttgbqmUjIqHOVaDv+k2TqbQr1TZNu2aHSqnxafbTP/7xD1577TV2797Nc889x5YtW+jatSvNmjVjypQp7Ny5M1BxSikpbtG8evXASTn+D7tkwiBepyNfe3yca7bTnXcW/hyqZSMiYeX332HqVHv9mWdUOTgISrz206ZNm3j99dd58cUXOXLkCJmZmf6Kze80pqZorjE1nkbzQyFjanI97mUzmMG8yk+0pA3fkUX5nMc99RRcf73nY+d9HtDsJxEJE8bAJZfAl19Cz56wZIkGB/uR38fUeHL06FGWL1/O8uXLOXToEKeddlpJDichwNeieZ4e9wBT2EMtzuFn7uaJnMc9+aRtnfEmjc5by0ZEJKS9+aZNaCpWtGUulNAERbGSmq+++opbbrmFunXrMnLkSM444wxWrFjB+vXr/R2fBEFiok0oiiqaV9DjKsXXYDRPAfAo4/lH3U0sWAC1ahU+CNnl6adtS5ASGhEJC/v2wejR9vqYMdC0aXDjKcO87n763//+x+zZs5k1axabNm2iffv2DBo0iH79+lElTPoN1f3kG6fTzlbatSt/0bwiH/eV4azhl1L3ly8wl1yK49NPmPe2g/79i3783Lm27I2ISFi49VaYOdPOdPruOyhfPtgRRRxvv7+9rijcuHFjatSowU033cSgQYNo3ry5XwKV0OUazV+sx3VzwHsvQcuWOD7/DObOpV6DG716vGY7iUjYWLbMJjQOB8yYoYQmyLzufnrnnXfYsWMHTzzxhBIa8c7pp+esB8Wdd9L57ANauVtEIkdGBtxxh70+ZAh06BDceMT7pCYxMZFy5XxeKkrKunvugRYtYO9eoh+4t1iDkEVEQtLkyXYad926MGlSsKMRSjj7SaRIFSrAyy/b66+9RmL1ZcUahCwiElLWr7dJDdipn1qwMiSUuE5NONFA4SAaMsQmN6efDj/+iLNCpWINQhYRCbrsbPuhtXIlXH45LF6sKdwB5vcFLSOBkpogSkuz3VA7d8J998GUKcGOSESkeJ5/HoYPtxWDf/3VDgaUgApY8b1bb72Vw4cP59t+9OhRbr31Vl8PJ2VFXBy8aJdQ4Ikn7LRHEZFws3Ur3P/32nZTpyqhCTE+JzWzZ8/m+PHj+bYfP36cOXPm+CUoiVBXXWXXSHA6YdAgOHEi2BGJiHjPGNuVfvQodOpkr0tI8TqpSU9PJy0tDWMMhw8fJj09Pedy8OBBPvroI2rXrh3IWCUSPPssVK8O69bZdRNERMLFW2/B0qUQEwOvvgpRmmsTaryeo12tWjUcDgcOh4Mzzjgj3/0Oh4Nx48b5NTiJQHXq2HUQBgyAsWPtdCcP/08iIiFlzx4YNcpef/RROPPMoIYjnnmd1KSkpGCM4eKLL2bhwoVUr149574KFSrQqFEj6tevH5AgJcLcdJM94/n0U9sNtXy5znhEJLSNGAH790OrVrb+loQkn2c/bd26lYSEBKLC8EtIs59CyNatdp2UI0dsjYcRI/LtUqK1pzRdXET8ZeFCuPZa+0Hy3/9C27bBjqjMCeiU7kOHDvHNN9+wZ88esrOz3e67+eabfY+2lCipCTEvvQT/939QqRL8+KOtYfO35GQYOdJ9Ve/4eJv/FFagr7iPExHxaN8+OPts2/300EMwYUKwIyqTApbUfPjhh9x4440cPXqU2NhYHLkKDjkcDg4cOFD8qANMSU2Iyc6GSy+FL7+Eiy6ClBSIiiI52Z4U5f3PdP2rFVR5uLiPExEp0A03wNtv28Rm7Vo7SFhKXcCSmjPOOIPLL7+cSZMmUbly5RIHWpqU1ISg1FQ45xw7RfLZZ3H+eziNG7u3tOTmcNiWl9RU9y4lpxOfHqcuKpHwVirv4eRkuOYae+DVq6FdOz8/gXgrYMX3duzYwYgRI8IuoZEQ1aQJPP64vX7//Xz79qYCExOwrTDbt9sPs9xWrCg4ocn7uORkmwB16wb9+9ufjRvb7SIS+krlPbxvn+0eB1sFPU9C43TCsmUwb5796XT68bml2HxOanr06MGaNWsCEYuUVXfcYT+Vjh2j6YRbcZBd5EN27Sr8dkHef992UeVNgHbssNuV2IiENlc3c8Dfw8OH23E0Z59tp3DniUEnRqHJ56Tmiiuu4J577mHs2LEsXLiQDz74wO1SXF999RW9evWifv36OBwO3nvvPbf7jTGMHTuW+vXrU6lSJbp27covv/xS7OeTEBIVBa+9BqecQu3fvmI4zxX5kHr1Cr9dkLfeyj/mBk5uGzVKZ1wiocrptBMBAv4eXrjQjqOJjoZZs9zG0ZRaUiXFY3zkcDgKvERFRfl6uBwfffSReeihh8zChQsNYBYtWuR2/5QpU0xsbKxZuHCh+emnn0zfvn1NvXr1THp6utfPkZaWZgCTlpZW7DglgKZPNwbMcSqas1hv7MeU+8XhMCYhwZisLPeHZmUZEx9v7y/ocbVqeb4v7yUlJSi/vYgUISWlFN7Du3YZU6OGPdCDD7rd5fqcKeh5C/p8kpLz9vvb55aa7OzsAi/OEqTHPXv2ZMKECSR6mJ5ijCEpKYmHHnqIxMREWrZsyezZszl27Bhz584t8JgZGRluyzmkp6cXOz4pBUOGQI8eVOQvZnMz5chyu9s1iykpKf+AwOhoO2079355H3fjjd6F4W1XloiULm/fm8V+DxsDgwefLLI3Zozb3b6M3ZPgKFEFvb/++stfcRQqNTWV3bt3071795xtMTExdOnShZUrVxb4uMmTJxMXF5dzSdBqqqHN4bDdUNWqcQHfMrnqZLe74+MLn5admGjvb9AAj4/r3du7MLztyhKR0uXte7PY7+GZM2HxYqhQAd54w/7MJeBJlZSYz0mN0+nkscceo0GDBlSpUoXNmzcD8Mgjj/Daa6/5PUCA3bt3A1CnTh237XXq1Mm5z5MHHniAtLS0nMv27dsDEp/4UYMGMH06AHcdG8+3L61l7lxbwiY1teg6M4mJsGWL3T/v4zp3tglO3pYcF4cDEhLsfiISegL6Hk5NtQN2wBbYO+ecfLsEPKmSEvM5qZk4cSKzZs1i2rRpVMiVxZ5zzjm8+uqrfg0uL0ee/2RjTL5tucXExFC1alW3i4SBfv3guutwZGXR7pmbuKHPcbp29b4GRXQ0dO1qa2blfpw3XVSeurZEJDQE7D2cnQ0DB9plWzp1gtGjPe6mE6PQ53NSM2fOHGbMmMGNN95IdK7/nHPPPZfffvvNr8G51K1bFyBfq8yePXvytd5IBHA4bGtN3bqwfr0tTe4nRXVRqeKwSGgLyHs4KQm++gpOOQVmzy4wK9KJUegrVvG903Ot0eOSnZ3NiRMn/BJUXk2aNKFu3bp89tlnOdsyMzNZvnw5HTt2DMhzSpDVrAmulr+nn4bPP/fboQvrohKR0OfX9/CPP8IDD9jrTz0FTZsW+dw6MQpd5Xx9wNlnn82KFSto1KiR2/Z3332X8847r9iBHDlyhI0bN+bcTk1NZd26dVSvXp2GDRsyatQoJk2aRLNmzWjWrFnOMg39+/cv9nNKiLviCjsj6qWXYMAA++FTo4ZfDu3qohKR8OSX9/Dx47Z6XmYm9OplZz55ITHRTjzQUiuhx+ekZsyYMdx0003s2LGD7OxskpOT2bBhA3PmzGHx4sXFDmTNmjV069Yt5/bov/s0BwwYwKxZs7j33ns5fvw4//73vzl48CDt27fn008/JTY2ttjPKWHgySftadiGDbby8LvvFtyhLSLii/vvh19+gTp17MxLHz5bdGIUmnxe0BLgk08+YdKkSaxdu5bs7GzatGnDo48+6jblOhRpQcsw9d13cOGFcOKE/eC59dZgRyQi4W7pUujZ017/+GO47LLgxiOFCtgq3eFMSU0YmzrVnlWdcgqsWwcexnWJiHhl7147ZfvPP+0aT88+G+yIpAgBW6VbJCjuvhu6dIGjR21p4AANSheRCGcMDBpkE5qzz7YnTBIxvBpTc+qppxZaDya3AwcOlCggEY+io22Fz3PPhW++gbFjYeLEYEclIuHmxRfhww9tteC33oJKlYIdkfiRV0lNUlJSzvX9+/czYcIEevToQYcOHQBYtWoVn3zyCY888khAghQBbFWrl1+Gvn1h8mS4+GKcXf+pGQgi4p0ffzxZWG/KFGjVCqdTs5giic9jaq655hq6devGsGHD3LY///zzfP7557z33nv+jM+vNKYmQtx+O7zyCn9Vq8uFlX7gh121c+6Kj7fFsVQrQkTcHD0K7drBb7/ZchEffkjyIgcjR7ovUqnPkNAUsIHCVapUYd26dfkK8P3xxx+cd955HDlypHgRlwIlNRHi2DHSzzyfqv/7lY+5jCtYgvl7eJirl1RFsETEzaBB8PrrUL8+rFtH8opaXHutHWKTmz5DQlPABgrXqFGDRYsW5dv+3nvvUcNPhdFECuOMqUziifkcpyI9Wcponsq5z/UBNWoUOJ3BiU9EQsy8eTahcTjgrbdwVq/FyJH5ExrQZ0i487n43rhx4xg0aBDLli3LGVOzevVqli5dGvAFLUXA9n9/8WdLRvIMM7iDyTzAcrqwhvMB+6G0fbvdT8WxRMq4TZts4U6ARx6Brl1Zscy9yykv12fI2LHwz39qnE048bmlZuDAgaxcuZJq1aqRnJzMwoULiYuL4+uvv2bgwIEBCFFCmdMJy5bZE6Fly0rnzGbXLvvzFQbzDtdRnizm05c4DnncT0TKqIwM6NcPDh+2mcnfk1m8/WyYMAG6dYPGjSE5OXBhiv/43FID0L59e9566y1/xyJhJjmZoAyyq1fPdc3B7czgfL6lKam8zq1cw0LAkWc/ESmT7r4b1qyB6tXt9O1y5XA6bYkaX+zYAddeq3E24aBYFYWzs7PZuHEje/bsITs72+2+iy66yG/B+ZsGCvtPcjJBG2TndNozpx077PO3ZQ1f8w9iyGQUT/OsYxTx8XbVXjUZi5RR77xjyz8ALFkCl1/u8UTMWw4H+lwJooDNflq9ejX9+/dn69at5H2ow+HAGcIjq5TU+IcrqSjog6E03vyupApsYvNvXuAFhnGCcnThK+5e2EFnVCJl1e+/2+nbhw/DAw/ApEkFnoj5KiVFY/WCIWCzn4YMGUK7du34+eefOXDgAAcPHsy5qJpw2bBihXeD7FasCFwMiYm2NahBA3t7Ov9mPtdTniw+r3E9iRftC9yTi0joOn7cZi+HD9ulVcaPx+mkwNlOvtJYvdDm85iaP/74gwULFuSrUyNlh7dv6kC/+RMToXdvVzVQB/XjXsXcuY7Kv/8ON98MixdDlJY3EylThg+Hn36C2rXtDIZy5Yqc7eQLjdULbT5/4rdv356NGzcGIhYJE96+qUvjzR8dbZuCb7gBOl8ei+Pdd6FiRfj4Y7uUgoiUHbNmwWuv2T7wefNyPoS8PcGqXv3kuMC8HA67Ukvnzv4JVQLD55aa4cOHc9ddd7F7927OOeccypcv73b/ueee67fgJDR17mzHzLgG6ublGlMTlDf/uefCCy/Y6qGPPGL71Xv0CEIgIlKqvvsOhgyx18eNg4svzrnL2xOskSNtbRqHw/2zzZXoJCVpkHCo83mgcJSH5nyHw4ExRgOFy5C8A3VdQqbE+N/rQ3HqqbB2LTRpEsRgRCSg9u+Htm1h61a48kp4/323rue8Mybzyj254f3388+QSkiwCY0mHwRPwGY/bd26tdD7GzVq5MvhSpWSGv/yND0yZN78GRlw0UXwzTfQujV8/TVUrhzkoETE75xO6NkTPvsMTjvN1qWpVi3fbr6ciGnl7tATsKQmnCmp8b+QfvNv327P3vbuhZtugtmzC+4wF5Hw9NBDMGmSPWlZvRrOOafAXUP6REwKFdCk5o033uCll14iNTWVVatW0ahRI5KSkmjSpAm9e/cuUeCBpKSmDEpJgUsugexseP55GDo02BGJiL+89x5cfbW9PneunTFQhJA+EZMCBaxOzYsvvsjo0aO5/PLLOXToUM4YmmrVqpGUlFTsgEUCols3mDrVXh81KrDFc0Sk9Pz6qy3dAPa97UVCA+4zJrt2VUITaXxOap577jleeeUVHnroIaJz/Te0a9eOn376ya/BifjFXXfB9ddDVhZcc40dTFiKgrHop0hEO3jQFqlyFdibNg3Qe02KkdSkpqZy3nnn5dseExPD0aNH/RKUiF85HPD663bA8N690KcPlNL/anKynXXRrRv0768Vf0VKLCvLrum0cSM0agTvvgvly+u9JkAxkpomTZqwbt26fNs//vhjWrRo4Y+YRPzvlFPsXM1atWDdOrj1Vv/UTC+Ea7ZF3kqmrhV/i/qw1VmniAf33mtnOlWunPOeLul7TSKHz0nNPffcw9ChQ5k/fz7GGL755hsmTpzIgw8+yD333BOIGEX8o2FDWLgQype3K/gGsOJwYWvNuLaNGlVwoqKzTinLCkzoZ8+Gp5+21+fMgVatSvxekwhjimHGjBmmYcOGxuFwGIfDYeLj482rr75anEOVqrS0NAOYtLS0YIciwfTyy8aAMQ6HMe+/H5CnSEmxT1HUJSUl/2MXLrSh5d3X4bCXhQsDErJISFi40Jj4ePf//fh4Y76cvMqYChXshkcfzdm/JO81CR/efn8Xa7W/wYMHs3XrVvbs2cPu3bvZvn07gwYN8m+2JRIot98O//63/azr3992R/lZcRf91FmnlGUFdSOV+98WWjzQGzIz7RTuMWNy7guVBXYlNBR7CeM9e/awfv16fv/9d/bu3evPmEQCLynJ1q85ehR69fL7J15xF/1csaLw1YSNsTUFNTNdwlVBXUsFJfSxpPMBvajDHn4u3xrnzDluSyCE0gK7Enw+JzXp6encdNNN1K9fny5dunDRRRdRv359/vWvf5GWlhaIGEX8r3x5O2virLNsFnHVVXDsmN8O71r009cVf3XWKZGssLFinhL6aLKYT1/O4Wd2Uo/LTnzIiu+ruO1T3PeaRCafk5rbbruN//73vyxZsoRDhw6RlpbG4sWLWbNmDYMHDw5EjCKBUa0aLF4MNWrY9WJuuslWHvaD6Gh45hl7Pe+HbWEr/uqsUyJVUTOU3n8//2Oe5k56spRjVKIXH7KD+HwJfXHfaxKhfB2sU7lyZbNixYp827/66itTuXJlXw9XqjRQWDxaseLkAMT77/fpoVlZdgDi3Ln2Z1aW+/2eBj0mJBQ82Dcry+7vaaCwa7BwQkL+5xEJZa7/64IG8TocxtSq5b5tGM/m3LiahUUO+PX1vSbhxdvv73K+JkE1atQgLi4u3/a4uDhOPfVUP6RZIqWsUyd47TXbUjNlCjRpYgcTF8HT4njx8fas0bU4XmKiLXzq7VozrrPOa6+1Z5meVhPWWaeEG2/Giu3da8tI7dsHV5gPSWIUAPcylUUk4nDY91dB3Ui+vtckQvmaLb388svmkksuMTt37szZtmvXLtO9e3fz0ksv+Z5+lSK11Eihxoyxp3fR0cYsXpyvFSYj4+TtceMCO+1aZ50SSebO9W7a9ahRxlzAf81RKhkD5hUGGchWOQPx+vvb51W6zzvvPDZu3EhGRgYNGzYEYNu2bcTExNCsWTO3fb/77jt/5V5+oVW6yyavV+U1xlYanjWLrJjK9I5bzkd72uXcHR3t3VRq1xllamrJzhK1mrBEimXL7KDgoqx+cyOt/t2Riul7+Yie9OZ9sihPQoJtoXS1gErZ4+33t8/dT3369ClJXCKlypsuohwOB8yYwZ/f76TOD5/y+p4r6MAqUmkKeF8bJve0665dix+7azVhkXDnmqG0Y0fBq5M0q7aXc+7rScX0vZg2bYid8A5zDpVXQi8+8bmlJpyppaZscc22yPsf7hqbsmBB/sTG6YSzGx5m3s6LOI91/E4zOrKS/dT0+fnnzoUbbihm8CIRxvV+hPzvyUoc40su5kL+y7boxvz08iquGFS39IOUkOXt93exiu8dOnSIV199lQceeIADBw4Atqtpx44dxYtWxM+KW5l3xQrYsDOWy/mIrTTkDP5gMVdyCkd8jkHTrkVOSky0JxINGrhvL8cJ5tOXC/kv+6lOd+dSeg2uq3XOpFh8Tmp+/PFHzjjjDKZOncoTTzzBoUOHAFi0aBEPPPCAv+MTKRZfK/O6qpwuXGhv76Yel7GU/VTnQv7LQq6hPJlePbeKfYl4lpgIW7bA559D9ergIJvXGEQvFnOcilzFB2zgTEDLgUjx+JzUjB49moEDB/LHH39QsWLFnO09e/bkq6++8mtwIsXlS2Xe3FVOn3/+5H2/0ZwrWMJRKtODT5nDzURR+Kespl2LFC462l4OHDA8yV3czBtkEc21LGAl/wC0HIgUn88Dhb/99ltefvnlfNsbNGjA7t27/RKUSEl52/Xzxx8wdmzBgxf/y4UkksyH9KIf89lPDYbxPOC5Jnt8vGZpSGCE42y4gmLetQseYDJ3kgTALczkI67I93jXyUlxf/dwfM2khHydK167dm3z3XffGWOMqVKlitm0aZMxxphPPvnExMfH+3q4UqU6NWWHN5V54+MLr3Ka+3I9bxsn9mBjeTTnGGBr1hRUUVjEHzzVLYqPD+26LYXF/Nvol3M2jiCpwPddSkrxf/dwfM2kYN5+f/uc1AwePNj06dPHZGZmmipVqpjNmzebrVu3mvPOO8+MHDmyuPEWacyYMQZwu9SpU8enYyipKVsWLjxZDM9Tgbxx47xLaFyXfzum59y4kyfLXDG8opaEkMBw/R8HqtBjIBQWcz/mmey/75zAQwWedCQkGPPuu8X73cPxNZPCBSypSUtLM//4xz9MtWrVTHR0tElISDDly5c3F110kTly5EixAy7KmDFjzNlnn2127dqVc9mzZ49Px1BSU/YUVpnX2yqnw4adrCi8+dbHcu5wPj892L9eqdFZb3B4s2ZSINYCK0kCW1jMfUg2J4g2BszGS4cYx9/Vgj0lHu+8U7zfPVivmQRWwJIaly+++MI8/vjjZurUqeazzz4r7mG8NmbMGNOqVasSHUNJTdlU0Ad0Sop3SY3bAnrZ2XbRS9eds2aV+u9T2nTWGzzF+h8toZImsAXF3IOPTQbljQEzi5tNyhfOQk86ivu7B+M1k8AL2IKWLhdffDEXX3xxSYf0+OSPP/6gfv36xMTE0L59eyZNmkTTpk0L3D8jI4OMjIyc2+np6aURpoSYgirzFlXl1OMCeg4HTJoEx47Bs8/aZRUqVoS+fQMVflAVVe/H4bBTb3v31gDMQPBlFp8/FFSwcscOuz13wcrCBgHn1ZUUFnE1FTjBfK5nEK/xxp9R3HBDwYtQzpvnXcx5n6+0XzMJLT5N6c7Ozub111/nyiuvpGXLlpxzzjlcddVVzJkzB+PpU8+P2rdvz5w5c/jkk0945ZVX2L17Nx07dmT//v0FPmby5MnExcXlXBISEgIao4QX14rYcHIqtkuhU7MdDnvH4MGQnQ033gjvvQecrHczb579Ge51Nnyt9yP+5e0sPn8UevSlYGXuMgj9+9ufjRvb7Xlj6cBKPqQXlfiL97mKf/EmTsrl7Oc66bjhBvvT9X4r7u9emq+ZhCBvm36ys7PNFVdcYRwOh2ndurXp16+f6du3rzn33HONw+EwvXv3LmHjkm+OHDli6tSpY5588skC9/nrr79MWlpazmX79u3qfpJ8ir0idlaWMf/6l31A+fJm5X3vRdy4E2/HHc2dG+xII5M3s/j8NT7E226bolaod42FcTiM6cDXJp0qxoBZSncTw3GvYy7u716ar5mUHr+PqXn99ddNbGys+fLLL/Pd98UXX5jY2Fgze/Zs3yMtgUsuucQMGTLE6/01pia8BXL2TbGPfeKEMX37GgMmg/LmKt6LqHEnGp8QfEXN4vPX/5a3CWz16gXfl3vW0j/4T05C8wXdTCWO+hxzcX/30nrNpPT4Pam59NJLzeTJkwu8f+LEiaZ79+7eR1hCf/31l2nQoIEZN26c149RUhO+Qnn2TdZfJ8x7lfoZAyaTcqYPySF9ZuhLAqez3tBQ7NZEH3ibwHpz+e7ZFeZExVOMAfMZ/zSVOFrsmIv7u5fGayalx+9JTZ06dcz3339f4P3fffedz3VjfHHXXXeZZcuWmc2bN5vVq1ebK6+80sTGxpotW7Z4fQwlNeEp1GffpKQYE80J8yb9cxKbq1kYkq0ZxUkOddYbGgJdJ8ibBLawVhrXpRNfmcwYm9Bk//MSs/zjoyWOubi/u2orRQ6/JzXly5c3O3fuLPD+HTt2mAoVKngfoY/69u1r6tWrZ8qXL2/q169vEhMTzS+//OLTMZTUhJ9wqDnharaP5oR5gxtzEpvrmO8Wa7DHnZQkOdRZb9lQ0oKVXfnSHMYmNObSS405dizYv5JECL9P6XY6nZQrV/Du0dHRZGVllWDIcuHefvvtgB1bQpcvs288TdsuDa5ZFE7KMYDZZBPFzbzBPG7gFI4yi1vc9guG4kzNzjtld9MmWLlS6+hEssREO2175Ej3951rTbPeveGVVzyXQbicJSzkGiqSgbm0O47334NKlUozfBHvF7Q0xjBw4EBiYmI83p+7HoyIv4RDzYnc9W6yTTS3MJPjVOIOZjCTW4nlCO8lDHevd1PKfE0Ok5M9f7E984ydeivhoTgLOiYmFlw7Buz/wLXX2kTYldhcxzu8xY2UJ4ud5/em/gdv2/pNIqXM66RmwIABRe5z8803lygYkbzCoeaEq96N64M+20QzhJc4TCx38yTPMoI7Oh8mOuoBClrdO9B8SQ59KcAmoauwxLSov19BBSshf2vOLbzOKwwmmmy2de5Pwy9mQfny/vo1RHziMMZTg3RkSk9PJy4ujrS0NKpWrRrscMQLTqct6lVU1d/U1OB3heT/EjE8WXU8o9PH2pv33gtTpuSv9Id3Z9TFOet2WbbMFkgryuefw8CBBbfqhNLrLQUrKDF1/ev5IzF1OmHzyGdo9sIoALIH307Ui9P1jyEB4fX3d2kM8AkVGigcnsJp9o3H2RZPPHEy6IEDjcnMdHuMNzOSSjql3dup2Z9/7t2U3VCYySWelcrg+rxroN11l90mEiABX9AyHCmpCV9hP/vm1VeNiYqygV9+uTF/r2jvzYwkf01p9yY5VAXh8BfwgomZmcYMGHDyQBMmKKGRgAv4gpYipamowYshb9AgqF0brr8ePvoI/vlPnB8sYeTIGoXOSBo58uRtT/sADBkCx49DgwaFvyZFzWxJTLTdVN7QujmhK6CD648ePfk/HB0NM2bYRV1FQoTG1IiUppUr4cor4eBBjiWcSYvtS9lKY78d3puBoJ7G5oDdtmMH3Hkn7NsX+mOYxDNvx0+lpPhYBmHfPvu/+9//2qna77xjb4uUAm+/v5XUiJS29euhRw/Yvp0/qU0vPuRbLvDLoYszENTTLBl/HVtKX1GD6wFq1YKnny66dS/Hhg1w+eWweTNUrw6LF0OHDv4OXaRA3n5/R5ViTCIC0Lw5rFrF4dNbU4c9LKcL17DAL4d2fYmNGmW/3IrimiVTVEIDtoVGCU3oc5UYAI8T7QDYuxf+9S/botO4sf0/KFBKClx4oU1omjSBr79WQiMhS0mNSDA0aEDlNSv4vOIVVOIvFnAd9zIVOHlq7erqiY8v+MvJk9yF9ApTWJVhl1q14M037fdaaqoSmnDhGj/VoEHR+7rqD3lMbGbOhO7d4dAhm8j8979w1ln+DlfEb5TUiARJdFwV0ue8z7OMAGAq9/Mqt1GezJwk5plnij7rLkhRA0GLqjIM9oy+QQM79kJjaMJLYiJs2WIT0jfftAmqJx5b97Kz4cEH7SDgrCzo1w++/LLgg4iECCU1IkGUeF008Quf4eFqz+EkikG8TgrdOK/e7pyuHl/OunMraoZSOCxBISXjqgzcoIFNUAvi1rqXlmanGk6ebO98+GF46y0teyBhQUmNSJAlJsK4fcP4ZeoSMivH8Q9WssbRjsSGa9z2yXvWXVDLjcMBCQkUudaUP5agcDrtbJt58+xPT+N4vNlHAsvbxPTId7/b8TOLF0NMDLzxBjz2GETpq0LCRCnUzAkZKr4nIW/DBmOaN7dFzWJijJkzx+Nu/qiy7G2V4YIqz5ZGJWTxD28K8vVkiTlxStzJP9K33wY7bJEc3n5/K/0WCSVnnAGrV0OvXpCRATffbEfzZma67VZQl5QvM5QKmyXjup2U5HksTUGzpnIPOvVmHykdrpXkPbXuOcjmYSawmCspdzQN/vEP+PZbaNeu9AMVKSHVqREJRdnZMHasbfoHaN/eFjtr2NBtt5IscuniqU5NQsLJKsN5ueqgFLbopSvZ8nZhTH/8HlI4V5IJJwcH12Afb3ATPVlqN9x+Ozz3HFSoEJwgRQqg4nseKKmRsLN4Mdx0k51SW726HVDTs6ffn8aXpMLbirXeSEmBAwc8L91QVGVk8V3uBLY9q3mH62nIdrIqVKLcy9PtEu0iIUjF90QiwZVXwnff2a6AAwdsVdeHH7bTbP3INUvmhhuKnr7tz9lQ77+vLqrSlJgIW1INfwxNYmV0ZxqyHdOsGeXW/FcJjUQEJTUioa5JE/jPf+Df/7a3J06ELl1s300Q+HMxy7feKnyxTm8rI4uX9uwhuveVnP7CnUQ5s+C663CsWQPnnBPsyET8QkmNSDiIiYEXXrDzoqtWtQtjtm4Nc+eWeiiFDToF7yohOxx2WrrXtVOk5JYuhXPPtStsx8TYsTPz59v/J5EIoaRGJJz06wc//AAdO0J6Otx4ox1zk55eaiF4M2uqsErIrts33ujd86n4XwllZNil13v2hD//hJYt7eymYcN8L1MtEuKU1IiEm8aNYflyOzsqKsoOHj73XPjii1ILwZsp5QXt06CBDb1KFe+ey5/dXWXOmjXQtq2dygY2kfnmG3U3ScTS7CeRcPb117alxjW+5t//hqlTvc8YSsibWVO59/njD3jlFe9WBc877Vt8kJlpywFMnmz/ALVrw+uvwxVXBDsykWLRlG4PlNRIRDpyBO67D6ZPt7ebNLFfYF27BjWsvFx1Urz5xHH1inhbSFBy+f57GDAAfvrJ3u7Xz46fqVkzuHGJlICmdIuUFVWq2EHEn39ui/OlptpCMrffbqeBhwCn09ZH8fYUypfKyMES7DWt8j1/+lGb3J5/vk1oataEd9+1OxSS0AT79xDxJ7XUiESS9HS45x6YMcPerlULnn4a+vcP6qBQbwv2Pfww/POfoV9R2FMV5vh4eOop+5IHujJy3ufvyUe8FD2Uhs4tdsO119pEt3btYv0eKnwooUbdTx4oqZFQEfBlAVasgDvugPXr7e1LLrHdU82a+fFJvDdvns2rijJ3ri0A6M/Xx9+vtS/daIFIEHI/fz12ksQoruddALbSkB33P0/Hyb18Ok5u6vqTUOT193cAF9UMOVqlW0JBqa1cnZFhzMSJxlSsaJ+kfHlj7r3XmCD8/3uzSjTY/fz5+vj7tXatbO7N7+Lrqum+PH8Mx839TDKHOcUYMCeINtO421ThcKErq3v7exS1QrtIafP2+1tJjUgpWrjQfmEE+svPzcaNxlx22cknq1PHmNdfN8bpDMCTeeb6EvX0u+f+En33Xf+9PoF4rb1NzgKVIKR8mW36kGw20STnCVZyoWnF9/mSQ3/8HkUdR6S0ePv9rYHCIqWksMGyAV0W4LTTbBXZxYtt99Off8Ktt8IFF9gVJUuBNwX7nnzS1ojzx+sTqNe6OIUA/VYZee1azhp+CYtIpCmp/I8G3MibdGQlP9Dapzi9/T1U+FDCjZIakVKyYkXh9VkCuiyAw2FrlPz8MzzxhC2Nv3YtXHwxXHaZXTQzwIoq2Ferlv9en0C91iUpBFjsBGHDBrj+emjXjrq/fMlxKjKeRziTDczlRiD/APCi4vT291DhQwk3SmpESklInB1XqAB33WWr4A0bBuXLwyef2Kqz/frB778H8Mn/XiV6i20gmjvX/kxNtdv9+foE6rUuat2rwvicIPzvf3Za/tln26nZDgfZ/7qJi+uuZ6xjPMc4Jd9DHA5ISLBxFsab9bu8OY5IqFFSI1JKQursuHZtW5Dtt9/sIkwOh13csHlze/uXXwL21NHRti7gDTfYn66ZSP58fQL1WhfWjVYQnxOELVtgyBDbbfjKK7aPrFcv+OEHot6Ywz0vNPb4/K7bSUlFz+7ypjvQm+OIhJxSGuMTEjRQWILJ28GyQZlxsm6dMVde6R7QNdcY8913pRaCP1+fQL/WnmZVlWT2U1aWMavnbDCbLhposqOicw7w51mdzXfPrsgXp6fnT0jwffCzv44jEmia/eSBkhoJNteMnLxftgGd/eSLtWuNSUx0D+7SS41ZsqRUZkv58/UJ9GudlWVnB82da3+++24xEoTsbLNs/HLzUcWrTRZROQ/8lEtNZ5bnHMfTNPS8z1/cBM1fxxEJJCU1HiipkVAQyLNjv31B/fyzMf37GxN18ovWnHmmMdOnG3PkSMkDLYQ/X5/Sbonw+vXPyDBmzhxzoGkbt+A+4EpzAav9Og1dJBJ4+/2tisIiQRCIisIBKd2/ZQs8/7wd25GebrfFxdlxN4MHQ+vWJQu6AKFcUbhEfv8dXnsNZs2CPXsAOEYl5nAzzzKC9bQo8KHhsGp5SL3WElG0TIIHSmokUgW8dP/hw/aL+JlnYNOmk9vbtYPbboO+faFaNR+jLiOOHoVFi+DVV2H58pzNGTXrM3bfMGZwOweo4fXhUlJCbgF2QOtISWApqfFASY1EIqcTGjcuvC5LbiVa2yc7G7780rbcLFoEJ07Y7RUqQM+edkpTr15QubKPB44wmZl2qvy8efDBBzaxAYiKgssvh9tu4+3DV3DDTeV8PrRrfaxQonWkJNCU1HigpEYikbcrYOfml66Mfftgzhx4/XX3KeCnnAJXXWUvl11Wdlpwjh6Fzz6zScyiRXDo0Mn7mjaFgQPhllvsC0/x/m4Qei01RSXV4dBtJqFPSY0HSmokEnm7ArYnfvuC/PlnG8i8efbbyyU62g6s6NULevSAFi2KV7kuFBlju+I++ww+/NC2YGVknLy/fn3bLdevH5x/fr7f25UM7NjhXbdhqCYH3iZnoZaMSXjx9vvb97ZPEQkpQSndn1fLljBxIkyYAN98Y1sqPvwQfv3VfustW2YrGdeubb/ZunWzP884w3bJhANjbEaxfLn9hk5Jyd880bSpTeD69ClylKyrAN6119qEpbDEJpQL4oVEpWyRv4VdS8306dN5/PHH2bVrF2effTZJSUl09rJUp1pqJBL5esafW8DPnjdvtsnNkiXwn//A8ePu98fF2cHG559vL61b218m2ImOa3GoH3+Eb789edm3z32/8uXhwgvtulq9etmKzD62RHkaYBsd7b7YZkKCTWhCcVyKWmqkNERk99P8+fO56aabmD59Ov/4xz94+eWXefXVV/n1119p2LBhkY9XUiORyjVQE0K4KyMjw7biuFo5Vq+Gv/7Kv1/FinDWWTZBOOssm+Q0bGgvDRpATIx/4jlxAnbuhG3bTl5++822Lv32Gxw5kv8x5cvbdbIuvth+k3fs6JdB0XmnQnfsCCtXhsfU6KKS6lDtNpPwEpFJTfv27WnTpg0vvvhizrbmzZvTp08fJk+eXOTjldRIJPN0xu9JyMxIOXHCDjD+5puTLSHr19uZQ4WpXt39Uq2aTYQqVLBJR4UK9pfMzLSXEydsQnXoEBw44H7Jzi74ecqVs91j7drBBRfYlqRWrUqcVAWylkuw6sQUlFSHzP+ahL2IS2oyMzOpXLky7777LldffXXO9pEjR7Ju3TqW56r/4JKRkUFGroF76enpJCQkKKmRiJX3S23fPrjzTvdEJ5S7MsjKsqf069fbFpPff7ctKNu325+eWnZKokIF24zQsKF9Yc44w7YQtWgBp59ukyQ/CmQtl2DXifH0/CH9vyZhJeKSmp07d9KgQQO+/vprOnbsmLN90qRJzJ49mw0bNuR7zNixYxk3bly+7UpqpCyJmCqvxtgsbe9e28py8ODJn65WGdclO9u2qFSoYC8xMXb8TvXqcOqp9mfNmnbgcimN3wlkLZdQqRMTMf9rEnIiNqlZuXIlHTp0yNk+ceJE3njjDX777bd8j1FLjYiEgkDWclGdGCkLvE1qwmQuJdSsWZPo6Gh2797ttn3Pnj3UqVPH42NiYmKoWrWq20VEpLStWFH4WCfXZKsVK0Lr2CLhJmySmgoVKtC2bVs+++wzt+2fffaZW3eUiJRdTqedYjxvnv2Ze1p0MAWylovqxIicFFbF90aPHs1NN91Eu3bt6NChAzNmzGDbtm0MGTIk2KGJSJAFeqBsScaLeFsgsTiFFAN5bJFwE1ZJTd++fdm/fz/jx49n165dtGzZko8++ohGjRoFOzQRCaKCBsru2GG3l3SgbEkTps6d7f5F1XLxso5oqR1bJNyEzUBhf1CdGpHIE+iBsv6aWRTIWi6qEyORLuIGCouIeBLIgbJOp22h8XTq59o2apR3Y3cSE21y0aCB+/b4+JInHYE8tkg4CavuJxGRvAI5UNaXhMmbdY0SE6F378DUcgnksUXChZIaEQlbTif8+ad3+xZnoGwgEqbo6MAt7BjIY4uEAyU1IhKWfFnryteBsq6ZTr/+6t3+BSVMkVRhN5J+F4lcSmpEJOwUNHg3L9dA2aQk77+AvU2WXMcvKGEK9lpM/hRJv4tENg0UFpGwUtjg3bw8DZQtrECfK1nyNqEBzwlTQcdxTTFPTi76+KEikn4XiXya0i0iYWXZMujWrej9nn4ahg93TzgKa3Ho3bvwqeF5FbQCdSStxRRJv4uEN03pFpGI5O2g3Dp18ic0hbU4TJzoXULz8MOQkmK/yD11vUTSWkyR9LtI2aAxNSISVoqzLEBR9WYcDtta440WLQqfYRRJazFF0u8iZYNaakQkrLiWBXCNacnL4bBdQ7kH73rT4nDggHfPX1RSFUlrMUXS7yJlg5IaEQkr0dEnW1XyJjYFDd71tiWhenXfkiVPipN0hapI+l2kbFBSIyJhx9dlAbxtSRg50v70NlnypDhJV6iKpN9FygYlNSISlhITYcsWO2h37tzCB+962+Lw0EP+WUMpktZiiqTfRSKfpnSLSJngy0rW/qqeG0lVeCPpd5Hw4+33t5IaESkzPNWpKajejIiEDm+/vzWlW0TKDK1kLRLZlNSISJmilaxFIpcGCouIiEhEUEuNiJR5GgQrEhmU1IhImVbYIpcaPCwSXtT9JCJlVlGLXCYnBycuESkeJTUiUiYVtcglwKhRdj8RCQ9KakSkTPJmkcvt2+1+IhIelNSISJnk7SKX3u4nIsGnpEZEyiRvF7n0dj8RCT4lNSJSJnm7yGXnzqUbl4gUn5IaESmToqPttG3In9i4biclqV6NSDhRUiMiZVZiol2du0ED9+3x8e6rdotIeFDxPREp07TIpUjkUFIjImWeFrkUiQzqfhIREZGIoKRGREREIoKSGhEREYkISmpEREQkIiipERERkYigpEZEREQigpIaERERiQhKakRERCQiqPieiPiN06nKvCISPEpqRMQvkpNh5Ej43/9ObouPt4tGag0lESkN6n4SkRJLToZrr3VPaAB27LDbk5ODE5eIlC1KakSkRJxO20JjTP77XNtGjbL7iYgEUtgkNY0bN8bhcLhd7r///mCHJVLmrViRv4UmN2Ng+3a7X0k4nbBsGcybZ38qSRKRvMJqTM348eMZPHhwzu0qVaoEMRoRATso2J/7eaLxOiLijbBKamJjY6lbt67X+2dkZJCRkZFzOz09PRBhiZRp9er5d7+8XON18nZvucbrLFigxEZErLDpfgKYOnUqNWrUoHXr1kycOJHMzMxC9588eTJxcXE5l4SEhFKKVKTs6NzZtpo4HJ7vdzggIcHu5yuN1xERX4RNUjNy5EjefvttUlJSGDZsGElJSfz73/8u9DEPPPAAaWlpOZft27eXUrQiZUd0tO0GgvyJjet2UlLx6tWU1ngdEYkMQU1qxo4dm2/wb97LmjVrALjzzjvp0qUL5557LrfddhsvvfQSr732Gvv37y/w+DExMVStWtXtIiL+l5hou4EaNHDfHh9fsu6h0hivIyKRI6hjaoYNG0a/fv0K3adx48Yet1944YUAbNy4kRo1avg7NBHxUWIi9O7t34rCgR6vIyKRJahJTc2aNalZs2axHvv9998DUE+fZiIhIzoaunb13/Fc43V27PA8rsbhsPcXZ7yOiESesJj9tGrVKlavXk23bt2Ii4vj22+/5c477+Sqq66iYcOGwQ5PRALENV7n2mttApM7sSnpeB0RiTxhMVA4JiaG+fPn07VrV1q0aMGjjz7K4MGDmTdvXrBDE5EAC9R4HRGJPA5jPDXqRqb09HTi4uJIS0vToGGRMKMVwEXKLm+/v8Oi+0lExN/jdUQk8oRF95OIiIhIUZTUiIiISERQUiMiIiIRQUmNiIiIRAQlNSIiIhIRlNSIiIhIRFBSIyIiIhFBSY2IiIhEBCU1IiIiEhHKVEVh14oQ6enpQY5EREREvOX63i5qZacyldQcPnwYgISEhCBHIiIiIr46fPgwcXFxBd5fpha0zM7OZufOncTGxuJwOIIdTtClp6eTkJDA9u3btcBngOm1Lj16rUuPXuvSU9Zfa2MMhw8fpn79+kRFFTxypky11ERFRREfHx/sMEJO1apVy+SbJBj0WpcevdalR6916SnLr3VhLTQuGigsIiIiEUFJjYiIiEQEJTVlWExMDGPGjCEmJibYoUQ8vdalR6916dFrXXr0WnunTA0UFhERkcillhoRERGJCEpqREREJCIoqREREZGIoKRGREREIoKSGnGTkZFB69atcTgcrFu3LtjhRJwtW7YwaNAgmjRpQqVKlTjttNMYM2YMmZmZwQ4tIkyfPp0mTZpQsWJF2rZty4oVK4IdUkSaPHky559/PrGxsdSuXZs+ffqwYcOGYIcV8SZPnozD4WDUqFHBDiVkKakRN/feey/169cPdhgR67fffiM7O5uXX36ZX375haeffpqXXnqJBx98MNihhb358+czatQoHnroIb7//ns6d+5Mz5492bZtW7BDizjLly9n6NChrF69ms8++4ysrCy6d+/O0aNHgx1axPr222+ZMWMG5557brBDCWma0i05Pv74Y0aPHs3ChQs5++yz+f7772ndunWww4p4jz/+OC+++CKbN28OdihhrX379rRp04YXX3wxZ1vz5s3p06cPkydPDmJkkW/v3r3Url2b5cuXc9FFFwU7nIhz5MgR2rRpw/Tp05kwYQKtW7cmKSkp2GGFJLXUCAB//vkngwcP5o033qBy5crBDqdMSUtLo3r16sEOI6xlZmaydu1aunfv7ra9e/furFy5MkhRlR1paWkA+j8OkKFDh3LFFVdwySWXBDuUkFemFrQUz4wxDBw4kCFDhtCuXTu2bNkS7JDKjE2bNvHcc8/x5JNPBjuUsLZv3z6cTid16tRx216nTh12794dpKjKBmMMo0ePplOnTrRs2TLY4USct99+m++++45vv/022KGEBbXURLCxY8ficDgKvaxZs4bnnnuO9PR0HnjggWCHHLa8fa1z27lzJ5dddhnXXXcdt912W5AijywOh8PttjEm3zbxr2HDhvHjjz8yb968YIcScbZv387IkSN58803qVixYrDDCQsaUxPB9u3bx759+wrdp3HjxvTr148PP/zQ7cPf6XQSHR3NjTfeyOzZswMdatjz9rV2fTDt3LmTbt260b59e2bNmkVUlM4vSiIzM5PKlSvz7rvvcvXVV+dsHzlyJOvWrWP58uVBjC5yDR8+nPfee4+vvvqKJk2aBDuciPPee+9x9dVXEx0dnbPN6XTicDiIiooiIyPD7T5RUiPAtm3bSE9Pz7m9c+dOevTowYIFC2jfvj3x8fFBjC7y7Nixg27dutG2bVvefPNNfSj5Sfv27Wnbti3Tp0/P2daiRQt69+6tgcJ+Zoxh+PDhLFq0iGXLltGsWbNghxSRDh8+zNatW9223XLLLZx11lncd9996u7zQGNqhIYNG7rdrlKlCgCnnXaaEho/27lzJ127dqVhw4Y88cQT7N27N+e+unXrBjGy8Dd69Ghuuukm2rVrR4cOHZgxYwbbtm1jyJAhwQ4t4gwdOpS5c+fy/vvvExsbmzNuKS4ujkqVKgU5usgRGxubL3E55ZRTqFGjhhKaAiipESlFn376KRs3bmTjxo35EkY1mpZM37592b9/P+PHj2fXrl20bNmSjz76iEaNGgU7tIjjmjbftWtXt+0zZ85k4MCBpR+QyN/U/SQiIiIRQaMTRUREJCIoqREREZGIoKRGREREIoKSGhEREYkISmpEREQkIiipERERkYigpEZEREQigpIaERERiQhKakTKEIfDwXvvvRfsMLwyduxYWrduHeww/K5r166MGjXK6/2XLVuGw+Hg0KFDBe4za9YsqlWrVuLYRMKdkhqRMDBw4ED69OkT7DDCnjdf/k8++SRxcXEcO3Ys331//fUX1apV46mnnip2DMnJyTz22GPFfryIFExJjYhILjfffDPHjx9n4cKF+e5buHAhx44d46abbvL5uCdOnACgevXqxMbGljhOEclPSY1IGOratSsjRozg3nvvpXr16tStW5exY8e67fPHH39w0UUXUbFiRVq0aMFnn32W7zg7duygb9++nHrqqdSoUYPevXuzZcuWnPtdLUTjxo2jdu3aVK1alTvuuIPMzMycfYwxTJs2jaZNm1KpUiVatWrFggULcu53dZ988cUXtGvXjsqVK9OxY0c2bNjgFsuUKVOoU6cOsbGxDBo0iL/++itfvDNnzqR58+ZUrFiRs846i+nTp+fct2XLFhwOB8nJyXTr1o3KlSvTqlUrVq1alRPHLbfcQlpaGg6HA4fDke81A6hVqxa9evXi9ddfz3ff66+/zlVXXUWtWrW47777OOOMM6hcuTJNmzblkUceyUlc4GT32euvv07Tpk2JiYnBGJOv++nNN9+kXbt2xMbGUrduXfr378+ePXvyPffXX39Nq1atqFixIu3bt+enn37Kt09uH374IW3btqVixYo0bdqUcePGkZWVVehjRMKeEZGQN2DAANO7d++c2126dDFVq1Y1Y8eONb///ruZPXu2cTgc5tNPPzXGGON0Ok3Lli1N165dzffff2+WL19uzjvvPAOYRYsWGWOMOXr0qGnWrJm59dZbzY8//mh+/fVX079/f3PmmWeajIyMnOetUqWK6du3r/n555/N4sWLTa1atcyDDz6YE8uDDz5ozjrrLLN06VKzadMmM3PmTBMTE2OWLVtmjDEmJSXFAKZ9+/Zm2bJl5pdffjGdO3c2HTt2zDnG/PnzTYUKFcwrr7xifvvtN/PQQw+Z2NhY06pVq5x9ZsyYYerVq2cWLlxoNm/ebBYuXGiqV69uZs2aZYwxJjU11QDmrLPOMosXLzYbNmww1157rWnUqJE5ceKEycjIMElJSaZq1apm165dZteuXebw4cMeX+8lS5YYh8NhNm/enLMtNTXVOBwO89FHHxljjHnsscfM119/bVJTU80HH3xg6tSpY6ZOnZqz/5gxY8wpp5xievToYb777jvzww8/mOzsbNOlSxczcuTInP1ee+0189FHH5lNmzaZVatWmQsvvND07Nkz537X69e8eXPz6aefmh9//NFceeWVpnHjxiYzM9MYY8zMmTNNXFxczmOWLl1qqlatambNmmU2bdpkPv30U9O4cWMzduxYz/9gIhFCSY1IGPCU1HTq1Mltn/PPP9/cd999xhhjPvnkExMdHW22b9+ec//HH3/sltS89tpr5swzzzTZ2dk5+2RkZJhKlSqZTz75JOd5q1evbo4ePZqzz4svvmiqVKlinE6nOXLkiKlYsaJZuXKlWyyDBg0yN9xwgzHm5Jfy559/nnP/kiVLDGCOHz9ujDGmQ4cOZsiQIW7HaN++vVtSk5CQYObOneu2z2OPPWY6dOhgjDmZ1Lz66qs59//yyy8GMOvXrzfG5P/yL0hWVpZp0KCBefTRR3O2Pfroo6ZBgwYmKyvL42OmTZtm2rZtm3N7zJgxpnz58mbPnj1u++VNavL65ptvDJCTcLlev7fffjtnn/3795tKlSqZ+fPne/y9OnfubCZNmuR23DfeeMPUq1ev8F9cJMyVC1IDkYiU0Lnnnut2u169ejndFuvXr6dhw4bEx8fn3N+hQwe3/deuXcvGjRvzje/466+/2LRpU87tVq1aUblyZbfjHDlyhO3bt7Nnzx7++usvLr30UrdjZGZmct555xUYb7169QDYs2cPDRs2ZP369QwZMsRt/w4dOpCSkgLA3r172b59O4MGDWLw4ME5+2RlZREXF+fV85x11ll4Kzo6mgEDBjBr1izGjBmDw+Fg9uzZDBw4kOjoaAAWLFhAUlISGzdu5MiRI2RlZVG1alW34zRq1IhatWoV+lzff/89Y8eOZd26dRw4cIDs7GwAtm3bRosWLdxeD5fq1atz5plnsn79eo/HXLt2Ld9++y0TJ07M2eZ0Ovnrr784duyY299TJJIoqREJU+XLl3e77XA4cr4QjTH59nc4HG63s7Ozadu2LW+99Va+fYv6Is77fEuWLKFBgwZu98fExBQYrysW1+OL4trvlVdeoX379m73uZIMfzxPbrfeeiuTJ0/myy+/BGySccsttwCwevVq+vXrx7hx4+jRowdxcXG8/fbbPPnkk27HOOWUUwp9jqNHj9K9e3e6d+/Om2++Sa1atdi2bRs9evRwG7dUkLx/U5fs7GzGjRtHYmJivvsqVqxY5HFFwpWSGpEI1KJFC7Zt28bOnTupX78+QM6AWZc2bdowf/78nAHABfnhhx84fvw4lSpVAuwXepUqVYiPj+fUU08lJiaGbdu20aVLl2LH27x5c1avXs3NN9+cs2316tU51+vUqUODBg3YvHkzN954Y7Gfp0KFCjidTq/2Pe200+jSpQszZ87MGeB72mmnAXbQbqNGjXjooYdy9t+6davP8fz222/s27ePKVOmkJCQAMCaNWs87rt69WoaNmwIwMGDB/n9998LbH1q06YNGzZs4PTTT/c5JpFwpqRGJAJdcsklnHnmmdx88808+eSTpKenu30BA9x44408/vjj9O7dm/HjxxMfH8+2bdtITk7mnnvuyem6yszMZNCgQTz88MNs3bqVMWPGMGzYMKKiooiNjeXuu+/mzjvvJDs7m06dOpGens7KlSupUqUKAwYM8CrekSNHMmDAANq1a0enTp146623+OWXX2jatGnOPmPHjmXEiBFUrVqVnj17kpGRwZo1azh48CCjR4/26nkaN27MkSNH+OKLL3K61Qrrisnd3fXqq6/mbD/99NPZtm0bb7/9Nueffz5Llixh0aJFXsWQW8OGDalQoQLPPfccQ4YM4eeffy6whs348eOpUaMGderU4aGHHqJmzZoF1i569NFHufLKK0lISOC6664jKiqKH3/8kZ9++okJEyb4HKdIuNCUbpEIFBUVxaJFi8jIyOCCCy7gtttucxtfAVC5cmW++uorGjZsSGJiIs2bN+fWW2/l+PHjbi03//znP2nWrBkXXXQR119/Pb169XKbCv3YY4/x6KOPMnnyZJo3b06PHj348MMPadKkidfx9u3bl0cffZT77ruPtm3bsnXrVv7v//7PbZ/bbruNV199lVmzZnHOOefQpUsXZs2a5dPzdOzYkSFDhtC3b19q1arFtGnTCt3/mmuuISYmhpiYGLeunN69e3PnnXcybNgwWrduzcqVK3nkkUe8jsOlVq1azJo1i3fffZcWLVowZcoUnnjiCY/7TpkyhZEjR9K2bVt27drFBx98QIUKFTzu26NHDxYvXsxnn33G+eefz4UXXshTTz1Fo0aNfI5RJJw4jKfOdxERbJ2aQ4cOhc3SCiJStqmlRkRERCKCkhoRERGJCOp+EhERkYiglhoRERGJCEpqREREJCIoqREREZGIoKRGREREIoKSGhEREYkISmpEREQkIiipERERkYigpEZEREQiwv8DRt1QUztrMqYAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ "
"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "x = np.arange(-5.0, 5.0, 0.1)\n",
+ "\n",
+ "##You can adjust the slope and intercept to verify the changes in the graph\n",
+ "\n",
+ "y = np.power(x,2)\n",
+ "y_noise = 2 * np.random.normal(size=x.size)\n",
+ "ydata = y + y_noise\n",
+ "plt.plot(x, ydata, 'bo')\n",
+ "plt.plot(x,y, 'r') \n",
+ "plt.ylabel('Dependent Variable')\n",
+ "plt.xlabel('Independent Variable')\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "tags": []
+ },
+ "source": [
+ "### Exponential\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "An exponential function with base c is defined by $$ Y = a + b c^X$$ where b ≠0, c > 0 , c ≠1, and x is any real number. The base, c, is constant and the exponent, x, is a variable. \n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "tags": []
+ },
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHFCAYAAAAUpjivAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB350lEQVR4nO3dd3hT1f8H8PdN2qZ779KWskfLHjKkRRmigIr+QEGWiBORJYqoLKWIiih8RUVkyBAHoAwVEGhRQNl7U9pSKAVK907O74/bBEJbaEram6bv1/PkSXLvyc07KdAP555zriSEECAiIiKyUiqlAxARERFVJhY7REREZNVY7BAREZFVY7FDREREVo3FDhEREVk1FjtERERk1VjsEBERkVVjsUNERERWjcUOERERWTUWO1QjLVmyBJIkGW42NjaoVasWhg8fjqSkJLO+V+3atdG7d2+zHvN+TZ06FZIkGW2rXbs2hg0bpkwgC/Lnn39i6tSp+Ouvv6r8vavjz2D16tWYOnUq9u/ff8+258+fh0ajwe7du832/oMHD8YTTzxhtuORdbJROgCRkhYvXoxGjRohNzcXsbGxiI6ORkxMDI4ePQonJyel41WptWvXwtXVVekYilq3bh369+8PW1tbREdHY926dejVq5fSsSzW/Pnz8frrr8PR0RGff/45tm7ditatW5fZfsKECejevTs6dOhgtgxTp05Fo0aNsG3bNjz00ENmOy5ZF/bsUI0WHh6OBx54AF27dsWUKVMwceJExMXFYd26dfd97JycnPsPWIVatmyJunXrKh1DMRs2bED//v3Rp08fJCQkoHv37njyySexefNmpaNZpK+//hqjR4/GqFGjcOHCBTRo0ADdu3fHoUOHSm1/8uRJrFu3Dq+//rpZc9StWxePPPIIZs2aZdbjknVhsUN0mwceeAAAEB8fDwAQQuDLL79EixYt4ODgAA8PDzz99NO4cOGC0euioqIQHh6O2NhYdOzYEY6Ojnj++eeN2qxduxbNmjWDvb096tSpgy+++MJof15eHsaPH48WLVrAzc0Nnp6e6NChA3799dcSOSVJwqhRo/D999+jcePGcHR0RPPmzbFhw4YSbTdu3IgWLVpAo9EgLCwMn3zySamf/c5TKDt27IAkSVi1ahUmT56MwMBAuLq6olu3bjh9+rTRa4UQmDlzJkJDQ2Fvb482bdpgy5YtiIqKQlRUVKV/xtJkZGRgwoQJCAsLg52dHYKCgjBmzBhkZ2eXaPv777/j6aefxosvvoiffvoJXl5e+PXXXw2nSO48pfXDDz9AkiTMnz/faPuUKVOgVquxZcuWu2YrLCzExIkT4e/vD0dHR3Tu3Bn//fdfiXbXrl3Dq6++iiZNmsDZ2Rm+vr546KGHsHPnTqN2Fy9ehCRJ+OSTTzBnzhyEhYXB2dkZHTp0wJ49e8r1fSUnJ+Oll15CrVq1YGdnh7CwMEybNg1FRUUl2n777bd49dVX8eGHH2LevHnw8/PD9u3b0bFjR3Tr1g1Hjhwp8ZoFCxbA398f3bt3v2eW69evIzg4GB07dkRhYaFh+4kTJ+Dk5ITBgwcbtR88eDC2bt2K8+fPl+uzUg0kiGqgxYsXCwBi7969Rts///xzAUB88803QgghRo4cKWxtbcX48ePFH3/8IVauXCkaNWok/Pz8RHJysuF1kZGRwtPTUwQHB4t58+aJ7du3i5iYGCGEEKGhoSIoKEiEhISI7777TmzatEkMGjRIABAff/yx4RhpaWli2LBh4vvvvxfbtm0Tf/zxh5gwYYJQqVRi6dKlRjkBiNq1a4t27dqJH3/8UWzatElERUUJGxsbcf78eUO7rVu3CrVaLTp37izWrFkjfvrpJ9G2bVsREhIi7vzrHxoaKoYOHWp4vn37dsP7DBo0SGzcuFGsWrVKhISEiPr164uioiJD20mTJgkA4sUXXxR//PGHWLhwoQgJCREBAQEiMjKyUj9jabKzs0WLFi2Et7e3mDNnjti6dav4/PPPhZubm3jooYeETqcztP3zzz+Fvb29mDlzZqnHmjJlinB0dBTbt2832v7yyy8LOzs7w5+hv/76S6hUKvHuu+/eNZsQQgwdOlRIkiTefPNNsXnzZjFnzhwRFBQkXF1djX4Gp06dEq+88or44YcfxI4dO8SGDRvEiBEjhEqlMsoTFxdn+L4eeeQRsW7dOrFu3ToREREhPDw8RFpa2l3zXLlyRQQHB4vQ0FDx9ddfi61bt4oZM2YIjUYjhg0bZtR2yZIlQqPRiGXLlpU4TmFhoRgxYoTw8fERx44dM9pXp04d0b9//3t+N3p///23sLGxEWPHjhVCyD/TJk2aiEaNGomsrCyjtlevXhUAxBdffFHu41PNwmKHaiR9sbNnzx5RWFgoMjMzxYYNG4SPj49wcXERycnJYvfu3QKA+PTTT41em5iYKBwcHMTEiRMN2yIjIwUA8ddff5V4r9DQUCFJkjh06JDR9u7duwtXV1eRnZ1dasaioiLDL4+WLVsa7QMg/Pz8REZGhmFbcnKyUKlUIjo62rCtffv2IjAwUOTm5hq2ZWRkCE9Pz3IXO48++qhRux9//FEAELt37xZCCJGamio0Go0YMGCAUTv993d7sVMZn7E00dHRQqVSlShmf/75ZwFAbNq06a6vL4+8vDzRsmVLERYWJk6cOCH8/PxEZGSkURFYmpMnTwoAhl/ieitWrBAAjH4Gd9J/Xw8//LB48sknDdv1xU5ERITR+//3338CgFi1atVdM7300kvC2dlZxMfHG23/5JNPBABx/Pjxu77+XvTFyKxZs0x63UcffSQAiLVr14qhQ4cKBwcHceTIkVLbBgUFlfgzSKTH01hUoz3wwAOwtbWFi4sLevfuDX9/f/z+++/w8/PDhg0bIEkSnnvuORQVFRlu/v7+aN68OXbs2GF0LA8PjzIHSDZt2hTNmzc32jZw4EBkZGTgwIEDhm0//fQTOnXqBGdnZ9jY2MDW1haLFi3CyZMnSxyza9eucHFxMTz38/ODr6+v4RRcdnY29u7di379+sHe3t7QzsXFBX369Cn3d9S3b1+j582aNQNw61Tfnj17kJ+fj/79+xu1e+CBB1C7du0SxzPnZyzLhg0bEB4ejhYtWhj97Hr27AlJkkr87CpCo9Hgxx9/xI0bN9CqVSsIIbBq1Sqo1eq7vm779u0AgEGDBhlt79+/P2xsSs4Z+eqrr9CqVSvY29sbvq+//vqr1O/rscceM3r/O39WZdmwYQO6du2KwMBAo+9LPzg7Jibmrq+/l8uXLwMAfH19jbYLIYze785TZm+++SYee+wxPPvss1i6dCnmzZuHiIiIUt/D19fX7DMpyXqw2KEabdmyZdi7dy8OHjyIy5cv48iRI+jUqRMA4OrVqxBCwM/PD7a2tka3PXv24Pr160bHCggIKPN9/P39y9x248YNAMCaNWvQv39/BAUFYfny5di9ezf27t2L559/Hnl5eSVe7+XlVWKbRqNBbm4uAODmzZvQ6XR3fe/yuPN9NBoNABjeR5/fz8+vxGvv3Gbuz1iWq1ev4siRIyV+bi4uLhBClPjZVVS9evXw4IMPIi8vD4MGDbrrnwE9/fd158/AxsamxOedM2cOXnnlFbRv3x6//PIL9uzZg7179+KRRx4p9Tu418+qLFevXsX69etLfF9NmzYFgPv+vvTvf3vRDQBLly4t8Z63kyQJw4YNQ15eHvz9/UuM1bmdvb39PT8n1Vycek41WuPGjdGmTZtS93l7e0OSJOzcudPwS+N2d267c92a2yUnJ5e5Tf8Lavny5QgLC8Pq1auNjpWfn3/vD1IKDw8PSJJ01/c2B33+q1evlvo+t/fumPszlsXb2xsODg747rvvytxvDt9++y02btyIdu3aYf78+RgwYADat29/19fov6/k5GQEBQUZthcVFRkKIb3ly5cjKioKCxYsMNqemZlplvx63t7eaNasGT788MNS9wcGBt738QEgNTXVaHufPn2wd+/eMl935coVvPbaa2jRogWOHz+OCRMmlBjYr5eamlpqTyIRwGKHqEy9e/fGrFmzkJSUVOIUjamOHz+Ow4cPG53KWrlyJVxcXNCqVSsAcrFkZ2dnVAQkJyeXOlOpPJycnNCuXTusWbMGH3/8seF/1ZmZmVi/fv19fBpj7du3h0ajwerVq9GvXz/D9j179iA+Pt7oF5C5P2NZevfujZkzZ8LLywthYWFmPbbe0aNHMXr0aAwZMgQLFy5Ex44dMWDAABw8eBAeHh5lvk4/O23FihVGa9L8+OOPJU7jSJJUoqg+cuQIdu/ejeDgYLN9lt69e2PTpk2oW7fuXbNXVGhoKBwcHErMlvLy8iq19w4AtFotnn32WUiShN9//x0rVqzAhAkTEBUVZfTnDJALxcTERDz66KNmz07WgcUOURk6deqEF198EcOHD8e+ffvQpUsXODk54cqVK/j7778RERGBV155pVzHCgwMRN++fTF16lQEBARg+fLl2LJlCz766CM4OjoCkH/hrFmzBq+++iqefvppJCYmYsaMGQgICMDZs2cr9BlmzJiBRx55BN27d8f48eOh1Wrx0UcfwcnJqcT/sivK09MT48aNQ3R0NDw8PPDkk0/i0qVLmDZtGgICAqBS3TpbXhmfsTRjxozBL7/8gi5dumDs2LFo1qwZdDodEhISsHnzZowfP/6ePTB3k52djf79+yMsLAxffvkl7Ozs8OOPP6JVq1YYPnz4Xddpaty4MZ577jnMnTsXtra26NatG44dO4ZPPvmkxKKOvXv3xowZMzBlyhRERkbi9OnTmD59OsLCwkqdEl5R06dPx5YtW9CxY0eMHj0aDRs2RF5eHi5evIhNmzbhq6++Qq1atSp8fDs7O5OmwQPyNP6dO3di8+bN8Pf3x/jx4xETE4MRI0agZcuWRkXskSNHkJOTg65du1Y4I1k5ZcdHEymjrKnnpfnuu+9E+/bthZOTk3BwcBB169YVQ4YMEfv27TO0iYyMFE2bNi319aGhoeKxxx4TP//8s2jatKmws7MTtWvXFnPmzCnRdtasWaJ27dpCo9GIxo0bi4ULF4opU6aUmDkFQLz22mulvteds3l+++030axZM2FnZydCQkLErFmzSj1mWbOxfvrpJ6N2+pk/ixcvNmzT6XTigw8+ELVq1RJ2dnaiWbNmYsOGDaJ58+ZGs4Yq6zOWJisrS7z77ruiYcOGws7OTri5uYmIiAgxduxYo2UDKuK5554Tjo6OJWYp/fTTTwKA+Oyzz+76+vz8fDF+/Hjh6+sr7O3txQMPPCB2795d4rPl5+eLCRMmiKCgIGFvby9atWol1q1bJ4YOHSpCQ0MN7fQ/k9uXMtADIKZMmXLPz3Tt2jUxevRoERYWJmxtbYWnp6do3bq1mDx5comp3hWxaNEioVarxeXLl+/ZdvPmzUKlUpXIfePGDRESEiLatm0r8vPzDdvfe+894e3tLfLy8u47J1knSQghFKqziMiKxcXFoVGjRpgyZQreeecdpeOQwvLy8hASEoLx48fjrbfeMttxtVot6tWrh4EDB5Y55oiIxQ4R3bfDhw9j1apV6NixI1xdXXH69GnMnj0bGRkZOHbsWKkztajmWbBgAaZOnYoLFy6Y7dpzS5cuxYQJE3D27Fm4u7ub5ZhkfThmh4jum5OTE/bt24dFixYhLS0Nbm5uiIqKwocffshChwxefPFFpKWl4cKFC2Wul2MqnU6HFStWsNChu2LPDhEREVk1LipIREREVo3FDhEREVk1FjtERERk1ThAGfIAt8uXL8PFxeWuS/4TERGR5RBCIDMzE4GBgUYLmN6JxQ7kK/Kac+l1IiIiqjqJiYl3XeWbxQ4AFxcXAPKXdedy7URERGSZMjIyEBwcbPg9XhYWO7h1tWpXV1cWO0RERNXMvYagcIAyERERWTUWO0RERGTVWOwQERGRVeOYHSIyiVarRWFhodIxrJ6trS3UarXSMYisAosdIioXIQSSk5ORlpamdJQaw93dHf7+/lz/i+g+sdghonLRFzq+vr5wdHTkL+BKJIRATk4OUlJSAAABAQEKJyKq3ljsENE9abVaQ6Hj5eWldJwawcHBAQCQkpICX19fntIiug8coExE96Qfo+Po6KhwkppF/31zjBTR/WGxQ0TlxlNXVYvfN5F5sNghIiIiq8Zih4gIQG5uLjp37gxJkvDZZ58pHYeIzIjFDhHVeEVFRXj66adx/fp1fPHFF3j77bexbNkypWMRkZlwNlZl0hYBafGAxhVw9lE6DRGVQgiBYcOGISkpCbGxsfD19UVoaCgGDhwIDw8P9OnTR+mIRHSf2LNTmda8AMxrBRz9SekkRDWWEAKzZ89GnTp14ODggObNm+Pnn3827H/jjTdw9uxZbN++Hb6+vgCAvn37Yu3atRg+fDhiY2MBAHl5eWjatClefPFFw2vj4uLg5uaGhQsXVu2HIiKTsGenMnmEyfep55XNQWRmQgjkFmoVeW8HW7VJs5TeffddrFmzBgsWLED9+vURGxuL5557Dj4+PoiMjMQXX3xR6uu6d++O69evG57b29tjxYoVaN++PR599FH06dMHgwcPRteuXTFy5Mj7/lxEVHlY7FQmzzryfeoFZXMQmVluoRZN3v9Tkfc+Mb0nHO3K909XdnY25syZg23btqFDhw4AgDp16uDvv//G119/jcjISJPeu0WLFvjggw8wcuRIPPvsszh//jzWrVtn6kcgoirGYqcy6YudG+zZIVLCiRMnkJeXh+7duxttLygoQMuWLSt0zPHjx+PXX3/FvHnz8Pvvv8Pb29scUYmoErHYqUxedeX79ESgqACwsVM2D5GZONiqcWJ6T8Xeu7x0Oh0AYOPGjQgKCjLap9FoKvT+KSkpOH36NNRqNc6ePYtHHnmkQschoqrDYqcyOfsBtk5AYbY8K8u7vtKJiMxCkqRyn0pSUpMmTaDRaJCQkGDyKauyPP/88wgPD8fIkSMxYsQIPPzww2jSpIlZjk1ElcPy/7WqziRJPpV19ag8bofFDlGVcnFxwYQJEzB27FjodDp07twZGRkZ2LVrF5ydnTF06FCTjve///0Pu3fvxpEjRxAcHIzff/8dgwYNwr///gs7O/bcElkqTj2vbJ7FM7I4bodIETNmzMD777+P6OhoNG7cGD179sT69esRFhZm0nFOnTqFN998E19++SWCg4MByMVPWloa3nvvvcqITkRmwp6dyqYft8MZWUSKkCQJo0ePxujRo+/rOI0aNUJOTo7RNldXV8TFxd3XcYmo8rFnp7Jx+jkREZGiWOxUNk99zw5PYxERESmBxU5l0/fspCXI08+JiIioSrHYqWwu/oCtIyB0csFDREREVYrFTmXTTz8HOG6HiIhIASx2qoKh2OG4HSIioqrGYqcqsGeHiIhIMYoWO7GxsejTpw8CAwMhSdJdrx780ksvQZIkzJ0712h7fn4+Xn/9dXh7e8PJyQl9+/bFpUuXKje4qfRr7XBhQSIioiqnaLGTnZ2N5s2bY/78+Xdtt27dOvz7778IDAwssW/MmDFYu3YtfvjhB/z999/IyspC7969odVqKyu26dizQ0REpBhFi51evXrhgw8+QL9+/cpsk5SUhFGjRmHFihWwtbU12peeno5Fixbh008/Rbdu3dCyZUssX74cR48exdatWys7fvndPv1cW6hsFiIqVW5uLjp37gxJkvDZZ5+V2a6goAD16tXDP//8U+H3ys/PR0hICPbv31/hYxBR+Vn0mB2dTofBgwfjzTffRNOmTUvs379/PwoLC9GjRw/DtsDAQISHh2PXrl1lHjc/Px8ZGRlGt0rlEgDYOABCy+nnRBaoqKgITz/9NK5fv44vvvgCb7/9NpYtW1Zq22+++QahoaHo1KlThd9Po9FgwoQJeOuttyp8DCIqP4sudj766CPY2NiUeU2b5ORk2NnZwcPDw2i7n58fkpOTyzxudHQ03NzcDDf9Rf0qDaefE1ksIQSGDRuGpKQkxMbG4vXXX8dPP/2EV199FevXry/Rft68eXjhhRfu+30HDRqEnTt34uTJk/d9LCK6O4stdvbv34/PP/8cS5YsgSRJJr1WCHHX10yaNAnp6emGW2Ji4v3GvTev4mKHg5SJqpQQArNnz0adOnXg4OCA5s2b4+effzbsf+ONN3D27Fls374dvr6+AIC+ffti7dq1GD58OGJjYw1tDxw4gHPnzuGxxx6763tOnz4dgYGBuHHjhmFb37590aVLF+h0OgCAl5cXOnbsiFWrVpnz4xJRKSz2quc7d+5ESkoKQkJCDNu0Wi3Gjx+PuXPn4uLFi/D390dBQQFu3rxp1LuTkpKCjh07lnlsjUYDjUZTqflLYM8OWRMhgMKce7erDLaOcm9pOb377rtYs2YNFixYgPr16yM2NhbPPfccfHx8EBkZiS+++KLU13Xv3h3Xr1832hYbG4sGDRrA1dX1ru85efJk/PHHH3jhhRewdu1afPXVV4iNjcXhw4ehUt36P2a7du2wc+fOcn8WIqoYiy12Bg8ejG7duhlt69mzJwYPHozhw4cDAFq3bg1bW1ts2bIF/fv3BwBcuXIFx44dw+zZs6s8813xgqBkTQpzgJklZ0dWiXcuA3ZO5WqanZ2NOXPmYNu2bejQoQMAoE6dOvj777/x9ddfIzIy0qS3vnjxYqmzQu+kVquxfPlytGjRAm+//TbmzZtnGOtzu6CgIFy8eNGkDERkOkWLnaysLJw7d87wPC4uDocOHYKnpydCQkLg5eVl1N7W1hb+/v5o2LAhAMDNzQ0jRozA+PHj4eXlBU9PT0yYMAERERElCiXFsWeHqMqdOHECeXl56N69u9H2goICtGzZ0uTj5ebmwt7e3mhbr169DL0zoaGhOH78OAC5qPrkk0/w0ksvYcCAARg0aFCJ4zk4OCAnR6EeMqIaRNFiZ9++fejatavh+bhx4wAAQ4cOxZIlS8p1jM8++ww2Njbo378/cnNz8fDDD2PJkiVQq9WVEbni9AsL3oyXp5+rbe/ensiS2TrKPSxKvXc56cfHbNy4EUFBQUb7KnIq29vbG0ePHjXa9u233yI3N1eOdsfyGLGxsVCr1bh48SKKiopgY2P8T25qaip8fHxMzkFEplG02ImKioIQotztS+vutbe3x7x58zBv3jwzJqsEzv7y9POiXHn6ub74IaqOJKncp5KU1KRJE2g0GiQkJJh8yqo0LVu2xIIFC4wmQdxZROmtXr0aa9aswY4dOzBgwADMmDED06ZNM2pz7NixCvUwEZFpLHY2ltVRqXgqi6iKubi4YMKECRg7diyWLl2K8+fP4+DBg/jf//6HpUuXmny8rl27Ijs723CqqiyXLl3CK6+8go8++gidO3fGkiVLEB0djT179hi127lzp9E6YURUOVjsVCXPMPmexQ5RlZkxYwbef/99REdHo3HjxujZsyfWr1+PsLAwk4/l5eWFfv36YcWKFWW20a/b065dO4waNQqAPLNr1KhReO6555CVlQUA2L17N9LT0/H0009X7IMRUblJwpTzSFYqIyMDbm5uSE9Pv+eU0vuy5X3gn8+Bdi8Bj1rYbDGiu8jLy0NcXBzCwsJKDNCtaY4ePYpu3brh3LlzcHFxqfBx/u///g8tW7bEO++8U2Ybfu9Ed1fe39/s2alKPI1FVO1FRERg9uzZ9zVlPD8/H82bN8fYsWPNF4yIymSx6+xYJcNaOyx2iKqzoUOH3tfrNRoN3n33XTOlIbJs8TeyAQC1PByhVpl2RQRzYc9OVTJc/TyeVz8nIqIaYe7Ws4j8eAe+jlVuUV0WO1XJJUBeI0RXJK+3Q0REZOXOX5MH5df1cVYsA4udqqRSAd715cfXTyubhagCOJ+havH7pupOCIHzKSx2ah7vBvL99TPK5iAygX5lYF7aoGrpv+87V2Ymqi6SM/KQXaCFjUpCqFf5Vz83Nw5QrmqGYuessjmITKBWq+Hu7o6UlBQAgKOjo2EFYTI/IQRycnKQkpICd3d3y7v8DVE5nU+RByeHeDnCVq1c/wqLnaqmL3au8TQWVS/+/v4AYCh4qPK5u7sbvnei6kg/XqeegqewABY7Ve/2nh0h5GsMEVUDkiQhICAAvr6+KCzkbMLKZmtryx4dqvbO6cfr+LLYqVm86gKSCshPB7JSABc/pRMRmUStVvOXMBGViyXMxAI4QLnq2WgAj9ryYw5SJiIiK3ar2HFSNAeLHSUYTmVx3A4REVmnjLxCXM3IB6D8aSwWO0owrLXDGVlERGSdLlyTZ2L5umjgaq/s8gksdpTAtXaIiMjKWcJignosdpTg3VC+v8Zih4iIrNM5/bRzhU9hASx2lKE/jZVxCcjPUjYLERFRJbjVs6Ps4GSAxY4yHD0BR2/58Y1zymYhIiKqBIaZWOzZqcF8ik9lcdwOERFZmUKtDvE35Gu7ccxOTWaYkcVih4iIrEv8jRwU6QQc7dQIcLNXOg6LHcVwRhYREVmp21dOtoSLBrPYUQpnZBERkZU6Z0GDkwEWO8rRn8ZKPQ9oi5TNQkREZEaWck0sPRY7SnELBmwcAG0BkBavdBoiIiKzOV+8erIlrLEDsNhRjkoFeNeTH3PcDhERWQkhxK01dljsEAcpExGRtUnJzEdWfhFUEhDq5ah0HAAsdpTFYoeIiKyMvlcn1MsJGhu1wmlkLHaUpC92OCOLiIisxLlrljUTC2Cxo6zbe3aEUDYLERGRGVjS1c71WOwoyasuAAnISwOyryudhoiI6L7pZ2Kx2CGZrQPgESo/vn5a2SxERERmcM7CZmIBLHaUx0HKRERkJbLyi5CckQeAY3YMYmNj0adPHwQGBkKSJKxbt86wr7CwEG+99RYiIiLg5OSEwMBADBkyBJcvXzY6Rn5+Pl5//XV4e3vDyckJffv2xaVLl6r4k9wHDlImIiIroR+v4+1sB3dHO4XT3KJosZOdnY3mzZtj/vz5Jfbl5OTgwIEDeO+993DgwAGsWbMGZ86cQd++fY3ajRkzBmvXrsUPP/yAv//+G1lZWejduze0Wm1VfYz749NIvr92UtkcRERE9+nM1UwAlrNysp6Nkm/eq1cv9OrVq9R9bm5u2LJli9G2efPmoV27dkhISEBISAjS09OxaNEifP/99+jWrRsAYPny5QgODsbWrVvRs2fPSv8M9823iXx/9YSyOYiIiO7T6WS52Gnk76pwEmPVasxOeno6JEmCu7s7AGD//v0oLCxEjx49DG0CAwMRHh6OXbt2lXmc/Px8ZGRkGN0U41vcs5OdwhlZRERUrZ0u7tlp6O+icBJj1abYycvLw9tvv42BAwfC1VWuGJOTk2FnZwcPDw+jtn5+fkhOTi7zWNHR0XBzczPcgoODKzX7Xdk5AR615ccp7N0hIqLqS9+z08CPxY7JCgsL8cwzz0Cn0+HLL7+8Z3shBCRJKnP/pEmTkJ6ebrglJiaaM67pfJvK9ykct0NERNXTzewCpGTmAwAa+FnWmB2LL3YKCwvRv39/xMXFYcuWLYZeHQDw9/dHQUEBbt68afSalJQU+Pn5lXlMjUYDV1dXo5uifBvL91ePK5uDiIiogvSnsILcHeBib6twGmMWXezoC52zZ89i69at8PLyMtrfunVr2NraGg1kvnLlCo4dO4aOHTtWddyK8ysepMyeHSIiqqb0M7EaWdh4HUDh2VhZWVk4d+6c4XlcXBwOHToET09PBAYG4umnn8aBAwewYcMGaLVawzgcT09P2NnZwc3NDSNGjMD48ePh5eUFT09PTJgwAREREYbZWdWC723FjhDAXU7BERERWaJT+vE6LHaM7du3D127djU8HzduHABg6NChmDp1Kn777TcAQIsWLYxet337dkRFRQEAPvvsM9jY2KB///7Izc3Fww8/jCVLlkCttozLypeLVz1AZQsUZALpiYB7iNKJiIiITHImmT07pYqKioK4y9W+77ZPz97eHvPmzcO8efPMGa1qqW3llZRTjsvr7bDYISKiakQIYRizY2kzsQALH7NToxjG7XD6ORERVS9X0vOQmVcEG5VkUVc712OxYyn0M7JY7BARUTWjX18nzNsJdjaWV1pYXqKaimvtEBFRNWWpKyfrsdixFPqenWunAW2hslmIiIhMcNqCBycDLHYsh3sIYOcM6AqBG+fu3Z6IiMhCnLLQy0TosdixFJLEcTtERFTtFGl1OJ+SBcDyrnaux2LHkugXF7zKYoeIiKqHizeyUaDVwdFOjVoeDkrHKRWLHUviy8tGEBFR9XI6We7Vqe/nApXKMq8AwGLHkhjW2uEFQYmIqHo4nZwBAGhoYVc6vx2LHUui79m5eREoyFY0ChERUXncmnZumeN1ABY7lsXJG3DylR+nnFI2CxERUTnop503tNCZWACLHcvDGVlERFRN5BZoEZ+aA8ByFxQEWOxYHj/9SsosdoiIyLKdTcmEEICnkx28ne2UjlMmFjuWhj07RERUTdx+CkuSLHMmFsBix/Lor5HFtXaIiMjCGYodCz6FBbDYsTw+DeX77BQg+7qyWYiIiO7C0i8Aqsdix9JonAGPMPlx8lFlsxAREZVBCIGTV+Q1diz1AqB6LHYsUUAz+T75iLI5iIiIypCSmY/rWQVQSZZ7TSw9FjuWyL+42LlyWNkcREREZTiWlA4AqOvjDAc7tcJp7o7FjiUKaCHfX2HPDhERWabjl+VTWOFBbgonuTcWO5ZIfxrrxjkgP0vZLERERKU4flnu2WkaaNmnsAAWO5bJ2Rdw9gcggKu8KCgREVkefc9OExY7VGEcpExERBYqPacQl27mAgCaBvA0FlVUQHP5/sohRWMQERHdSX8KK9jTAW6OtgqnuTcWO5bKMCOLPTtERGRZ9KewqkOvDsBix3LpT2OlnASKCpTNQkREdJvqNDgZYLFjudxDAXs3QFcIXDuldBoiIiIDQ89OEIsduh+SxMUFiYjI4uQWaHH+mrwsStNAnsai+6UfpMwZWUREZCFOJmdAJwBvZw18XTRKxymXChc7BQUFOH36NIqKisyZh27HQcpERGRhDKewAl0hSZLCacrH5GInJycHI0aMgKOjI5o2bYqEhAQAwOjRozFr1iyzB6zR9IOUrx4DdDplsxAREQE4Uc0GJwMVKHYmTZqEw4cPY8eOHbC3tzds79atG1avXm3WcDWeV33Axh4oyAJSLyidhoiI6LaeneoxXgeoQLGzbt06zJ8/H507dzbqvmrSpAnOnz9v1nA1ntoG8AuXH3NxQSIiUlihVodTVzIBAOHVZCYWUIFi59q1a/D19S2xPTs7u9qcu6tWeNkIIiKyEOdSslCg1cFFY4NgD0el45SbycVO27ZtsXHjRsNzfYGzcOFCdOjQwaRjxcbGok+fPggMDIQkSVi3bp3RfiEEpk6disDAQDg4OCAqKgrHjxtfGDM/Px+vv/46vL294eTkhL59++LSpUumfizLxUHKRERkIfSnsBoHukKlqj4dHCYXO9HR0Zg8eTJeeeUVFBUV4fPPP0f37t2xZMkSfPjhhyYdKzs7G82bN8f8+fNL3T979mzMmTMH8+fPx969e+Hv74/u3bsjMzPT0GbMmDFYu3YtfvjhB/z999/IyspC7969odVqTf1olun2nh0hlM1CREQ1WnVbOVnP5GKnY8eO+Oeff5CTk4O6deti8+bN8PPzw+7du9G6dWuTjtWrVy988MEH6NevX4l9QgjMnTsXkydPRr9+/RAeHo6lS5ciJycHK1euBACkp6dj0aJF+PTTT9GtWze0bNkSy5cvx9GjR7F161ZTP5pl8m0KSGog5waQkaR0GiIiqsGOJ1W/wckAYFORF0VERGDp0qXmzmIkLi4OycnJ6NGjh2GbRqNBZGQkdu3ahZdeegn79+9HYWGhUZvAwECEh4dj165d6NmzZ6VmrBK29oBPIyDluHwqy62W0omIiKgG0ukETlyRi53qNDgZKGexk5GRUe4Durqa5wtITk4GAPj5+Rlt9/PzQ3x8vKGNnZ0dPDw8SrTRv740+fn5yM/PNzw35fMpIqCZXOwkHwEaPap0GiIiqoESUnOQlV8EOxsV6vo4Kx3HJOUqdtzd3e8500oIAUmSzD5W5s731b9PebKUJTo6GtOmTTNLvirh3ww4vIrXyCIiIsUcKx6v08jfBbbq6nW1qXIVO9u3b6/sHCX4+/sDkHtvAgICDNtTUlIMvT3+/v4oKCjAzZs3jXp3UlJS0LFjxzKPPWnSJIwbN87wPCMjA8HBweb+COYT1Eq+T9ovD1LmFH8iIqpihxPTAADNalWv8TpAOYudyMjIys5RQlhYGPz9/bFlyxa0bNkSgHw9rpiYGHz00UcAgNatW8PW1hZbtmxB//79AQBXrlzBsWPHMHv27DKPrdFooNFUj4uXAZB7diQ1kHVVHqTMcTtERFTFDifKPTvNa7krG6QCKjRA+ebNm1i0aBFOnjwJSZLQuHFjDB8+HJ6eniYdJysrC+fOnTM8j4uLw6FDh+Dp6YmQkBCMGTMGM2fORP369VG/fn3MnDkTjo6OGDhwIADAzc0NI0aMwPjx4+Hl5QVPT09MmDABERER6NatW0U+mmWycwT8mgDJR+XeHRY7RERUhYq0OhxNkoudFsHuyoapAJNPusXExKB27dr44osvcPPmTaSmpuKLL75AWFgYYmJiTDrWvn370LJlS0PPzbhx49CyZUu8//77AICJEydizJgxePXVV9GmTRskJSVh8+bNcHFxMRzjs88+wxNPPIH+/fujU6dOcHR0xPr166FWq039aJYtqI18f2mfsjmIiKjGOXM1C7mFWjhrbKrd4GQAkIQwbaW68PBwdOzYEQsWLDAUFFqtFq+++ir++ecfHDt2rFKCVqaMjAy4ubkhPT3dbLPJzO7A98Bvo4DQzsDwjfduT0REZCar/kvApDVH0bGuF1aOfEDpOAbl/f1tcs/O+fPnMX78eKOeE7VajXHjxvFCoJWpVnHPzuWDgM5KVocmIqJq4VBCGoDqeQoLqECx06pVK5w8ebLE9pMnT6JFixbmyESl8W4A2DkDhdnAtVNKpyEiohrk8KU0AEDzalrslGuA8pEjty5COXr0aLzxxhs4d+4cHnhA7sras2cP/ve//2HWrFmVk5IAlRoIbAlc3CkPUvZrqnQiIiKqAbLzi3DmqnxNyuras1OuYqdFixaQJAm3D++ZOHFiiXYDBw7EgAEDzJeOjAW1loudS/uAVkOUTkNERDXA0aR06AQQ4GYPP1d7peNUSLmKnbi4uMrOQeURVHyh1aQDyuYgIqIaQ7+YYHVcX0evXMVOaGhoZeeg8tAPUk45DhRkA3ZOyuYhIiKrd6i42GkR4q5ojvtRoUUFAeDEiRNISEhAQUGB0fa+ffvedygqg2sg4BIAZF6Rr5MVWvYlMYiIiMyhxvTs3O7ChQt48skncfToUaNxPPoLb5r7QqB0h6DWwKkN8iBlFjtERFSJUjLycDk9D5IERFTDa2LpmTz1/I033kBYWBiuXr0KR0dHHD9+HLGxsWjTpg127NhRCRHJiH7cDldSJiKiSqY/hdXA1wXOmgqfDFKcycl3796Nbdu2wcfHByqVCiqVCp07d0Z0dDRGjx6NgwcPVkZO0uMgZSIiqiK31tepvr06QAV6drRaLZyd5etieHt74/LlywDkQcynT582bzoqKbAlAAlITwCyUpROQ0REVswwODnYQ9kg98nkYic8PNywyGD79u0xe/Zs/PPPP5g+fTrq1Klj9oB0B3tXwKeh/Dhpv7JZiIjIaul0AkcS5Sud17ienXfffRc6nQ4A8MEHHyA+Ph4PPvggNm3ahC+++MLsAakUhlNZLHaIiKhyXLiejcz8ItjbqtDQz0XpOPfF5DE7PXv2NDyuU6cOTpw4gdTUVHh4eBhmZFElC2oNHFrBQcpERFRp9KewIoLcYKM2uW/EopglvaenJwudqqTv2bl8ACjuZSMiIjIna1hfR69cPTv9+vXDkiVL4Orqin79+t217Zo1a8wSjO7CrylgYw/kpQOp5wHv+konIiIiK2MNKyfrlavYcXNzM/TcuLlV70FKVkFtCwS0ABL3AIn/sdghIiKzyikowskrGQCq75XOb1euYmfx4sUAACEEpk6dCh8fHzg6OlZqMLqHkAfkYidhN9BykNJpiIjIihxKTEORTiDAzR5B7g5Kx7lvJo3ZEUKgfv36SEpKqqw8VF4hHeT7hN3K5iAiIquz7+JNAECb2tYxJtekYkelUqF+/fq4ceNGZeWh8gpuJ9/fOAdkXVM2CxERWZW9F1MBAG1rV+/FBPVMno01e/ZsvPnmmzh27Fhl5KHycvQEfBrLjxP3KJuFiIisRpFWhwPxxT07oZ4KpzEPk9fZee6555CTk4PmzZvDzs4ODg7G5/JSU1PNFo7uIbQDcO0kkLAHaNxH6TRERGQFTiVnIrtACxd7GzT0r96LCeqZXOzMnTu3EmJQhYR0APZ9x3E7RERkNvpTWK1DPaBWVf/xOkAFip2hQ4dWRg6qiJAH5Psrh4GCbMDOSdk8RERU7ekHJ7etbR2nsID7XEE5NzcXGRkZRjeqQm7BgGsQoCvidbKIiOi+CSEMPTttQq1jcDJQgWInOzsbo0aNgq+vL5ydneHh4WF0oyokSbd6d+J5KouIiO5PYmouUjLzYauW0NwKFhPUM7nYmThxIrZt24Yvv/wSGo0G3377LaZNm4bAwEAsW7asMjLS3XC9HSIiMhN9r05EkBvsbdUKpzEfk8fsrF+/HsuWLUNUVBSef/55PPjgg6hXrx5CQ0OxYsUKDBrE1XyrlL7YubQX0BYBapN/pERERACAffHF6+uEWc94HaACPTupqakICwsDALi6uhqmmnfu3BmxsbHmTUf35tsY0LgBBVnAVa59REREFbdXPzjZStbX0TO52KlTpw4uXrwIAGjSpAl+/PFHAHKPj7u7uzmzUXmo1LdWU07g4oJERFQxqdkFOJeSBUCedm5NTC52hg8fjsOHDwMAJk2aZBi7M3bsWLz55ptmD0jloB+kzHE7RERUQfuLV02u7+sMDyc7hdOYV7kHeIwZMwYvvPACxo4da9jWtWtXnDp1Cvv27UPdunXRvHnzSglJ92AYpLwHEEKepUVERGQCw5RzK1pfR6/cPTt//PEHmjdvjnbt2uGbb74xrKkTEhKCfv36sdBRUlArQGULZCUDN+OUTkNERNWQtV3883blLnZOnTqF2NhYREREYMKECQgMDMSQIUM4KNkS2DoAgS3lxxy3Q0REJsot0OJYUjoA61o5Wc+kMTudOnXCokWLkJycjHnz5uHixYuIiopC/fr1MWvWLFy+fLmyctK9hHK9HSIiqpjDl9JQqBXwd7VHLQ+He7+gmqnQ5SIcHR0xfPhwxMbG4uzZs+jfvz9mz56N2rVrmzVcUVER3n33XYSFhcHBwQF16tTB9OnTodPpDG2EEJg6dSoCAwPh4OCAqKgoHD9+3Kw5qgX9uJ34XcrmICKiaue/uOKLf9b2gGSF4z7v69pY2dnZiImJQUxMDNLS0lC3bl1z5QIAfPTRR/jqq68wf/58nDx5ErNnz8bHH3+MefPmGdrMnj0bc+bMwfz587F37174+/uje/fuyMzMNGsWixfSAZBUwI1zQAZ72IiIqPx2nb8OAOhQx0vhJJWjQsVObGwshg8fDn9/f7zxxhto0KABdu7ciZMnT5o13O7du/H444/jscceQ+3atfH000+jR48e2LdvHwC5V2fu3LmYPHky+vXrh/DwcCxduhQ5OTlYuXKlWbNYPAd3IKCF/DiO46iIiKh88gq1OBCfBgDoVM9b2TCVpNzFzqVLl/Dhhx+ifv36iIqKwqlTp/DZZ5/hypUr+O6779CpUyezh+vcuTP++usvnDlzBgBw+PBh/P3333j00UcBAHFxcUhOTkaPHj0Mr9FoNIiMjMSuXWWfzsnPz7fOq7WHdZHvL8Qom4OIiKqNfRdvokCrQ4CbPWp7OSodp1KUe52d2rVrw8vLC4MHD8aIESPQuHHjyswFAHjrrbeQnp6ORo0aQa1WQ6vV4sMPP8Szzz4LAEhOTgYA+Pn5Gb3Oz88P8fHxZR43Ojoa06ZNq7zgSgnrAvwzV+7Z4Xo7RERUDoZTWHW9rHK8DmBCsfPjjz+ib9++sLGpugtNrl69GsuXL8fKlSvRtGlTHDp0CGPGjEFgYCCGDh1qaHfnD0cIcdcf2KRJkzBu3DjD84yMDAQHB5v/A1S1kA7yejsZl4DUC4CXecdQERGR9fnn/A0AQKe61nkKCzCh2OnXr19l5ijVm2++ibfffhvPPPMMACAiIgLx8fGIjo7G0KFD4e/vD0Du4QkICDC8LiUlpURvz+00Gg00Gk3lhleCnaN8naz4f4C4GBY7RER0Vxl5hTh6KQ0A0LGedQ5OBu5zNlZly8nJgUplHFGtVhumnoeFhcHf3x9btmwx7C8oKEBMTAw6duxYpVktRlikfM9BykREdA//XkiFTgB1vJ0Q4GZ96+voVd05qQro06cPPvzwQ4SEhKBp06Y4ePAg5syZg+effx6AfPpqzJgxmDlzJurXr4/69etj5syZcHR0xMCBAxVOr5CwLsCOmXKxo9MBKouuZ4mISEG3j9exZhZd7MybNw/vvfceXn31VaSkpCAwMBAvvfQS3n//fUObiRMnIjc3F6+++ipu3ryJ9u3bY/PmzXBxcVEwuYKCWgO2TkDODSDlBOAfrnQiIiKyULvOFY/XsdIp53qSEEKY8oLnn38en3/+eYliIjs7G6+//jq+++47swasChkZGXBzc0N6ejpcXV2VjnP/lj8FnNsK9JwJdHhN6TRERGSBrmXmo+2HWwEAB97rDk8nO4UTma68v79NPsexdOlS5Obmltiem5uLZcuWmXo4qgz69XY4boeIiMqw+4Lcq9M4wLVaFjqmKPdprIyMDAghIIRAZmYm7O3tDfu0Wi02bdoEX1/fSglJJtIPUr74D6AtAtQWfbaSiIgUsLt4vE4nKx+vA5hQ7Li7u0OSJEiShAYNGpTYL0mSdS7UVx35RwD27kBeGnD5IBDcVulERERkYf4pHq9jzVPO9cpd7Gzfvh1CCDz00EP45Zdf4OnpadhnZ2eH0NBQBAYGVkpIMpFKDYQ9CJxcL6+3w2KHiIhuk5iag4TUHKhVEtqFsdgxiIyUT43ExcUhODi4xPo3ZGHCIm8VO10mKJ2GiIgsyO7iVZOb13KDs8b6hzqY/AlDQ0ORlpaG//77DykpKYYF/vSGDBlitnB0H/SDlBP+BQrzAFv7u7cnIqIaQ7++TkcrvkTE7UwudtavX49BgwYhOzsbLi4uRtegkiSJxY6l8G4AOPsDWclA4r9AnUilExERkQUQQmDX+ZozXgeowNTz8ePH4/nnn0dmZibS0tJw8+ZNwy01NbUyMlJFSBJQJ0p+fP4vRaMQEZHlOJWciZTMfNjbqtAqxEPpOFXC5GInKSkJo0ePhqOjY2XkIXOq312+P7tV2RxERGQxdpy+BkA+hWVvq1Y4TdUwudjp2bMn9u3bVxlZyNzqPgRIKiDlOJB+Sek0RERkAbafTgEARDX0UThJ1TF5zM5jjz2GN998EydOnEBERARsbW2N9vft29ds4eg+OXrK18q6tFe+fETrYUonIiIiBWXkFWJ//E0AQFSDmrMQsMnFzsiRIwEA06dPL7FPkiRotdr7T0XmU7+HXOyc3cJih4iohvv77HVodQJ1fJwQ4lVzhqOYfBpLp9OVeWOhY4HqdZPvL+wAigoUjUJERMraoT+FVYN6dYAKFDu3y8vLM1cOqiwBLQAnH6AgC0jco3QaIiJSiBDCMDi5a6OaM14HqECxo9VqMWPGDAQFBcHZ2RkXLlwAALz33ntYtGiR2QPSfVKpbvXunN2sbBYiIlLMiSsZSMnMh4OtGu3CPO/9AiticrHz4YcfYsmSJZg9ezbs7G5dEj4iIgLffvutWcORmXAKOhFRjafv1elUzwsam5ox5VzP5GJn2bJl+OabbzBo0CCo1be+rGbNmuHUqVNmDUdmUqerPAX92kkgLVHpNEREpAD9eJ3IhjVrvA5QwUUF69WrV2K7TqdDYWGhWUKRmTl6ArWKr3x+bouyWYiIqMql5xTiQEIaACCqQc0arwNUoNhp2rQpdu7cWWL7Tz/9hJYtW5olFFUCw6ksFjtERDXNznPXoNUJ1PN1RrBnzZlyrmfyOjtTpkzB4MGDkZSUBJ1OhzVr1uD06dNYtmwZNmzYUBkZyRzqdQe2fQBciAGK8gEbjdKJiIioiujH69TEXh2gAj07ffr0werVq7Fp0yZIkoT3338fJ0+exPr169G9e/fKyEjm4N8McPYDCrOBhN1KpyEioiqi0wnEnNFPOa9543WACvTsAPL1sXr27GnuLFSZ9FPQD62QT2Xpr4hORERW7cSVDFzLzIejnRptateMq5zf6b4WFaRqxjBuh+vtEBHVFNtPybOwOtXzrnFTzvXK1bPj4eEBSZLKdcDU1NT7CkSVqE5XQGUDXD8DXD8LeNdXOhEREVWyLSevAgAeqqGnsIByFjtz5841PL5x4wY++OAD9OzZEx06dAAA7N69G3/++Sfee++9SglJZuLgDoR1Ac5vA06uBx4cp3QiIiKqRElpuThyKR2SBHRr7Kd0HMWUq9gZOnSo4fFTTz2F6dOnY9SoUYZto0ePxvz587F161aMHTvW/CnJfBr1loudUxtY7BARWbnNx5MBAG1CPeDjUnNn4Zo8ZufPP//EI488UmJ7z549sXUrL0dg8Ro9BkACkvYDGZeVTkNERJXoz+Jip2dTf4WTKMvkYsfLywtr164tsX3dunXw8vIySyiqRC7+QHA7+fGpjcpmISKiSpOaXYD/4uRxtDW92DF56vm0adMwYsQI7NixwzBmZ8+ePfjjjz94IdDqolFvIPFfedxOu5FKpyEiokqw9eRV6ATQOMC1Rq6afDuTe3aGDRuGXbt2wd3dHWvWrMEvv/wCNzc3/PPPPxg2bFglRCSza9xbvr/4N5DD2XNERNZIP17nkRreqwNUcFHB9u3bY8WKFebOQlXFsw7g2xRIOQ6c+QNoMVDpREREZEbZ+UWIPXsdANAzvObOwtKrULGj0+lw7tw5pKSkQKfTGe3r0qWLWYJRJWvcWy52Tm5gsUNEZGVizlxDQZEOoV6OaOjnonQcxZlc7OzZswcDBw5EfHw8hBBG+yRJglarNVs4qkSN+wAxHwHn/wIKsgE7J6UTERGRmdw+C6u8iwJbM5PH7Lz88sto06YNjh07htTUVNy8edNw4+rJ1YhfOOAeChTlAef+UjoNERGZSUGRDttOypeI6NmUp7CAChQ7Z8+excyZM9G4cWO4u7vDzc3N6GZuSUlJeO655+Dl5QVHR0e0aNEC+/fvN+wXQmDq1KkIDAyEg4MDoqKicPz4cbPnsDqSJPfuAPICg0REZBV2nb+OzPwi+Lho0DK4Zl74804mFzvt27fHuXPnKiNLCTdv3kSnTp1ga2uL33//HSdOnMCnn34Kd3d3Q5vZs2djzpw5mD9/Pvbu3Qt/f390794dmZmZVZKxWmtUPCvrzB9AUYGyWYiIyCz+PC5fC6t7Ez+oVDyFBVRgzM7rr7+O8ePHIzk5GREREbC1tTXa36xZM7OF++ijjxAcHIzFixcbttWuXdvwWAiBuXPnYvLkyejXrx8AYOnSpfDz88PKlSvx0ksvmS2LVQpuBzj5AtkpwMWdQL2HlU5ERET3QacT2HJCLnY45fwWk3t2nnrqKZw8eRLPP/882rZtixYtWqBly5aGe3P67bff0KZNG/zf//0ffH190bJlSyxcuNCwPy4uDsnJyejRo4dhm0ajQWRkJHbt2lXmcfPz85GRkWF0q5FU6uLLRwA4sU7RKEREdP/+u5iK61n5cLG3wQN1eFUDPZOLnbi4uBK3CxcuGO7N6cKFC1iwYAHq16+PP//8Ey+//DJGjx6NZcuWAQCSk+XR5n5+xgOw/Pz8DPtKEx0dbTTOKDg42Ky5q5VwuUcMJ34FivKVzUJERPfl10PyNQ97hfvDzsbkX/FWy+TTWKGhoZWRo1Q6nQ5t2rTBzJkzAQAtW7bE8ePHsWDBAgwZMsTQ7s5pdUKIu061mzRpEsaNu3XF74yMjJpb8IR2AlwCgMwr8qysRo8qnYiIiCqgoEiH349dAQA83iJI4TSWpUJl3/fff49OnTohMDAQ8fHxAIC5c+fi119/NWu4gIAANGnSxGhb48aNkZCQAADw95fPR97Zi5OSklKit+d2Go0Grq6uRrcaS6UGwp+SHx/9SdksRERUYTvPXkNaTiF8XDQ8hXUHk4udBQsWYNy4cXj00UeRlpZmWETQ3d0dc+fONWu4Tp064fTp00bbzpw5Y+hdCgsLg7+/P7Zs2WLYX1BQgJiYGHTs2NGsWayavtg5/TuQn6VsFiIiqhD9Kaw+zQKh5iwsIyYXO/PmzcPChQsxefJkqNVqw/Y2bdrg6NGjZg03duxY7NmzBzNnzsS5c+ewcuVKfPPNN3jttdcAyKevxowZg5kzZ2Lt2rU4duwYhg0bBkdHRwwcyEsglFtgS8CzLlCUC5zepHQaIiIyUU5BkWEWVt8WgQqnsTwVGqBc2qwrjUaD7Oxss4TSa9u2LdauXYtVq1YhPDwcM2bMwNy5czFo0CBDm4kTJ2LMmDF49dVX0aZNGyQlJWHz5s1wceG1QMpNkoCIp+XHPJVFRFTtbDlxFbmFWoR6OaJ5LfMv8FvdmTxAOSwsDIcOHSoxUPn3338vMb7GHHr37o3evXuXuV+SJEydOhVTp041+3vXKOFPF18raxuQfQNw4vleIqLq4rfiU1iPNw/ktbBKYXKx8+abb+K1115DXl4ehBD477//sGrVKkRHR+Pbb7+tjIxUFXwaAAHNgSuH5TV32o5QOhEREZXDzewCxJy5BoCnsMpicrEzfPhwFBUVYeLEicjJycHAgQMRFBSEzz//HM8880xlZKSqEv60XOwc/ZnFDhFRNbHp2BUU6QSaBLiini+HcJSmQlPPR44cifj4eKSkpCA5ORmJiYkYMYK/HKu98KcASEDCLiAtUek0RERUDoZTWOzVKVOFl1dMSUnByZMncebMGVy7ds2cmUgpbkHyIoMAcHyNslmIiOieLqfl4r+LqQCA3s1Z7JTF5GInIyMDgwcPRmBgICIjI9GlSxcEBgbiueeeQ3p6emVkpKoUUbzmzhHOyiIisnQbjlyGEEC72p4IcndQOo7FMrnYeeGFF/Dvv/9i48aNSEtLQ3p6OjZs2IB9+/Zh5MiRlZGRqlKTJwCVLXD1KJB8TOk0RERUBiEEftmfBIADk+/F5GJn48aN+O6779CzZ0+4urrCxcUFPXv2xMKFC7Fx48bKyEhVydETaNhLfnzwe2WzEBFRmQ5fSsfpq5nQ2KjQh6ew7srkYsfLywtubiUXLHJzc4OHh4dZQpHCWhVfZPXIal4JnYjIQq3eK08k6RXuDzcHW4XTWDaTi513330X48aNw5UrVwzbkpOT8eabb+K9994zazhSSN2HANcgIPcmcGqD0mmIiOgOOQVFWH9YnoXVv22wwmksn8nr7CxYsADnzp1DaGgoQkJCAAAJCQnQaDS4du0avv76a0PbAwcOmC8pVR2VGmgxCIidDRxYdutCoUREZBE2HU1GVn4RQjwd8UAYV7y/F5OLnSeeeKISYpDFaVlc7FzYAdyMBzxC7/kSIiKqGj8Wn8Lq36YWVLzC+T2ZXOxMmTKlMnKQpfGoDYRFAnExwKEVQNd3lE5EREQALlzLwn8XU6GSgKdb8xRWeVRoUcG0tDR8++23mDRpElJT5cWMDhw4gKSkJLOGI4XpByofXAHotMpmISIiAMCP+y4BAKIa+sLfzV7hNNWDyT07R44cQbdu3eDm5oaLFy9i5MiR8PT0xNq1axEfH49ly5ZVRk5SQqPegL07kHEJuLAdqNdN6URERDVaoVaHXw7IxU7/NuzVKS+Te3bGjRuHYcOG4ezZs7C3v1VR9urVC7GxsWYNRwqztQea9ZcfH+CaO0REStt+KgXXMvPh7WyHhxv7Kh2n2jC52Nm7dy9eeumlEtuDgoKQnJxsllBkQfSnsk5tBLJvKJuFiKiG+3GfPDC5X6tasFVX+PKWNY7J35S9vT0yMjJKbD99+jR8fHzMEoosiH8EENAC0BUCh1cpnYaIqMZKycjD9tPyhbd5Css0Jhc7jz/+OKZPn47CwkIAgCRJSEhIwNtvv42nnuJ6LFap9VD5ft8iQKdTNgsRUQ214t8EaHUCbUI9UM/XWek41YrJxc4nn3yCa9euwdfXF7m5uYiMjES9evXg4uKCDz/8sDIyktIi+gMaNyD1AnD+L6XTEBHVOAVFOqz4NwEAMLRjbWXDVEMmz8ZydXXF33//jW3btuHAgQPQ6XRo1aoVunXjTB2rpXEGWj4H7Pkf8O9XQP3uSiciIqpRNh29gutZ+fBz1eCRcH+l41Q7Jhc7eg899BAeeughc2YhS9buBWDPl8C5rcD1c4B3PaUTERHVGIt3XQQAPNc+lAOTK8Ckb0yn0+G7775D7969ER4ejoiICPTt2xfLli2DEKKyMpIl8KwDNOgpP/7vG2WzEBHVIAcTbuJwYhrs1Co82z5E6TjVUrmLHSEE+vbtixdeeAFJSUmIiIhA06ZNER8fj2HDhuHJJ5+szJxkCdoXLzlwaAWQV3JGHhERmd/S4l6d3s0D4O2sUTZMNVXu01hLlixBbGws/vrrL3Tt2tVo37Zt2/DEE09g2bJlGDJkiNlDkoWo0xXwbgBcPyNPQ29fcr0lIiIyn5TMPGw8egUAMLxjmMJpqq9y9+ysWrUK77zzTolCB5DH77z99ttYsWKFWcORhZEkoN2L8uN/v+Y0dCKiSrby3wQUagVahbgjopab0nGqrXIXO0eOHMEjjzxS5v5evXrh8OHDZglFFqz5s4DGFUg9D5zfpnQaIiKrdft082Gd2KtzP8pd7KSmpsLPz6/M/X5+frh586ZZQpEF009DB+Rp6EREVCl+P3YF1zLz4euiQS9ON78v5S52tFotbGzKHuKjVqtRVFRkllBk4dq+AEACzm0Brp1ROg0RkdURQmDR33EAgOce4HTz+1XuAcpCCAwbNgwaTekjwfPz880WiiycV12gYS/g9Cbgn7nAE18qnYiIyKr8c+4GjlxKh8ZGhYGcbn7fyl3sDB069J5tOBOrBuk8Ti52jqwGoiYB7rwoHRGRuXy54xwA4Jm2wZxubgblLnYWL15cmTmougluC9R+ELi4E9g9H+j1kdKJiIiswqHENOw6fwM2Kgkju9RROo5V4ElAqrgHx8n3+5cC2deVzUJEZCW+3C736jzeIgi1PBwVTmMdWOxQxdXpCgS0AIpyOTOLiMgMzl7NxOYTVyFJwCtR7NUxFxY7VHGSdKt3579veAkJIqL7tCDmPACgRxM/1PN1UTiN9ahWxU50dDQkScKYMWMM24QQmDp1KgIDA+Hg4ICoqCgcP35cuZA1TaM+gFd9IC8d2M9xXUREFXXpZg5+O3QZAPBqVD2F01iXalPs7N27F9988w2aNWtmtH327NmYM2cO5s+fj71798Lf3x/du3dHZmamQklrGJUK6DxGfrz7f0BhnqJxiIiqq4WxF1CkE+hUzwvNg92VjmNVqkWxk5WVhUGDBmHhwoXw8PAwbBdCYO7cuZg8eTL69euH8PBwLF26FDk5OVi5cqWCiWuYiP6AaxCQdRU4zO+diMhU17Py8cPeRADs1akM1aLYee211/DYY4+hW7duRtvj4uKQnJyMHj16GLZpNBpERkZi165dZR4vPz8fGRkZRje6DzZ2QMfR8uOdc4AiLjBJRGSKr2POI79Ih+a13NCxrpfScayOxRc7P/zwAw4cOIDo6OgS+5KTkwGgxDW7/Pz8DPtKEx0dDTc3N8MtOJgL4t231kMBlwAgPRHYv0TpNERE1caV9Fws3R0PABjbvQEkSVI4kfWx6GInMTERb7zxBpYvXw57e/sy2935B0MIcdc/LJMmTUJ6errhlpiYaLbMNZatAxA5UX4c+zFQkK1sHiKiamLetnMoKNKhXW1PRDbwUTqOVbLoYmf//v1ISUlB69atYWNjAxsbG8TExOCLL76AjY2NoUfnzl6clJSUu16hXaPRwNXV1ehGZtByMOBRG8i+xnV3iIjKIf5GNn4sHqszoWdD9upUEosudh5++GEcPXoUhw4dMtzatGmDQYMG4dChQ6hTpw78/f2xZcsWw2sKCgoQExODjh07Kpi8hlLbAl0ny4//+RzITVM0DhGRpZu79SyKdAJRDX3QLsxT6ThWq9zXxlKCi4sLwsPDjbY5OTnBy8vLsH3MmDGYOXMm6tevj/r162PmzJlwdHTEwIEDlYhM4U8Bf38GpJwAds0DHn5P6URERBbpdHIm1h1KAgBM6NFQ4TTWzaJ7dspj4sSJGDNmDF599VW0adMGSUlJ2Lx5M1xcuPKkIlTqW707exYAWSnK5iEislCfbj4NIYBHI/wRHuSmdByrJgkhhNIhlJaRkQE3Nzekp6dz/I45CAEsfAi4fABo/wrQa5bSiYiILMqhxDQ88b9/oJKAzWO78NIQFVTe39/VvmeHLJAkAQ+/Lz/etwhIS1A2DxGRBRFC4OM/TwEA+rWqxUKnCrDYocpRJwoI6wJoC4AtU5ROQ0RkMf46mYJ/zt2AnVqFNx6ur3ScGoHFDlUOSQJ6zgQkFXB8DRBf9orWREQ1RX6RFh9sPAEAeOHBMAR7OiqcqGZgsUOVxz8CaD1Mfvz7W4BOq2gcIiKlLfnnIi7eyIGPiwavduU1sKoKix2qXF0nAxo3IPkIcHC50mmIiBSTkpmHedvOAQDeeqQRnDUWvfqLVWGxQ5XLyRuIelt+/Nd0IC9d2TxERAr55M/TyMovQvNabujXMkjpODUKix2qfO1GAt4NgJzrQMxspdMQEVW5o5fS8dP+SwCA9/s0hUrFy0JUJRY7VPnUtkDP4qvW//sVcP2ssnmIiKqQEALT1h+HEMATLQLROtRD6Ug1Dosdqhr1uwH1ewK6IuCPt+WFB4mIaoBfD13GvvibcLBV461ejZSOUyOx2KGq03MmoLYDzm0Fjv2idBoiokqXml2A6Rvkqeavda2LADcHhRPVTCx2qOp41wO6vCk//v0tICdV2TxERJXsg40nkJpdgIZ+LnixS12l49RYLHaoanUaA/g0lgcr/zlZ6TRERJVm59lrWHMgCZIERD8VATsb/spVCr95qlo2dkDfLwBIwOGVwPntSiciIjK7nIIivLP2KABgaIfaaBXCQclKYrFDVS+4nTwdHQA2jAEKchSNQ0RkbnO3nkViai4C3ewxoWdDpePUeCx2SBkPvw+4BgE3LwI7opVOQ0RkNkcvpePbnRcAADOeCOdKyRaAxQ4pQ+MCPPap/Hj3/4CkA8rmISIyg4IiHd765Qh0AujdLAAPN/ZTOhKBxQ4pqWEvoGk/QGiBNS/ydBYRVXufbT2DE1cy4O5oiyl9miodh4qx2CFlPfYp4BIA3DgLbH5X6TRERBX274Ub+CrmPAAg+skI+LhoFE5Eeix2SFmOnsATX8qP9y0CTv+hbB4iogpIzy3EuB8PQwjg/1rXQq+IAKUj0W1Y7JDy6j4EPPCq/PjX14CsFGXzEBGZaMqvx5CUlosQT0dM6cvTV5aGxQ5ZhoenAL5N5cUGfx3Fa2cRUbXx66EkrDt0GWqVhM8GtODsKwvEYocsg6098NRC+dpZZ/+UT2kREVm4pLRcvLvuGABgVNd6vKK5hWKxQ5bDrynQbar8+M/JwJXDisYhIrqbgiIdRq08gMy8IrQIdsfrD9VTOhKVgcUOWZb2rwD1ewJFecDqwbxYKBFZrA82nsDBhDS42tvgi2dawkbNX6mWij8ZsiwqFdDva8CjNpAWL6+/o9MpnYqIyMiaA5ewbHc8AGDuMy0Q4uWocCK6GxY7ZHkcPID+3wM29sC5LUDsbKUTEREZnLySYbjI5+iH6uGhRlwl2dKx2CHLFNAM6P2Z/HjHLODsFmXzEBFBXk/n5eX7kVeoQ5cGPnijWwOlI1E5sNghy9ViINDmeQAC+OUFIDVO6UREVIPpdALjfzyE+Bs5CHJ3wOcDWkCtkpSOReXAYocs2yOzgKDWQF4asHIAkHtT6UREVEPN+uMUtp5MgZ2NCl891xoeTnZKR6JyYrFDls1GAwxYDrgEAtdPAz8OAYoKlE5FRDXM8j3x+Cb2AgBg9lPNEFHLTeFEZAoWO2T5XAOBQT8Cds5AXCywYQxXWCaiKrPjdAqm/HYcADCuewM80TJI4URkKhY7VD34RwD/twSQ1MChFcDOT5ROREQ1wInLGXhtxQFodQJPtarFhQOrKRY7VH3U7w48WjwNfdsHwJGflM1DRFbtakYeRizdi+wCLTrU8UJ0vwhIEgckV0csdqh6afsC0GGU/HjdK8DZrcrmISKrdDO7AEMW/Ycr6Xmo6+OEr55rDTsb/sqsriz6JxcdHY22bdvCxcUFvr6+eOKJJ3D69GmjNkIITJ06FYGBgXBwcEBUVBSOHz+uUGKqEt1nAE2fBHSFwOpBwMW/lU5ERFYkI68QQ777D6evZsLPVYMlw9vBzdFW6Vh0Hyy62ImJicFrr72GPXv2YMuWLSgqKkKPHj2QnZ1taDN79mzMmTMH8+fPx969e+Hv74/u3bsjMzNTweRUqVQq4MlvgAaPyNfQWjkAuLRf6VREZAVyCoowYsleHE1Kh6eTHVa80B7BnrwURHUnCVF9prVcu3YNvr6+iImJQZcuXSCEQGBgIMaMGYO33noLAJCfnw8/Pz989NFHeOmll8p13IyMDLi5uSE9PR2urq6V+RHInArzgJX/J8/QsncHhm0E/MOVTkVE1VReoRYjl+3DzrPX4WJvg1UjH0B4EKeYW7Ly/v626J6dO6WnpwMAPD09AQBxcXFITk5Gjx49DG00Gg0iIyOxa9cuRTJSFbK1B55ZBdRqJy86+P0TwLUzSqciomqooEiH11cdxM6z1+Fop8aS4e1Y6FiRalPsCCEwbtw4dO7cGeHh8v/ek5OTAQB+fsYXYfPz8zPsK01+fj4yMjKMblRNaZyBQT8B/s2A7GvAkkeB5KNKpyKiaiSvUIuXl+/HlhNXobFR4duhbdA61EPpWGRG1abYGTVqFI4cOYJVq1aV2HfnVEAhxF2nB0ZHR8PNzc1wCw4ONnteqkIO7sDgdbcVPI8Bl/YpnYqIqoGs/CIMX7wX206lwN5WhW+GtEHHut5KxyIzqxbFzuuvv47ffvsN27dvR61atQzb/f39AaBEL05KSkqJ3p7bTZo0Cenp6YZbYmJi5QSnquPkBQxdDwS3B/LSgWWPA3E7lU5FRBYsPacQgxf9i90XbsBZY4Olw9shsoGP0rGoElh0sSOEwKhRo7BmzRps27YNYWFhRvvDwsLg7++PLVu2GLYVFBQgJiYGHTt2LPO4Go0Grq6uRjeyAg7uwOC1QFgkUJAFrHgaOLNZ6VREZIGuZ+XjmYV7cDAhDW4OtljxQnu0r+OldCyqJBZd7Lz22mtYvnw5Vq5cCRcXFyQnJyM5ORm5ubkA5NNXY8aMwcyZM7F27VocO3YMw4YNg6OjIwYOHKhwelKEnRMw8EegQS95WvoPzwIHvlc6FRFZkAvXsvD0gl04eSUD3s4arH7pATQPdlc6FlUii556Xta4m8WLF2PYsGEA5N6fadOm4euvv8bNmzfRvn17/O9//zMMYi4PTj23QtpCYN2rwNEf5ecPjge6viuv0UNENdZ/cal48ft9SMspRJC7A74f0Q51fJyVjkUVVN7f3xZd7FQVFjtWSghg+0wgtvh6WuFPAY9/KU9ZJ6IaZ93BJEz8+QgKtDo0D3bHt0PawMdFo3Qsug9Wuc4OkUkkCXhoslzgqGyAY78Ay/oC2deVTkZEVUgIgc+3nsWY1YdQoNWhV7g/fhj5AAudGoTFDlm/loOA59YA9m5A4r/AN1FAEi8vQVQTZOYV4pXlB/DZVnnB0Ze61MH/BraCg51a4WRUlVjsUM1QJxIYsQXwrAukJwLfPQLsWyyf6iIiq3TmaiYen/8P/jieDFu1hJlPRmDSo42hUpW9DhtZJxY7VHP4NARe3A406g1oC4ANY4BfXwMKc5VORkRm9tvhy3h8/j+4cD0bAW72+PGlDhjYPkTpWKQQFjtUs9i7AQOWA92mApIKOLQCWNSd19QishJ5hVpM+fUYRq86iNxCLTrX88aG1zujZQgv/1CTsdihmkeSgM5j5UtMOHrL19L6uguw91ue1iKqxo5fTkefeX9j6e54AMBrXeti6fPt4OXMgcg1HYsdqrnqRAIv/w3U6QoU5QIbxwMr+wNZKUonIyIT6HQCX8ecxxP/+wdnU7Lg46LBkuFt8WbPRlBzfA6BxQ7VdK4B8kytR2YBag1wdjPwZQfg5AalkxFROSSm5mDQt/8i+vdTKNQKdG/ihz/eeBBRDX2VjkYWhIsKgosKUrGrJ4A1I4Grx+TnjfsCvWbLBRERWZQirQ5Ldl3Ep5vPILdQC0c7Nab0aYL+bYLLXH2frA9XUDYBix0yKMoHdswCdn0B6IoAjRvQfSrQahgvNUFkIY5fTsfbvxzF0aR0AED7ME989FQz1PZ2UjgZVTUWOyZgsUMlJB8DfnsduHxAfh7SEXj0Y8C//NdcIyLzyswrxLxt57Do7zhodQKu9jaY/Fhj9ubUYCx2TMBih0ql0wL/fQP8NQMozJanqrceBnSdDDh5K52OqMbQ6QR+3n8Js/88jetZ+QCAx5oFYEqfJvB14bXuajIWOyZgsUN3lZYAbH4POLFOfq5xA6LeBtqNBNS2ikYjsnZ7L6Zi2vrjOJaUAQAI83bCe70b46FGfgonI0vAYscELHaoXC7+Dfz+NnD1qPzcsy7Q9R2gaT+O5yEyszNXM/Hp5tP48/hVAICLxgZvdKuPIR1qw86Gf99IxmLHBCx2qNx0WuDg9/KprZziq6f7hQMPvQs0eEResJCIKiz+Rjbmbj2LdYeSIIT8V+qZtsEY36MhvLk4IN2BxY4JWOyQyfIzgT1fybO28uXudQS1ASInAvV7sOghMlH8jWx8FXMeP+27hCKd/GupV7g/xnVvgPp+LgqnI0vFYscELHaownJS5YLn36+Bwhx5m1+4fDmKJk8AahtF4xFZuhOXM7Ag5jw2HrmM4hoHkQ18MKFHQ0TUclM2HFk8FjsmYLFD9y3zKrB7HrBvMVCQJW/zqA10GAU0fxbQOCsaj8iSCCGw+8INLIy9gO2nrxm2RzX0wWtd66FtbU8F01F1wmLHBCx2yGxybwL/LQT2LAByU+VtGjeg5XNAuxcAzzrK5iNSUE5BEdYeTMKyXfE4fTUTAKCSgEcjAvBKVF00DWRPDpmGxY4JWOyQ2RVkAweXA/9+BaReKN4oAQ16Aq2HA/W68RQX1RjnUjLxw3+J+HFfIjLyigAAjnZq9GsVhBc61+HKx1RhLHZMwGKHKo1OB5z/Sy56zm29td0lQD691fI5wKuucvmIKklWfhE2HrmM1XsTcSAhzbA91MsRQzrUxtOta8HNgetU0f1hsWMCFjtUJa6fA/Z9Bxz5Aci5cWt7SEeg2f/JA5odOVaBqq8irQ7/nL+BXw8l4Y9jycgp0AIA1CoJXRv6YmD7YEQ18IVKxdmKZB4sdkzAYoeqVFEBcHqTvF7Pub8AFP8VVNkAdR8GIp4GGvYCNJxuS5ZPpxM4kHATvx2+jI1HruBGdoFhX5i3E/q3CcZTrYLg68rLOpD5sdgxAYsdUkz6JeDYL8DRn4HkI7e2q+2AOlFAo95Aw0cBZx/FIhLdqaBIh90XbuDP48nYcuIqrmXmG/Z5OtnhsYgAPN4iEK1DPXiBTqpULHZMwGKHLMK1M8Cxn+Xi58a5W9slFRDcHqjfHajXHfCP4KKFVOWuZeYj5sw17DidgpjT15CZX2TY56KxQfcmfujbIhCd6nnDVs3LOVDVYLFjAhY7ZFGEAK6dBk6tB05uAK4cMt7v7A/U7wbUfQio3YW9PlQp8ou0OJiQhn/OXceO09dwNCndaL+Piwbdm/ihZ1N/dKjjxetVkSJY7JiAxQ5ZtLRE4OyfwNktQFzsrZWa9XybAGGRQNiDQEgHDnKmCiko0uHY5XTsPn8Du8/fwN6Lqcgv0hm1CQ9yRVQDX3Rt5IOWwR4caEyKY7FjAhY7VG0U5gEJu4CzW4G4GODqsZJtvBsCIQ/IhU9wO3khQ572ojuk5RTgYGIa9l+8ib0XU3EoMa1EcePtrEGHul7oUt8bkQ194OvCQcZkWVjsmIDFDlVb2deBizvlHp+LfwPXz5Rs4+ABBLYCarWR7wOaAy7+LIBqkJyCIpy8kokjl9JwODENhy+lI+56dol2Ho62aFvbE53qeaNjXS/U83XmAGOyaCx2TMBih6xG9g0gcQ+QsBtI2ANcOQJo80u2c/KRix7/ZoB/OODbVF7cUM1F3qozIQRSMvNxOjkTJ69k4PjlDBy/nI4L17NR2r/0tb0c0TrUE21re6BNbU/U9XFicUPVCosdE7DYIatVVCCf6kraDyQdAC4fkHt/hK5kW7Ud4N1AHgPk00B+7N1APg1mo6n67FQmIQSupOfh/LUsnE/Jwvlr2Th9NRNnrmYiLaew1Nf4uGgQHuiKFsEeaBHijmZBbvBwsqvi5ETmVd7f37w4D5E1s7EDglrJN72CHODqcSD5sNzzc/U4kHISKMyWC6M7xwFJKsA9VC56vOrK95515Ku6u4cAtg5V+pFqCq1O4GpGHhJTcxB/IwcXb2Qj/kYO4q5n4+KNbMPqxHdSSfJifg39XdAkwBVNg9zQNNCV422oRmPPDtizQwSdDkhPBFJOyLfrZ+UeoGtngILMu7/W2U8uhjxCAbdagGsQ4BZc/DhQHjPEUyMl5BVqkZyeh8vpubiclofLabm4kp6LSzdzkZiag6S0XBRqy/7n2UYlIdTLEXV9nFHX1xn1fZ3R0N8FdX2cYW+rrsJPQqQcnsYyAYsdojIIAWQmy4scpl4ovp0HUuOAm/H3LoQAwMZeHhDtElh87y8XSM5+gLOvfO/kAzh6VfsrwQshkJFXhBtZ+bieVYBrmflIycwrvpdvV9PzkJyRh/Tc0k833c5GJSHQ3QGhXo6o7eVkuK/tLT/m4n1U0/E0FhHdP0kCXAPkW9iDxvuEAHJvAjcvAmkJ8i0jSb4ERnqifJ9zAyjKk9vcvHivN5N7gfSFj6Nn8X3xYweP4lvxY3s3wMFdLqYqoeeoUKtDZl4RMnILkZZbiLScAqTnFuJmdgHSiu9Tc+T7mzkFuJFVgBvZ+XftjbmTg60aAe72CHJ3QKCbAwLdHRDobo9gT0fU8nCAv6s9bFjQEN03qyl2vvzyS3z88ce4cuUKmjZtirlz5+LBBx+89wuJqGIkqbgg8TQeE3S7wjwgKxnIuAJkXpbvs1OAzKtAVvEt+5pcFAkdkJsq30yhtpMLH3s36OxcoLNzQaGtCwptnFCgdkKeygl5KgfkwAHZcECm0CBTp0GGVoM0rR1uFtoitcAGNwptcCNPhcx8LTJyC5FdxpiY8nDR2MDL2Q4+Lhr4uGjg62JveOzvag9/N3v4udrD1d6Gs5+IqoBVFDurV6/GmDFj8OWXX6JTp074+uuv0atXL5w4cQIhISFKxyOyakIIaHUCRTqBQq0OhVqBIq0OBVodirQChVovFNh6oNCtMQqddSgokm/5RXKbgiIdCgsLgdxUqHNvwDb3OtT5N2GbfxN2BTdhn38TmqJ0aIoy4FCUAUdtJpx1GXAS2VBDB2gL5IIp+xpUAFSQ/2GryLBpnZCQCzvkShrkaeyQKzTIlzTQqjTQqu2hs9EANg6ArQNs7OxhY+cAW3sH2GkcYe/gCEcHRzg6OsJW4wCoNfIAcXXxzUYjb1PbArADsu2APBt5n8pW3q62LX5uw3FORGZkFWN22rdvj1atWmHBggWGbY0bN8YTTzyB6Ojoe76+ssbs3MwuQHZB0T3bVfQncOfrBO59oNLe685Npf2REIZ9Zb9Sv0+Usq20jIb2wnhfqRmF8f5beYThPW+9ThhlufU+wvDckEPAaJswPL91XNy+r3i/TujfQ77X3dZGJ27l1LfTGd7buL2u+M11xW104vY2t7bLBYV+m3zT6uS2ujv2aXXFr9MJaIUw3Mvb5XvDTQBanc54W3Hhcvt9oVZneF6k1RXfCxTpdCadtjEvASfkwRU5cJWy4YocuEg5cEEO3FW58LDJg7sqH+7qPLiq8uEs5cIZuXBAPhyQB3tdLjS6HNjq8mCjK2UtIqVJarn4UdnKY5lU+pstoFLLj9W3PVbZyK9R2QAq1W2P1cWP1caPJfWtdpLq1jbDY+nWc8M2fXvp1najm2T8GJLx9rs9B0p/HaRy3MP4OVB229v3lfsxSt9ueH7nfpSxrZQC9q6vr8hx7qJcBXR5jl3B93LwADQu5chQfjVmzE5BQQH279+Pt99+22h7jx49sGvXrlJfk5+fj/z8W/+4ZWRkVEq2jzefxsp/Eyrl2ESWTCUBNmoVNGoVbG1UsFVLsFWrYKtWwU6tgp2NfLNVS9DYqA3PNcX77G3V0Nio5FvxY3tbdfFNBXsbNRzs5OcOxdsc7NRwtLWBg53a9ItS6rTyNccKcuQp+IV5QGGuvK0wFyjKlbfdfl+UL49HKsqX22gLbm3TPzbcF8qLOxblA7oiebu2QF4HSVcob7uT0AJFWgB5ZvmZECmu91ygzXBF3rraFzvXr1+HVquFn5+f0XY/Pz8kJyeX+pro6GhMmzat0rPZqiTY25bvH12pHJVyuQr3Ul8n3bPNnRvLc5zbM0l3a3NH29uPXvL1+ud3a3PH57ntPz3610mScXvDf/xue710x/vdOo5k2Kc/puF4kgTVbceRbn9fCcX7JPk/zPrXFbdTFT82ui9uo1JJUN12PLUkGdqopNvb3L6v+LnqVlt18XHUKum2xyhue2u7WiVBLUlQqSTYFD+3UcnP1ZIEG7UEG5VK3q6W99sWP7fVP1erDO1u32arlttVKyq1/D9OM/+vs9yEkAsiXaFcBOm0tz0vlJ/f+VinlYskw+2250IntxVaebv+XqeV9xltv/158WOhK34ubj2//abTQu7yFHc817fRv664DYTxawxt73hstO0u90J3xzbc9hzG+/Tf7123lfZ63HpsaH/b89K2GXVLl/G60tqUdbwS7Ut5Tambyugev9cLy3WaoRxtyjqOSrklEap9saN35y9AIUSZA/8mTZqEcePGGZ5nZGQgODjY7JmmPR6OaY+Hm/24RGRlJEke3wM7AE5KpyGyOtW+2PH29oZarS7Ri5OSklKit0dPo9FAo+Hy90RERDVBtV/Awc7ODq1bt8aWLVuMtm/ZsgUdO3ZUKBURERFZimrfswMA48aNw+DBg9GmTRt06NAB33zzDRISEvDyyy8rHY2IiIgUZhXFzoABA3Djxg1Mnz4dV65cQXh4ODZt2oTQ0FCloxEREZHCrGKdnfvFa2MRERFVP+X9/V3tx+wQERER3Q2LHSIiIrJqLHaIiIjIqrHYISIiIqvGYoeIiIisGosdIiIismosdoiIiMiqsdghIiIiq8Zih4iIiKyaVVwu4n7pF5HOyMhQOAkRERGVl/739r0uBsFiB0BmZiYAIDg4WOEkREREZKrMzEy4ubmVuZ/XxgKg0+lw+fJluLi4QJIkpeMoLiMjA8HBwUhMTOS1wioZv+uqw++66vC7rjo1/bsWQiAzMxOBgYFQqcoemcOeHQAqlQq1atVSOobFcXV1rZF/eZTA77rq8LuuOvyuq05N/q7v1qOjxwHKREREZNVY7BAREZFVY7FDJWg0GkyZMgUajUbpKFaP33XV4XdddfhdVx1+1+XDAcpERERk1dizQ0RERFaNxQ4RERFZNRY7REREZNVY7BAREZFVY7FD5ZKfn48WLVpAkiQcOnRI6ThW5+LFixgxYgTCwsLg4OCAunXrYsqUKSgoKFA6mtX48ssvERYWBnt7e7Ru3Ro7d+5UOpLViY6ORtu2beHi4gJfX1888cQTOH36tNKxaoTo6GhIkoQxY8YoHcUisdihcpk4cSICAwOVjmG1Tp06BZ1Oh6+//hrHjx/HZ599hq+++grvvPOO0tGswurVqzFmzBhMnjwZBw8exIMPPohevXohISFB6WhWJSYmBq+99hr27NmDLVu2oKioCD169EB2drbS0aza3r178c0336BZs2ZKR7FYnHpO9/T7779j3Lhx+OWXX9C0aVMcPHgQLVq0UDqW1fv444+xYMECXLhwQeko1V779u3RqlUrLFiwwLCtcePGeOKJJxAdHa1gMut27do1+Pr6IiYmBl26dFE6jlXKyspCq1at8OWXX+KDDz5AixYtMHfuXKVjWRz27NBdXb16FSNHjsT3338PR0dHpePUKOnp6fD09FQ6RrVXUFCA/fv3o0ePHkbbe/TogV27dimUqmZIT08HAP45rkSvvfYaHnvsMXTr1k3pKBaNFwKlMgkhMGzYMLz88sto06YNLl68qHSkGuP8+fOYN28ePv30U6WjVHvXr1+HVquFn5+f0XY/Pz8kJycrlMr6CSEwbtw4dO7cGeHh4UrHsUo//PADDhw4gL179yodxeKxZ6cGmjp1KiRJuutt3759mDdvHjIyMjBp0iSlI1db5f2ub3f58mU88sgj+L//+z+88MILCiW3PpIkGT0XQpTYRuYzatQoHDlyBKtWrVI6ilVKTEzEG2+8geXLl8Pe3l7pOBaPY3ZqoOvXr+P69et3bVO7dm0888wzWL9+vdEvBK1WC7VajUGDBmHp0qWVHbXaK+93rf/H6vLly+jatSvat2+PJUuWQKXi/0fuV0FBARwdHfHTTz/hySefNGx/4403cOjQIcTExCiYzjq9/vrrWLduHWJjYxEWFqZ0HKu0bt06PPnkk1Cr1YZtWq0WkiRBpVIhPz/faF9Nx2KHypSQkICMjAzD88uXL6Nnz574+eef0b59e9SqVUvBdNYnKSkJXbt2RevWrbF8+XL+Q2VG7du3R+vWrfHll18atjVp0gSPP/44ByibkRACr7/+OtauXYsdO3agfv36SkeyWpmZmYiPjzfaNnz4cDRq1AhvvfUWTx3egWN2qEwhISFGz52dnQEAdevWZaFjZpcvX0ZUVBRCQkLwySef4Nq1a4Z9/v7+CiazDuPGjcPgwYPRpk0bdOjQAd988w0SEhLw8ssvKx3Nqrz22mtYuXIlfv31V7i4uBjGRLm5ucHBwUHhdNbFxcWlREHj5OQELy8vFjqlYLFDZAE2b96Mc+fO4dy5cyUKSXa+3r8BAwbgxo0bmD59Oq5cuYLw8HBs2rQJoaGhSkezKvqp/VFRUUbbFy9ejGHDhlV9IKJiPI1FREREVo2jH4mIiMiqsdghIiIiq8Zih4iIiKwaix0iIiKyaix2iIiIyKqx2CEiIiKrxmKHiIiIrBqLHSICIF8oc926dUrHKJepU6eiRYsWSscwu6ioKIwZM6bc7Xfs2AFJkpCWllZmmyVLlsDd3f2+sxFVZyx2iKq5YcOG4YknnlA6RrVXnqLg008/hZubG3Jyckrsy8vLg7u7O+bMmVPhDGvWrMGMGTMq/HoiKh2LHSKichoyZAhyc3Pxyy+/lNj3yy+/ICcnB4MHDzb5uIWFhQAAT09PuLi43HdOIjLGYofIykRFRWH06NGYOHEiPD094e/vj6lTpxq1OXv2LLp06QJ7e3s0adIEW7ZsKXGcpKQkDBgwAB4eHvDy8sLjjz+OixcvGvbre5SmTZsGX19fuLq64qWXXkJBQYGhjRACs2fPRp06deDg4IDmzZvj559/NuzXn4b566+/0KZNGzg6OqJjx444ffq0UZZZs2bBz88PLi4uGDFiBPLy8krkXbx4MRo3bgx7e3s0atTI6ArnFy9ehCRJWLNmDbp27QpHR0c0b94cu3fvNuQYPnw40tPTIUkSJEkq8Z0BgI+PD/r06YPvvvuuxL7vvvsOffv2hY+PD9566y00aNAAjo6OqFOnDt577z1DQQPcOg333XffoU6dOtBoNBBClDiNtXz5crRp0wYuLi7w9/fHwIEDkZKSUuK9//nnHzRv3hz29vZo3749jh49WqLN7davX4/WrVvD3t4ederUwbRp01BUVHTX1xBVa4KIqrWhQ4eKxx9/3PA8MjJSuLq6iqlTp4ozZ86IpUuXCkmSxObNm4UQQmi1WhEeHi6ioqLEwYMHRUxMjGjZsqUAINauXSuEECI7O1vUr19fPP/88+LIkSPixIkTYuDAgaJhw4YiPz/f8L7Ozs5iwIAB4tixY2LDhg3Cx8dHvPPOO4Ys77zzjmjUqJH4448/xPnz58XixYuFRqMRO3bsEEIIsX37dgFAtG/fXuzYsUMcP35cPPjgg6Jjx46GY6xevVrY2dmJhQsXilOnTonJkycLFxcX0bx5c0Obb775RgQEBIhffvlFXLhwQfzyyy/C09NTLFmyRAghRFxcnAAgGjVqJDZs2CBOnz4tnn76aREaGioKCwtFfn6+mDt3rnB1dRVXrlwRV65cEZmZmaV+3xs3bhSSJIkLFy4YtsXFxQlJksSmTZuEEELMmDFD/PPPPyIuLk789ttvws/PT3z00UeG9lOmTBFOTk6iZ8+e4sCBA+Lw4cNCp9OJyMhI8cYbbxjaLVq0SGzatEmcP39e7N69WzzwwAOiV69ehv36769x48Zi8+bN4siRI6J3796idu3aoqCgQAghxOLFi4Wbm5vhNX/88YdwdXUVS5YsEefPnxebN28WtWvXFlOnTi39DxiRFWCxQ1TNlVbsdO7c2ahN27ZtxVtvvSWEEOLPP/8UarVaJCYmGvb//vvvRsXOokWLRMOGDYVOpzO0yc/PFw4ODuLPP/80vK+np6fIzs42tFmwYIFwdnYWWq1WZGVlCXt7e7Fr1y6jLCNGjBDPPvusEOLWL+utW7ca9m/cuFEAELm5uUIIITp06CBefvllo2O0b9/eqNgJDg4WK1euNGozY8YM0aFDByHErWLn22+/New/fvy4ACBOnjwphChZFJSlqKhIBAUFiffff9+w7f333xdBQUGiqKio1NfMnj1btG7d2vB8ypQpwtbWVqSkpBi1u7PYudN///0nABgKMf3398MPPxja3LhxQzg4OIjVq1eX+rkefPBBMXPmTKPjfv/99yIgIODuH5yoGrNRqEOJiCpRs2bNjJ4HBAQYTn+cPHkSISEhqFWrlmF/hw4djNrv378f586dKzF+JC8vD+fPnzc8b968ORwdHY2Ok5WVhcTERKSkpCAvLw/du3c3OkZBQQFatmxZZt6AgAAAQEpKCkJCQnDy5Em8/PLLRu07dOiA7du3AwCuXbuGxMREjBgxAiNHjjS0KSoqgpubW7nep1GjRigvtVqNoUOHYsmSJZgyZQokScLSpUsxbNgwqNVqAMDPP/+MuXPn4ty5c8jKykJRURFcXV2NjhMaGgofH5+7vtfBgwcxdepUHDp0CKmpqdDpdACAhIQENGnSxOj70PP09ETDhg1x8uTJUo+5f/9+7N27Fx9++KFhm1arRV5eHnJycox+nkTWgsUOkRWytbU1ei5JkuEXpRCiRHtJkoye63Q6tG7dGitWrCjR9l6/oO98v40bNyIoKMhov0ajKTOvPov+9feib7dw4UK0b9/eaJ+++DDH+9zu+eefR3R0NLZt2wZALj6GDx8OANizZw+eeeYZTJs2DT179oSbmxt++OEHfPrpp0bHcHJyuut7ZGdno0ePHujRoweWL18OHx8fJCQkoGfPnkbjospy589UT6fTYdq0aejXr1+Jffb29vc8LlF1xGKHqIZp0qQJEhIScPnyZQQGBgKAYaCuXqtWrbB69WrDwOOyHD58GLm5uXBwcAAg/6J3dnZGrVq14OHhAY1Gg4SEBERGRlY4b+PGjbFnzx4MGTLEsG3Pnj2Gx35+fggKCsKFCxcwaNCgCr+PnZ0dtFptudrWrVsXkZGRWLx4sWFgcd26dQHIg4VDQ0MxefJkQ/v4+HiT85w6dQrXr1/HrFmzEBwcDADYt29fqW337NmDkJAQAMDNmzdx5syZMnurWrVqhdOnT6NevXomZyKqrljsENUw3bp1Q8OGDTFkyBB8+umnyMjIMPrFDACDBg3Cxx9/jMcffxzTp09HrVq1kJCQgDVr1uDNN980nAIrKCjAiBEj8O677yI+Ph5TpkzBqFGjoFKp4OLiggkTJmDs2LHQ6XTo3LkzMjIysGvXLjg7O2Po0KHlyvvGG29g6NChaNOmDTp37owVK1bg+PHjqFOnjqHN1KlTMXr0aLi6uqJXr17Iz8/Hvn37cPPmTYwbN65c71O7dm1kZWXhr7/+Mpyeu9spndtPm3377beG7fXq1UNCQgJ++OEHtG3bFhs3bsTatWvLleF2ISEhsLOzw7x58/Dyyy/j2LFjZa7BM336dHh5ecHPzw+TJ0+Gt7d3mWsvvf/+++jduzeCg4Pxf//3f1CpVDhy5AiOHj2KDz74wOScRNUBp54T1TAqlQpr165Ffn4+2rVrhxdeeMFo/AYAODo6IjY2FiEhIejXrx8aN26M559/Hrm5uUY9PQ8//DDq16+PLl26oH///ujTp4/RlO0ZM2bg/fffR3R0NBo3boyePXti/fr1CAsLK3feAQMG4P3338dbb72F1q1bIz4+Hq+88opRmxdeeAHffvstlixZgoiICERGRmLJkiUmvU/Hjh3x8ssvY8CAAfDx8cHs2bPv2v6pp56CRqOBRqMxOiX0+OOPY+zYsRg1ahRatGiBXbt24b333it3Dj0fHx8sWbIEP/30E5o0aYJZs2bhk08+KbXtrFmz8MYbb6B169a4cuUKfvvtN9jZ2ZXatmfPntiwYQO2bNmCtm3b4oEHHsCcOXMQGhpqckai6kISpZ3AJyK6h2HDhiEtLa3aXGKCiGou9uwQERGRVWOxQ0RERFaNp7GIiIjIqrFnh4iIiKwaix0iIiKyaix2iIiIyKqx2CEiIiKrxmKHiIiIrBqLHSIiIrJqLHaIiIjIqrHYISIiIqvGYoeIiIis2v8D/8oP3JpyBCsAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ "
"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "X = np.arange(-5.0, 5.0, 0.1)\n",
+ "\n",
+ "Y= np.exp(X)\n",
+ "\n",
+ "plt.plot(X, Y, label='e^x') \n",
+ "plt.plot(X, np.exp(-X), label='e^(-x)')\n",
+ "plt.ylabel('Dependent Variable')\n",
+ "plt.xlabel('Independent Variable')\n",
+ "plt.title('Perbandingan e^x dan e^(-x)')\n",
+ "plt.legend()\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Logarithmic\n",
+ "\n",
+ "The response $y$ is a results of applying the logarithmic map from the input $x$ to the output $y$. It is one of the simplest form of __log()__: i.e. $$ y = \\log(x)$$\n",
+ "\n",
+ "Please consider that instead of $x$, we can use $X$, which can be a polynomial representation of the $x$ values. In general form it would be written as \n",
+ "\\begin{equation}\n",
+ "y = \\log(X)\n",
+ "\\end{equation}\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "tags": []
+ },
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "/home/jupyterlab/conda/envs/python/lib/python3.7/site-packages/ipykernel_launcher.py:3: RuntimeWarning: invalid value encountered in log\n",
+ " This is separate from the ipykernel package so we can avoid doing imports until\n"
+ ]
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkMAAAGwCAYAAACq12GxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAABTSUlEQVR4nO3deVxU5eIG8GfYBhAY9n13BRdUUMTcKxXLNFv02nUp85e3vGVeq2uLSxtmy7UyvZkWmlbem9rNNJdS1FRSVFwQSRAFWUS2GdYBZt7fH8QkgcrgDIdhnu/nM5+Pc+acmQcq5+k973mPTAghQERERGSmLKQOQERERCQlliEiIiIyayxDREREZNZYhoiIiMissQwRERGRWWMZIiIiIrPGMkRERERmzUrqAO2dVqtFbm4uHB0dIZPJpI5DRERELSCEQFlZGXx9fWFhceuxH5ah28jNzUVAQIDUMYiIiKgVsrOz4e/vf8t9WIZuw9HREUD9L9PJyUniNERERNQSKpUKAQEBuu/xW2EZuo2GU2NOTk4sQ0RERCamJVNcOIGaiIiIzBrLEBEREZk1liEiIiIyayxDREREZNZYhoiIiMissQwRERGRWWMZIiIiIrPGMkRERERmjWWIiIiIzBrLEBEREZk1liEiIiIyayxDREREZNZYhoiIiEgSWq1AZmEFCsqqJc3Bu9YTERGR0anrNPgtvxzn85RIyVXhfK4KqXkqVNRo8M/YHpgzvLNk2ViGiIiIyKCUVbU4n6vC+TwVUnKVOJ+rQnpBOeq0osm+cisLlFfXSZDyDyxDRERE1GrXy9RIya0f7UnJVeJcjgpZxZXN7utsb42evk4I93FCT18Fevo6IcS9E6wspZ21wzJEREREtyWEQJ6yGudylDiXU19+zuUqcU2lbnZ/P2c7hPs6oafvH8XHR2ELmUzWxslvj2WIiIiIGhFC4GpJFVJylTibo8TZHBVScpQoqqhpsq9MBoS4d0JPXwV63VB8XDrZSJC8dUyqDB08eBDvvvsuTpw4gby8PGzbtg0TJ0686f4JCQkYOXJkk+2pqano0aOHEZMSERGZBiEEckqrcPaqEmd+H/U5l6NESWVtk30tLWTo6umAXn71xaeXnwJhPk7oJDepOtGESaWvqKhAREQEHn/8cTz00EMtPi4tLQ1OTk665x4eHsaIR0RE1K41nOo6c7W+8JzJUeLs1dJmi4+1pQzdvBzRy1eBXv4K9PZToIe3I2ytLSVIblwmVYZiY2MRGxur93Genp5wdnY2fCAiIqJ27HqZGmeuluL01frSczZHicLypqe6rC1l6O7tiN5+CvTyU6CPnzO6eTtAbtXxik9zTKoMtVa/fv1QXV2N8PBwvPrqq82eOmugVquhVv8xGUylUrVFRCIiojuirKrFuRwlTl8txZlsJc5cLUWusulihlYW9SM+vf0U6O2vQB9/Bbp7O5pN8WlOhy5DPj4+WLNmDSIjI6FWq/Hll1/i7rvvRkJCAoYNG9bsMXFxcVi6dGkbJyUiImq56loNUvNUOJ1dP+pzOrsUlwormuwnkwFdPBzQx98ZEQH1p7rCfJw65KmuOyETQjRdAckEyGSy206gbs748eMhk8nw/fffN/t6cyNDAQEBUCqVjeYdERERtQWtVuBSYTmSs5W/l59SpOapUKtp+vUd4GpXX3z8Fejj74xefgo4mPjk5tZSqVRQKBQt+v42u9/QoEGDsHHjxpu+LpfLIZfL2zARERHRH66XqZGcXYrk7BIkZ9ef8ipTN12h2a2TDSICnBHh74w+AQpE+DvD1YQuZ29PzK4MnTp1Cj4+PlLHICIiQnWtBim5qt/LTylOZZXgaklVk/3srC3R20+BiACFrgD5u9i1ywUMTZFJlaHy8nKkp6frnmdmZiI5ORmurq4IDAzEwoULkZOTgw0bNgAAVqxYgeDgYPTs2RM1NTXYuHEjtmzZgi1btkj1IxARkZlqWMjwVHYpTl4pwansUpzPVTY53dUwz6dfoDP6BrggIkCB7l6Okt+yoiMzqTKUlJTU6Eqw+fPnAwBmzJiB+Ph45OXlISsrS/d6TU0NFixYgJycHNjZ2aFnz57YsWMHxo0b1+bZiYjIvFTVaHDmammj8nO9rOmtK9w62fxefOrLT58ABZxsrSVIbL5MdgJ1W9FnAhYREZknIQRyldU4caUEJy4X42RW/STnP9+l3cpChnBfJ/QPdEG/QGf0D3Th6S4j4QRqIiIiI6rVaJGSq8KJKyU4eaUEJ66UIF/VdE0fT0c5+ge6oH+QM/oFuqC3n4KXtbdDLENERES3oaysxYmsYhy/XF98zlwtRXWtttE+lhYy9Px91Kd/kAsig1zg207v0k6NsQwRERHdQAiB7OIqJF1pKD/F+O1aeZP9nO2tEXlD8enjr4C9Db9WTRH/qRERkVmr02iRmleG45eLkXSlGEmXS1DQzETnUI9OiApyQVSQKyKDXRDq3omjPh0EyxAREZmV6loNTmeX4vjlYvyaWYxTWaUo/9OihtaWMvTyU2BAsCsig1wQFeQCNwcuyNtRsQwREVGHpqquxYkrJTiWWYzjmcU4c1WJGk3j+T6OcitEBrtgQLArooJcEBHgzInOZoRliIiIOpTSyhocy6wf9fk1swjnc1X40xXu8HCUY2CwKwYEu2BAiCt6eDvB0oKnvMwVyxAREZm0wnJ1ffm5VIRfM4txIb+syT5Bbvb15SfEFQODXRHkZs/5PqTDMkRERCalsFyNxEtFvz+KkV7Q9EqvLp4OiA5xxcAQV0SHuMFbYStBUjIVLENERNSuFZWr8WtmMRIvFeFoRhEuNlN+eng7YlCoGwb+XoDcOdmZ9MAyRERE7UppZQ0SL/1RftKuNT3tFebjhEGhroj5vQA529tIkJQ6CpYhIiKSVIW6DscvF+NoRhGOZBThXK4Sf75rZsPIz6BQN0SHuMKlE8sPGQ7LEBERtSl1nQanskpxJKMIRzMKcSqrtMkNTbt4OmBwZzfEhLohOtQNriw/ZEQsQ0REZFRarcCF/DL8kn4dv6QX4VhmUZP7evk52+GuLm64q4s7YkLd4OnECc/UdliGiIjI4K6WVOJweiF+SS/CkfRCFFXUNHrd3UGOwZ3dfn+4I9DNXqKkRCxDRERkAKrqWhzNKMKhi9dxOL0ImYUVjV63t7FEdIgr7urijqFdPdDNy4Hr/FC7wTJERER602gFTl8txaHfCnHo4nWcyi6F5oZ5P5YWMvQNcMZdXdwxpIs7+gY4w8bKQsLERDfHMkRERC1ytaQShy7Wl59fLhZCVd345qah7p0wpGv9yE90qCucbK0lSkqkH5YhIiJqVnWtBr9mFuNA2nUk/FaAS9cbn/pysrXSlZ8hXdwR4Mp5P2SaWIaIiAgAIITA5aJKJKQV4MBv15F4qfFVX5YWMvQLcMbQrh4Y2s0dffwUsLLkqS8yfSxDRERmrKpGgyMZhUhIu44Dv11HVnFlo9e9nWwxvJsHRnT3wOAu7lDY8dQXdTwsQ0REZiarqBL70wqw70IBjl4qQk3dH6M/1pYyDAh2/b0AefKqLzILLENERB1cTZ0WSZeLdQUo409zf/yc7TCie335iensBgc5vxrIvPDfeCKiDqioXI19F+rLz6GLhShX/3Hll6WFDJFBLhjVwxOjeniiqydHf8i8sQwREXUAQghcLCjH3vPX8HPqNZzKLm10s1O3TjYY3t0Do3p4YmhXD879IboByxARkYmqqdPiWGYxfkq9hp8vXEN2cVWj18N9nHBPmCdGhXmhj58CFhYc/SFqDssQEZEJUVXXYv+FAuw9fw0H0q6j7IbTXzZWFhjc2Q13h3nh7h6e8HW2kzApkelgGSIiaufyldXYm3oNe1LykXipCLWaP85/uTvYYFQPT9wd5oUhXdzRiZOfifTG/2qIiNoZIQTSC8qx53x9ATp9Vdno9S6eDhgd7oV7wr3Q19+Zp7+I7hDLEBFROyCEwOmrSvx4Lg97Uq41uuu7TAb0D3TB6HAv3BvuhVAPBwmTEnU8LENERBLRaAWOXy7GrnP52J2Sjzxlte41GysLDOnijnvDvXB3mCc8HW0lTErUsbEMERG1oZo6LY5eKsKu30eAiipqdK91srHEyB6eGNvLGyO6e3LxQ6I2YlL/pR08eBDvvvsuTpw4gby8PGzbtg0TJ0685TEHDhzA/PnzkZKSAl9fX7z44ouYM2dO2wQmIgKgrtPgl4uF2HE2Dz+dvwZV9R9XgCnsrHFPmBdie3ljSFd32FpbSpiUyDyZVBmqqKhAREQEHn/8cTz00EO33T8zMxPjxo3D7NmzsXHjRhw+fBhPP/00PDw8WnQ8EVFr1dRp8Uv6dew4k4895/NRdkMBcneQY0xPL4zt5Y1BoW6w5p3fiSRlUmUoNjYWsbGxLd7/3//+NwIDA7FixQoAQFhYGJKSkvDee++xDBGRwdXUaXE4vX4EaE9KfqMRIE9HOcb19sG43j6IDHKBJa8AI2o3TKoM6evo0aMYPXp0o21jxozBunXrUFtbC2vrpsvRq9VqqNVq3XOVSmX0nERkuuo0WhzJKML207nY/acC5OEox7he3rivjy+iglx4CTxRO9Why1B+fj68vLwabfPy8kJdXR0KCwvh4+PT5Ji4uDgsXbq0rSISkQnSagVOZJVg++lc7Dybh8LyPyZBezjKEdvLG/f19kFUsCtHgIhMQIcuQwCa3IlZ/H7nwpvdoXnhwoWYP3++7rlKpUJAQIDxAhKRSRBCICVXhe2nc7H9dC5yb7gM3sXeGuN6++D+Pr4YGMICRGRqOnQZ8vb2Rn5+fqNtBQUFsLKygpubW7PHyOVyyOXytohHRCYgs7AC353KwfYzubh0/Y+FEB3kVhjd0wsPRPjiri7unARNZMI6dBmKiYnB9u3bG23bs2cPoqKimp0vREQEAEXlavxwJg/bTuUgObtUt11uZYG7wzzxQIQvRnT35GXwRB2ESZWh8vJypKen655nZmYiOTkZrq6uCAwMxMKFC5GTk4MNGzYAAObMmYOVK1di/vz5mD17No4ePYp169bh66+/lupHIKJ2qqpGg72p1/DdqRwc+O06NNr6U+qWFjIM6eKOCX19cW+4Fxxt+T9SRB2NSZWhpKQkjBw5Uve8YW7PjBkzEB8fj7y8PGRlZeleDwkJwc6dO/H888/jk08+ga+vLz766CNeVk9EAOpvh5F4qQjbTuVg17l8lKv/uBKsj78CE/v6YXyELzwceeqcqCOTiYYZxdQslUoFhUIBpVIJJycnqeMQkQFcul6OLSevYuvJnEb3A/NztsOD/fwwsZ8vung6SpiQiO6UPt/fJjUyRETUWqrqWuw4k4dvT1zFiSsluu1Otla4r48vHuznx7WAiMwUyxARdVgarcCRjEJ8e+Iqdp3Lh7pOCwCwkAHDu3ng4cgA3B3GidBE5o5liIg6nCtFFfhPUnaT02BdPR3wcKQ/HuznB08nWwkTElF7wjJERB1Cda0Gu1Pysfl4No5kFOm2O9laYUJfPzwc6Y8+/oqbLrhKROaLZYiITNqFfBW+OZaNbadyoKyqBQDIZMCwrh54JMof94R58TQYEd0SyxARmZxydR22n87FN8ezcfqGRRF9FbZ4dEAAHokKgJ+znXQBiciksAwRkck4e1WJTb9ewfenc1FZowEAWFnIMLqnFyYPCMSQLu68LxgR6Y1liIjataoaDbafycWmxCs4fVWp2x7q0QlTBgRgUn9/uDtwUUQiaj2WISJql9ILyrDp1yxsOXEVqur6laFtLC0Q29sbUwcGYmCIKydDE5FBsAwRUbtRU6fFnvP52Jh4BYmXinXbA1zt8Fh0EB6J9IcbR4GIyMBYhohIcgWqamz8NQtf/ZqFwnI1gPqFEe8O88Jj0YEY1tWDK0MTkdGwDBGRJIQQOJVdivjDl7HzbB7qfr9LvKejHFMGBmLKgAD48oowImoDLENE1KbUdRrsOJOH+COXceaGCdFRQS6YeVcwxvT0hrWlhYQJicjcsAwRUZu4pqrGpsQr+OpYFgrLawAANlYWeCDCFzMHB6OXn0LihERkrliGiMiozuUosfbQJfxw5o9TYT4KW/x1UBCmDAjghGgikhzLEBEZnFYrsO9CAdb+cqnRVWEDg10x865gjA73ghVPhRFRO8EyREQGU12rwZaTV7Hul0xcul4BoH6F6Pv7+ODJoaE8FUZE7RLLEBHdsetlanx59DI2/pqF4or6+UCOtlaYOjAQM+8Kho+CV4URUfvFMkRErXbpejnWHLyEradyUFOnBQD4u9jhibtC8OiAADjI+VcMEbV//JuKiPR2LkeJ1QkZ2HkuD6J+TjT6BTpj9tBQzgciIpPDMkRELSKEQOKlYqxKSMehi4W67Xf38MTfRnRGVLCrhOmIiFqPZYiIbkmrFfgp9RpWH8jAqaxSAIClhQzj+/hgzojO6OHtJG1AIqI7xDJERM2q02jx/elc/PtABn67Vg6gfpHEyVEB+L9hoQhwtZc4IRGRYbAMEVEjtRottp3KwSf703GlqBIA4Ci3wl9jgvDEXSHwcOQiiUTUsbAMERGA30vQyRys3J+OrOL6EuTayQazhoRgWkwQnGytJU5IRGQcLENEZq6mToutJ6/ik4R0ZBdXAQDcHWzwf8NC8ddBQbC34V8TRNSx8W85IjNVU6fFtyeu4pP96cgp/aMEPTWsMx4bFMgSRERmg3/bEZmZWk19CVq578YSJMec4aF4LDoIdjaWEickImpbLENEZkKrFfjhbB7+tfc3ZBbW3zfMw1GOOcM7Y+rAQJYgIjJbLENEHZwQAvvTCvDu7t+QmqcCUD8x+ukRnfHXQUGwtWYJIiLzxjJE1IH9eqkI7+5OQ9KVEgD1l8jPHhaKJ4aE8L5hRES/49+GRB3QuRwl3t2dhgO/XQcAyK0sMHNwMOYM7wyXTjYSpyMial9M7m6Kq1atQkhICGxtbREZGYlDhw7ddN+EhATIZLImjwsXLrRhYqK2c6WoAs9sOon7P/4FB367DisLGR6LDsTBF0di4bgwFiEiomaY1MjQ5s2bMW/ePKxatQp33XUXPv30U8TGxuL8+fMIDAy86XFpaWlwcvrj/kkeHh5tEZeozZRW1uDjfenYcPQyajUCMhkwIcIXz9/bDUFunaSOR0TUrsmEEELqEC0VHR2N/v37Y/Xq1bptYWFhmDhxIuLi4prsn5CQgJEjR6KkpATOzs6t+kyVSgWFQgGlUtmoUBG1BzV1Wmw4ehkf70uHsqoWADCsmwcWxvZAmA//fSUi86XP97fJjAzV1NTgxIkT+Oc//9lo++jRo3HkyJFbHtuvXz9UV1cjPDwcr776KkaOHHnTfdVqNdRqte65SqW6s+BERiCEwK5z+Vi264Lu/mE9vB2xcFwYhnfjyCcRkT5MpgwVFhZCo9HAy8ur0XYvLy/k5+c3e4yPjw/WrFmDyMhIqNVqfPnll7j77ruRkJCAYcOGNXtMXFwcli5davD8RIZyKqsEb+1I1V0h5uEox4LR3fBwZAAsLWQSpyMiMj0mU4YayGSN/7IXQjTZ1qB79+7o3r277nlMTAyys7Px3nvv3bQMLVy4EPPnz9c9V6lUCAgIMEByojuTU1qFuJ2p+OFMHgDAztoS/zcsFP83LBSdeJk8EVGrmczfoO7u7rC0tGwyClRQUNBktOhWBg0ahI0bN970dblcDrlc3uqcRIZWXavBZwcv4ZOEdFTXaiGTAQ/398c/RneHt8JW6nhERCbPZMqQjY0NIiMjsXfvXjz44IO67Xv37sWECRNa/D6nTp2Cj4+PMSISGZQQAj+nFuD1H84jq7h+XlB0iCsWjQ9HT1+FxOmIiDoOkylDADB//nxMmzYNUVFRiImJwZo1a5CVlYU5c+YAqD/FlZOTgw0bNgAAVqxYgeDgYPTs2RM1NTXYuHEjtmzZgi1btkj5YxDdVmZhBV7fnoL9afWLJno72eKV+8Jwfx+fm54WJiKi1jGpMjR58mQUFRXh9ddfR15eHnr16oWdO3ciKCgIAJCXl4esrCzd/jU1NViwYAFycnJgZ2eHnj17YseOHRg3bpxUPwLRLVXW1GHlvnSsPZSJGo0W1pYyPDk0FHNHduG8ICIiIzGpdYakwHWGqC0IIbDjbB7e2pGKPGU1AGB4Nw8sHh+OUA8HidMREZmeNllnqKamBpmZmejcuTOsrPh/rEStlVlYgVe/O4vD6UUAAH8XOyy6Pxz3hnvxlBgRURvQ+95klZWVmDVrFuzt7dGzZ0/daalnn30Wy5YtM3hAoo6qVqPFJ/vTMWbFQRxOL4LcygLz7umKn+YPx+ie3ixCRERtRO8ytHDhQpw+fRoJCQmwtf3jst577rkHmzdvNmg4oo7qVFYJ7v/oF7y7Ow01dVoM7eqOPc8Pw7x7usHW2lLqeEREZkXv81vfffcdNm/ejEGDBjX6P9fw8HBkZGQYNBxRR1OursN7u9Ow/uhlCAG4drLBa/eHYWJfP44EERFJRO8ydP36dXh6ejbZXlFRwb/MiW5h7/lrWPS/c7oJ0pP6++HV+8Lh2slG4mREROZN79NkAwYMwI4dO3TPGwrQZ599hpiYGMMlI+ogClTV+NvGE5i9IQl5ymoEutpj46xofPBoXxYhIqJ2QO+Robi4OIwdOxbnz59HXV0dPvzwQ6SkpODo0aM4cOCAMTISmSQhBLaczMHS7Skoq66DpYUMs4eG4rm7u8LOhvOCiIjaC71HhgYPHozDhw+jsrISnTt3xp49e+Dl5YWjR48iMjLSGBmJTE5BWTVmbziBBf89jbLqOkT4K7B97hD8M7YHixARUTvDRRdvg4sukr52ns3DK9vOoqSyFtaWMjx/bzc8NawzLC04p46IqK0YfNFFlUrV4g9nYSBzVVpZg0X/S8H3p3MBAGE+Tvjg0QiE+fC/CSKi9qxFZcjZ2fm2V4oJISCTyaDRaAwSjMiU7L9QgJe2nEFBmRqWFjI8PaIz/j6qK2ys9D4TTUREbaxFZWj//v3GzkFkksrVdXhrx3l8fSwbANDZoxPef7Qv+gY4SxuMiIharEVlaPjw4cbOQWRyjmUWY/5/knG1pAoA8MRdIXhxbHeuIE1EZGJadYfVkpISrFu3DqmpqZDJZAgLC8Pjjz8OV1dXQ+cjanc0WoGV+9Lx4c+/QSvqb6z67sMRiOnsJnU0IiJqBb0nNBw4cADBwcH46KOPUFJSguLiYnz00UcICQnhOkPU4eUrqzH1s0T866f6IvRQf3/smjeMRYiIyITpfWl9r169MHjwYKxevRqWlvWnAzQaDZ5++mkcPnwY586dM0pQqfDSemqw78I1LPjvGRRX1MDexhJvPdgLD/bzlzoWERE1Q5/vb73LkJ2dHZKTk9G9e/dG29PS0tC3b19UVVXpn7gdYxmimjotlu+6gLW/ZAIAevo64eO/9EOoh4PEyYiI6GYMvs7Qjfr374/U1NQmZSg1NRV9+/bV9+2I2rUrRRX4+9encOaqEgDw+F3B+GdsD8itOEmaiKijaFEZOnPmjO7Pzz77LJ577jmkp6dj0KBBAIDExER88sknWLZsmXFSEkng+9O5eHnrWZSr6+Bsb413H47AveFeUsciIiIDa9FpMgsLC8hkMtxu14646CJPk5mf6loNlnyfgm+O168dNDDYFR/+pS98FHYSJyMiopYy+GmyzMxMgwQjau9yS6swZ+MJnLmqhEwG/H1UVzw7qgusLLmSNBFRR9WiMhQUFGTsHESSS7xUhGc2nURRRQ1c7K3x8V/6Y0hXd6ljERGRkbVq0UUAOH/+PLKyslBTU9No+wMPPHDHoYjakhAC649cxps7UlGnFQj3ccKn0yIR4GovdTQiImoDepehS5cu4cEHH8TZs2cbzSNquJFrR5szRB1bda0Gr2w7hy0nrwIAJvT1xbJJfWBnw6vFiIjMhd4TIZ577jmEhITg2rVrsLe3R0pKCg4ePIioqCgkJCQYISKRceSWVuHRT49iy8mrsJABr94XhhWT+7IIERGZGb1Hho4ePYp9+/bBw8MDFhYWsLCwwJAhQxAXF4dnn30Wp06dMkZOIoP68/ygT6b2x+AunB9ERGSO9B4Z0mg0cHCoX3nX3d0dubm5AOonWaelpRk2HZGBCSHwxeFMPLb2VxRV1CDcxwnfzx3CIkREZMb0Hhnq1asXzpw5g9DQUERHR2P58uWwsbHBmjVrEBoaaoyMRAZRp9Hitf+dw9fH6tcPmtjXF3GcH0REZPb0LkOvvvoqKioqAABvvvkm7r//fgwdOhRubm7YvHmzwQMSGUKFug7PfHUSCWnXYSEDXh4XhllDQnQT/4mIyHzpfaPW5hQXF8PFxaVDfrFwBWrTV6CqxhPrj+Ncjgq21hb4+C/9eVsNIqIOzqg3am2Oq6urId6GyOAuXivDzC+OI6e0Cm6dbLBu5gD0DXCWOhYREbUjLSpDkyZNQnx8PJycnDBp0qRb7rt161aDBCO6U0czivB/XyahrLoOoe6dEP/4QAS6cSFFIiJqrEVlSKFQ6E6BKRQKowYiMoT/Jefghf+eQY1Gi8ggF6ydHgWXTjZSxyIionZIrzlDQghkZWXBw8MD9vbS/B/2qlWr8O677yIvLw89e/bEihUrMHTo0Jvuf+DAAcyfPx8pKSnw9fXFiy++iDlz5rT48zhnyLQIIbD6QAaW76pf5mFcb2988Ghf2FrzijEiInOiz/e3XusMCSHQtWtX5OTk3FHA1tq8eTPmzZuHV155BadOncLQoUMRGxuLrKysZvfPzMzEuHHjMHToUJw6dQovv/wynn32WWzZsqWNk1NbqNNo8ep353RFaPbQEKz8S38WISIiuiW9rybr2bMn1q1bh0GDBhkr001FR0ejf//+WL16tW5bWFgYJk6ciLi4uCb7v/TSS/j++++Rmpqq2zZnzhycPn0aR48ebfYz1Go11Gq17rlKpUJAQABHhtq56loN5n51Ej+lFkAmAxbfH46Zd4VIHYuIiCRitJEhAFi+fDleeOEFnDt3rtUBW6OmpgYnTpzA6NGjG20fPXo0jhw50uwxR48ebbL/mDFjkJSUhNra2maPiYuLg0Kh0D0CAgIM8wOQ0VTVaDB7QxJ+Si2A3MoC//5rJIsQERG1mN5l6K9//SuOHTuGiIgI2NnZwdXVtdHDWAoLC6HRaODl1Xh9GC8vL+Tn5zd7TH5+frP719XVobCwsNljFi5cCKVSqXtkZ2cb5gcgoyhX12HmF8dw6GIh7G0ssf6JgRjT01vqWEREZEL0XmdoxYoVRojRcn9e2FEIccvFHpvbv7ntDeRyOeRy+R2mpLagqq7FzM+P4WRWKRzlVoh/YgAig7jmFRER6UfvMjRjxgxj5Lgtd3d3WFpaNhkFKigoaDL608Db27vZ/a2srODm5ma0rGR8pZU1mP75MZy5qoTCzhpfzhqIPv7OUsciIiITpPdpshtVVVVBpVI1ehiLjY0NIiMjsXfv3kbb9+7di8GDBzd7TExMTJP99+zZg6ioKFhbWxstKxlXUbkaU9Yk4sxVJVw72eDr2YNYhIiIqNX0LkMVFRWYO3cuPD094eDgABcXl0YPY5o/fz7Wrl2Lzz//HKmpqXj++eeRlZWlWzdo4cKFmD59um7/OXPm4MqVK5g/fz5SU1Px+eefY926dViwYIFRc5LxFKiqMWVNIi7kl8HDUY7N/zcI4b68yo+IiFpP79NkL774Ivbv349Vq1Zh+vTp+OSTT5CTk4NPP/0Uy5YtM0ZGncmTJ6OoqAivv/468vLy0KtXL+zcuRNBQUEAgLy8vEZrDoWEhGDnzp14/vnn8cknn8DX1xcfffQRHnroIaPmJOPILa3CY2t/RWZhBXwUttj0ZDRCPRykjkVERCZO73WGAgMDsWHDBowYMQJOTk44efIkunTpgi+//BJff/01du7caayskuAK1O1DdnEl/vJZIq6WVMHfxQ5fzx6EAFfeZ4yIiJpn1HWGiouLERJSv4aLk5MTiouLAQBDhgzBwYMHWxGX6Nayiysx+dOjuFpShWA3e/znqRgWISIiMhi9y1BoaCguX74MAAgPD8d//vMfAMD27dvh7OxsyGxEKCirxl/X/YpcZTU6e3TCf56Kga+zndSxiIioA9G7DD3++OM4ffo0gPoJy6tWrYJcLsfzzz+PF154weAByXwpq2ox4/PjuFJUiQDX+lNjnk62UsciIqIOpsVzhubNm4cnn3wSvXr1arQ9KysLSUlJ6Ny5MyIiIowSUkqcMySNqhoNpn/+K45fLoG7gxxb/haDILdOUsciIiITYZQ5Q7t27UJERAQGDhyINWvW6NYUCgwMxKRJkzpkESJp1Gq0eOarkzh+uQSOtlb4ctZAFiEiIjKaFpehCxcu4ODBg+jduzcWLFgAX19fTJ8+nZOmyaC0WoEX/nsa+y4UwNbaAp/PHIAwH47IERGR8eg1Z+iuu+7CunXrkJ+fj48//hiXL1/GiBEj0LVrVyxbtgy5ubnGyklmQAiB1384j++Sc2FlIcPqxyIxIJj3GiMiIuPSe52hP8vIyMDnn3+O1atXo7y8HDU1NYbK1i5wzlDb+fCni/jXT7/V/3lKX0zo6ydxIiIiMlVGXWfoRhUVFThw4AAOHDiA0tJSdO7c+U7ejszY+iOXdUVo6QM9WYSIiKjNtKoMHTx4EI8//ji8vb3x3HPPoVu3bjh06BBSU1MNnY/MwP+Sc7D4+xQAwLx7umLG4GBpAxERkVlp8b3Jrl69ivXr1yM+Ph4ZGRmIjo7Gv/71L0yZMgUODrw/FLVOQloB/vGf+nWrZsQE4bm7u0qciIiIzE2Ly1BwcDDc3Nwwbdo0zJo1C2FhYcbMRWYgvaAMc786hTqtwIS+vlg8vidkMpnUsYiIyMy0uAz95z//wQMPPAArK71vdE/UhLKyFk+uT0K5ug4DQ1zx7sMRsLBgESIiorbX4mYzadIkY+YgM1Kn0WLu1ydxuagSfs52WP1Yf9hY3dFcfiIiolbjNxC1uXd2XcChi4Wws7bEmumRcHOQSx2JiIjMGMsQtaktJ67is0OZAID3HolAT1+FxImIiMjcsQxRm0nOLsXCbWcBAH8f1QX39fGROBEREVErytATTzyBsrKyJtsrKirwxBNPGCQUdTwFqmo89WUSauq0uCfMC8/f003qSERERABaUYbWr1+PqqqqJturqqqwYcMGg4SijqW6VoP/+/IErqnU6OrpgH9N5pVjRETUfrT4ajKVSgUhBIQQKCsrg62tre41jUaDnTt3wtPT0yghyXQJIfDKtnNIzi6Fws4aa2dEwdHWWupYREREOi0uQ87OzpDJZJDJZOjWrekpDplMhqVLlxo0HJm+zw9fxpaTV2EhAz6Z2h9Bbp2kjkRERNRIi8vQ/v37IYTAqFGjsGXLFri6uupes7GxQVBQEHx9fY0SkkzTLxcL8daO8wCAV+4Lx5Cu7hInIiIiaqrFZWj48OEAgMzMTAQEBMDCghei0c3lllbhma9OQiuAhyP98cRdwVJHIiIiapbe99YICgpCaWkpjh07hoKCAmi12kavT58+3WDhyDRptQL/+M9pKKtqEeGvwFsP9uI9x4iIqN3Suwxt374djz32GCoqKuDo6NjoS04mk7EMET47dAlHLxXB3sYSK6b0g9zKUupIREREN6X3ua5//OMfurWGSktLUVJSonsUFxcbIyOZkJRcJd7bkwYAWHR/OELcOWGaiIjaN73LUE5ODp599lnY29sbIw+ZsOpaDZ77Jhm1GoHR4V6YPCBA6khERES3pXcZGjNmDJKSkoyRhUxc3M5UpBeUw8NRjmUP9eE8ISIiMgl6zxm677778MILL+D8+fPo3bs3rK0bL6D3wAMPGCwcmY79aQVYf/QKgPobsLp2spE4ERERUcvIhBBCnwNudUm9TCaDRqO541DtiUqlgkKhgFKphJOTk9Rx2qWicjXGrDiEwnI1Zg4OxpIHekodiYiIzJw+3996jwz9+VJ6Mm9CCLy05SwKy9Xo5uWAf8b2kDoSERGRXu5o5cTq6mpD5SAT9c3xbPyUeg02lhZYMbkfbK15GT0REZkWvcuQRqPBG2+8AT8/Pzg4OODSpUsAgNdeew3r1q0zeMAGJSUlmDZtGhQKBRQKBaZNm4bS0tJbHjNz5kzd/dQaHoMGDTJaRnNz6Xo5Xt9ef7uNBWO6IdyXpxGJiMj06F2G3nrrLcTHx2P58uWwsfljkmzv3r2xdu1ag4a70dSpU5GcnIxdu3Zh165dSE5OxrRp02573NixY5GXl6d77Ny502gZzUmtRovnNyejqlaDwZ3d8OSQUKkjERERtYrec4Y2bNiANWvW4O6778acOXN02/v06YMLFy4YNFyD1NRU7Nq1C4mJiYiOjgYAfPbZZ4iJiUFaWhq6d+9+02Plcjm8vb1b/FlqtRpqtVr3XKVStT54B/bhTxdx+qoSTrZWeP/RCFhY8DJ6IiIyTa1adLFLly5Ntmu1WtTW1hok1J8dPXoUCoVCV4QAYNCgQVAoFDhy5Mgtj01ISICnpye6deuG2bNno6Cg4Jb7x8XF6U7FKRQKBARw4cA/O3GlGKsS0gEAb0/qDR+FncSJiIiIWk/vMtSzZ08cOnSoyfb//ve/6Nevn0FC/Vl+fj48PT2bbPf09ER+fv5Nj4uNjcWmTZuwb98+vP/++zh+/DhGjRrVaOTnzxYuXAilUql7ZGdnG+Rn6CjqNFq8su0ctAKY1M8P9/fxlToSERHRHdH7NNnixYsxbdo05OTkQKvVYuvWrUhLS8OGDRvwww8/6PVeS5YswdKlS2+5z/HjxwGg2dWMhRC3XOV48uTJuj/36tULUVFRCAoKwo4dOzBp0qRmj5HL5ZDL5S2Jb5a+TLyCC/llcLa3xmv3h0sdh4iI6I7pXYbGjx+PzZs34+2334ZMJsOiRYvQv39/bN++Hffee69e7zV37lxMmTLllvsEBwfjzJkzuHbtWpPXrl+/Di8vrxZ/no+PD4KCgnDx4kW9clK962VqfLDnNwDAC2O6w4WrTBMRUQegdxkC6u9PNmbMmDv+cHd3d7i7u992v5iYGCiVShw7dgwDBw4EAPz6669QKpUYPHhwiz+vqKgI2dnZ8PHxaXVmc7bsxwsoU9eht58CUwYESh2HiIjIIO5o0cW2EhYWhrFjx2L27NlITExEYmIiZs+ejfvvv7/RlWQ9evTAtm3bAADl5eVYsGABjh49isuXLyMhIQHjx4+Hu7s7HnzwQal+FJN14koxtpy8CgBYOqEnLHn1GBERdRAtGhlycXFp8R3Ii4uL7yjQzWzatAnPPvssRo8eDaD+hrArV65stE9aWhqUSiUAwNLSEmfPnsWGDRtQWloKHx8fjBw5Eps3b4ajo6NRMnZUGq3Aa9+lAAAejfJH/0AXiRMREREZTovK0IoVK3R/LioqwptvvokxY8YgJiYGQP2l77t378Zrr71mlJAA4Orqio0bN95ynxvvOWtnZ4fdu3cbLY85+erXKzifp4KTrRVeGst7jxERUcei913rH3roIYwcORJz585ttH3lypX46aef8N133xkyn+TM/a71ReVqjHwvAarqOrw+oSemxwRLHYmIiOi29Pn+1nvO0O7duzF27Ngm28eMGYOffvpJ37ejdm75rjSoqusQ7uOEx6KDpI5DRERkcHqXITc3N90k5Rt99913cHNzM0goah9OZZVgc1L9opOvc9I0ERF1UHpfWr906VLMmjULCQkJujlDiYmJ2LVrl1Fv1EptS6MVWPS/+knTk/r7ISrYVeJERERExqF3GZo5cybCwsLw0UcfYevWrRBCIDw8HIcPH2507zAybZuPZ+NsjhKOcissjA2TOg4REZHRtGrRxejoaGzatMnQWaidKKmowfLdFwAAz9/bDR6OvD0JERF1XK0qQ1qtFunp6SgoKIBWq2302rBhwwwSjKTz7p40lFbWoruXI6bHcNI0ERF1bHqXocTEREydOhVXrlzBn6/Kl8lk0Gg0BgtHbe/M1VJ8fSwLQP2kaStLk1iknIiIqNX0LkNz5sxBVFQUduzYAR8fnxavTE3tnxACS75PgRDAhL6+iA7l1YFERNTx6V2GLl68iG+//RZdunQxRh6S0KGLhTiZVQq5lQVeHsdJ00REZB70PgcSHR2N9PR0Y2Qhia3cV//PdWp0ILycbCVOQ0RE1Db0Hhn6+9//jn/84x/Iz89H7969YW1t3ej1Pn36GCwctZ3ES0U4drkYNpYWeGpYZ6njEBERtRm9y9BDDz0EAHjiiSd022QyGYQQnEBtwj7edxEA8OgAf3grOCpERETmQ+8ylJmZaYwcJKETV0pwOL0IVhYyzBnOUSEiIjIvepehoCCuO9PRNIwKTervB38Xe4nTEBERta1WLSLz5Zdf4q677oKvry+uXLkCAFixYgX+97//GTQcGd/Zq0okpF2HhQx4egSvECQiIvOjdxlavXo15s+fj3HjxqG0tFQ3R8jZ2RkrVqwwdD4ysoZRoQl9/RDs3kniNERERG1P7zL08ccf47PPPsMrr7wCS0tL3faoqCicPXvWoOHIuFLzVNhz/hpkMuCZkRwVIiIi86R3GcrMzES/fv2abJfL5aioqDBIKGobK/fXrys0rrcPung6SJyGiIhIGnqXoZCQECQnJzfZ/uOPPyI8PNwQmagNpBeUY+fZPADA30dxVIiIiMyX3leTvfDCC3jmmWdQXV0NIQSOHTuGr7/+GnFxcVi7dq0xMpIRrNqfDiGA0eFe6OHtJHUcIiIiyehdhh5//HHU1dXhxRdfRGVlJaZOnQo/Pz98+OGHmDJlijEykoFdKarA/07nAgD+PqqrxGmIiIikpXcZAoDZs2dj9uzZKCwshFarhaenp6FzkRGt2p8BjVZgRHcP9PZXSB2HiIhIUq0qQwBQUFCAtLQ0yGQyyGQyeHh4GDIXGcnVkkpsOXkVAEeFiIiIgFZMoFapVJg2bRp8fX0xfPhwDBs2DL6+vvjrX/8KpVJpjIxkQJ8euIQ6rcBdXdwQGeQidRwiIiLJ6V2GnnzySfz666/YsWMHSktLoVQq8cMPPyApKQmzZ882RkYykGuqamxOygbAUSEiIqIGep8m27FjB3bv3o0hQ4boto0ZMwafffYZxo4da9BwZFifHriEmjotBga7YlCom9RxiIiI2gW9R4bc3NygUDSddKtQKODiwtMu7VVhuRpfHau/j9zf7+a6QkRERA30LkOvvvoq5s+fj7y8PN22/Px8vPDCC3jttdcMGo4M59sTV1Fdq0WEvwJDurhLHYeIiKjd0Ps02erVq5Geno6goCAEBgYCALKysiCXy3H9+nV8+umnun1PnjxpuKTUakII/Pf3uUJTowMhk8kkTkRERNR+6F2GJk6caIQYZEynskuRcb0CttYWGNfbR+o4RERE7YreZWjx4sXGyEFG9N+k+nWFxvXygaOttcRpiIiI2he95wwBQGlpKdauXYuFCxeiuLgYQP0psZycHIOGu9Fbb72FwYMHw97eHs7Ozi06RgiBJUuWwNfXF3Z2dhgxYgRSUlKMlrE9qq7V4Iffb73xcJS/xGmIiIjaH73L0JkzZ9CtWze88847eO+991BaWgoA2LZtGxYuXGjofDo1NTV45JFH8Le//a3FxyxfvhwffPABVq5ciePHj8Pb2xv33nsvysrKjJazvdmdko8ydR38XewwKISX0xMREf2Z3mVo/vz5mDlzJi5evAhbW1vd9tjYWBw8eNCg4W60dOlSPP/88+jdu3eL9hdCYMWKFXjllVcwadIk9OrVC+vXr0dlZSW++uqrmx6nVquhUqkaPUxZwymyh/r7w8KCE6eJiIj+TO8ydPz4cTz11FNNtvv5+SE/P98goQwhMzMT+fn5GD16tG6bXC7H8OHDceTIkZseFxcXB4VCoXsEBAS0RVyjyCmtwuGMQgDAw5E8RUZERNQcvcuQra1ts6MlaWlp7epmrQ3FzMvLq9F2Ly+vW5a2hQsXQqlU6h7Z2dlGzWlMW05chRBATKgbAlztpY5DRETULuldhiZMmIDXX38dtbW1AACZTIasrCz885//xEMPPaTXey1ZskR31/ubPZKSkvSN2Mif19QRQtxynR25XA4nJ6dGD1Ok1Qp8e6L+FNkjnDhNRER0U3pfWv/ee+9h3Lhx8PT0RFVVFYYPH478/HzExMTgrbfe0uu95s6diylTptxyn+DgYH0jAgC8vb0B1I8Q+fj8sbZOQUFBk9Gijuj45WJkFVfCQW6Fsb28pY5DRETUbuldhpycnPDLL79g3759OHnyJLRaLfr374977rlH7w93d3eHu7txbg0REhICb29v7N27F/369QNQf0XagQMH8M477xjlM9uT//4+KnRfbx/Y2+j9j5mIiMhstPpbctSoURg1apQhs9xSVlYWiouLkZWVBY1Gg+TkZABAly5d4ODgAADo0aMH4uLi8OCDD0Imk2HevHl4++230bVrV3Tt2hVvv/027O3tMXXq1DbLLYUKdR12nq2/dxxPkREREd2aXmVIq9UiPj4eW7duxeXLlyGTyRASEoKHH34Y06ZNM+o9rxYtWoT169frnjeM9uzfvx8jRowAUD+JW6lU6vZ58cUXUVVVhaeffholJSWIjo7Gnj174OjoaLSc7cGOs3morNEg1L0TIoNcpI5DRETUrsmEEKIlOwohMH78eOzcuRMRERHo0aMHhBBITU3F2bNn8cADD+C7774zcty2p1KpoFAooFQqTWYy9aP/Popjl4vxwpjueGZkF6njEBERtTl9vr9bPDIUHx+PgwcP4ueff8bIkSMbvbZv3z5MnDgRGzZswPTp01uXmgzicmEFjl0uhoUMmNTfT+o4RERE7V6LL63/+uuv8fLLLzcpQkD9/KF//vOf2LRpk0HDkf62nKyfOD2kqwd8FHYSpyEiImr/WlyGzpw5g7Fjx9709djYWJw+fdogoah1NFqBLQ1rC3HFaSIiohZpcRkqLi6+5fo8Xl5eKCkpMUgoap0jGYXIVVbDydYK94Z3/LWUiIiIDKHFZUij0cDK6uZTjCwtLVFXV2eQUNQ6DTdlndDXD7bWlhKnISIiMg0tnkAthMDMmTMhl8ubfV2tVhssFOlPWVWL3Sn191zjTVmJiIharsVlaMaMGbfdh1eSSeeHM7lQ12nRzcsBffwVUschIiIyGS0uQ1988YUxc9AdajhF9khkgFEXvyQiIupo9L5rPbU/6QVlSM4uhaWFDBP7cW0hIiIifbAMdQANN2Ud2d0THo7Nz+kiIiKi5rEMdQA/pxYAACb285U4CRERkelhGTJx+cpqpBeUQyYDhnRxlzoOERGRyWEZMnG/pBcCAPr4KeBsbyNxGiIiItPDMmTifrl4HQAwpCtHhYiIiFqDZciECSHwS3oRAOAuniIjIiJqFZYhE5Z2rQyF5WrYWVsiMshF6jhEREQmiWXIhP1ysX6+0MAQV8iteC8yIiKi1mAZMmGHfi9DvIqMiIio9ViGTJS6ToNjmcUAOHmaiIjoTrAMmaiTV0pRVauBu4MNeng7Sh2HiIjIZLEMmahf0usvqb+riztvzEpERHQHWIZMVMMl9ZwvREREdGdYhkyQsrIWZ6+WAgCGdvWQNgwREZGJYxkyQUcyCqEVQBdPB3grbKWOQ0REZNJYhkzQoXReUk9ERGQoLEMm6DDLEBERkcGwDJmY7OJKXCmqhKWFDIM6u0kdh4iIyOSxDJmYhlWn+wU4w0FuJXEaIiIi08cyZGJ0p8i46jQREZFBsAyZEI1W4HBGfRkayjJERERkECxDJiQlV4nSylo4yK0Q4e8sdRwiIqIOgWXIhPzy+ymyQaFusLLkPzoiIiJDMJlv1LfeeguDBw+Gvb09nJ2dW3TMzJkzIZPJGj0GDRpk3KBG9MtFniIjIiIyNJMpQzU1NXjkkUfwt7/9Ta/jxo4di7y8PN1j586dRkpoXFU1GiRdLgHAydNERESGZDLXZi9duhQAEB8fr9dxcrkc3t7eRkjUto5dLkaNRgsfhS1C3TtJHYeIiKjDMJmRodZKSEiAp6cnunXrhtmzZ6OgoOCW+6vVaqhUqkaP9uDGVadlMpnEaYiIiDqODl2GYmNjsWnTJuzbtw/vv/8+jh8/jlGjRkGtVt/0mLi4OCgUCt0jICCgDRPfXMNiizxFRkREZFiSlqElS5Y0meD850dSUlKr33/y5Mm477770KtXL4wfPx4//vgjfvvtN+zYseOmxyxcuBBKpVL3yM7ObvXnG8r1MjVS8+pHqO7i/ciIiIgMStI5Q3PnzsWUKVNuuU9wcLDBPs/HxwdBQUG4ePHiTfeRy+WQy+UG+0xDOPL7QothPk5wd2hf2YiIiEydpGXI3d0d7u5tN9JRVFSE7Oxs+Pj4tNlnGgIvqSciIjIek5kzlJWVheTkZGRlZUGj0SA5ORnJyckoLy/X7dOjRw9s27YNAFBeXo4FCxbg6NGjuHz5MhISEjB+/Hi4u7vjwQcflOrH0JsQQrfY4hCeIiMiIjI4k7m0ftGiRVi/fr3ueb9+/QAA+/fvx4gRIwAAaWlpUCqVAABLS0ucPXsWGzZsQGlpKXx8fDBy5Ehs3rwZjo6ObZ6/tTKuVyBPWQ0bSwsMCHaVOg4REVGHYzJlKD4+/rZrDAkhdH+2s7PD7t27jZzK+BouqY8KdoGdjaXEaYiIiDoekzlNZq54ST0REZFxsQy1Y3UaLRIvFQHgfCEiIiJjYRlqxy4XVaJcXQd7G0v09FVIHYeIiKhDYhlqxzKu118p19nDAZYWvAUHERGRMbAMtWN/lCHemJWIiMhYWIbasfSCP0aGiIiIyDhYhtqxjOsVAIDOnixDRERExsIy1E4JIXDp95GhLixDRERERsMy1E5dL1OjTF0HCxkQ5GYvdRwiIqIOi2WonUr/ffJ0oKs95FZceZqIiMhYWIbaKd18IU6eJiIiMiqWoXYqo+FKMs4XIiIiMiqWoXaKawwRERG1DZahdiqDV5IRERG1CZahdqhCXYdcZTUAINSdZYiIiMiYWIbaoczC+snTbp1s4NLJRuI0REREHRvLUDvE23AQERG1HZahdkg3edqTk6eJiIiMjWWoHfrjSjKODBERERkby1A7lFHAG7QSERG1FZahdkajFboJ1F04MkRERGR0LEPtzNWSStRotJBbWcDX2U7qOERERB0ey1A703AlWYh7J1hayCROQ0RE1PGxDLUzf1xJxlNkREREbYFlqJ1pmDzN+UJERERtg2WoneHIEBERUdtiGWpneLd6IiKitsUy1I4UlatRUlkLgDdoJSIiaissQ+1IxvX6+UJ+znaws7GUOA0REZF5YBlqRxpOkXXhfCEiIqI2wzLUjmTwbvVERERtjmWoHeHd6omIiNqeSZShy5cvY9asWQgJCYGdnR06d+6MxYsXo6am5pbHCSGwZMkS+Pr6ws7ODiNGjEBKSkobpdZfw5whjgwRERG1HZMoQxcuXIBWq8Wnn36KlJQU/Otf/8K///1vvPzyy7c8bvny5fjggw+wcuVKHD9+HN7e3rj33ntRVlbWRslbrrpWg+ySSgAsQ0RERG1JJoQQUodojXfffRerV6/GpUuXmn1dCAFfX1/MmzcPL730EgBArVbDy8sL77zzDp566qkWfY5KpYJCoYBSqYSTk5PB8v9Zap4KsR8egsLOGsmL7oVMxvuSERERtZY+398mMTLUHKVSCVdX15u+npmZifz8fIwePVq3TS6XY/jw4Thy5MhNj1Or1VCpVI0ebeHGxRZZhIiIiNqOSZahjIwMfPzxx5gzZ85N98nPzwcAeHl5Ndru5eWle605cXFxUCgUukdAQIBhQt9Gwz3JeIqMiIiobUlahpYsWQKZTHbLR1JSUqNjcnNzMXbsWDzyyCN48sknb/sZfx5lEULccuRl4cKFUCqVukd2dnbrfjg98Z5kRERE0rCS8sPnzp2LKVOm3HKf4OBg3Z9zc3MxcuRIxMTEYM2aNbc8ztvbG0D9CJGPj49ue0FBQZPRohvJ5XLI5fIWpDesdK4xREREJAlJy5C7uzvc3d1btG9OTg5GjhyJyMhIfPHFF7CwuPWgVkhICLy9vbF3717069cPAFBTU4MDBw7gnXfeuePshqTVClwq5A1aiYiIpGASc4Zyc3MxYsQIBAQE4L333sP169eRn5/fZO5Pjx49sG3bNgD1p8fmzZuHt99+G9u2bcO5c+cwc+ZM2NvbY+rUqVL8GDeVq6xCda0W1pYyBLraSx2HiIjIrEg6MtRSe/bsQXp6OtLT0+Hv79/otRtXBkhLS4NSqdQ9f/HFF1FVVYWnn34aJSUliI6Oxp49e+Do6Nhm2VuiYbHFYLdOsLI0iX5KRETUYZjsOkNtpS3WGfr8l0y8/sN5jO3pjX9PizTKZxAREZkTs1hnqCPhPcmIiIikwzLUDvBKMiIiIumwDLUDDXOGunCNISIiojbHMiQxZWUtCsvVAIBQjgwRERG1OZYhiWX8vr6Qt5MtHOQmcXEfERFRh8IyJLGMAk6eJiIikhLLkMTSr3PyNBERkZRYhiTWcLd6Tp4mIiKSBsuQxC5xZIiIiEhSLEMSqqnT4kpxJQCWISIiIqmwDEkoq7gCGq1AJxtLeDnJpY5DRERklliGJKRbedrTATKZTOI0RERE5ollSEINK0/zFBkREZF0WIYk1LDGEK8kIyIikg7LkIR0d6v34IKLREREUmEZkogQgqfJiIiI2gGWIYkUlKlRrq6DpYUMgW72UschIiIyWyxDEmm4kizQ1R5yK0uJ0xAREZkvliGJZHDlaSIionaBZUgi5eo62Fpb8G71REREEpMJIYTUIdozlUoFhUIBpVIJJycng763ViugrtPCzoanyYiIiAxJn+9vjgxJyMJCxiJEREQkMZYhIiIiMmssQ0RERGTWWIaIiIjIrLEMERERkVljGSIiIiKzxjJEREREZo1liIiIiMwayxARERGZNZYhIiIiMmssQ0RERGTWWIaIiIjIrLEMERERkVljGSIiIiKzZiV1gPZOCAEAUKlUEichIiKilmr43m74Hr8VlqHbKCsrAwAEBARInISIiIj0VVZWBoVCcct9ZKIllcmMabVa5ObmwtHRETKZrEXHqFQqBAQEIDs7G05OTkZOSA34e5cGf+/S4O9dGvy9S6M1v3chBMrKyuDr6wsLi1vPCuLI0G1YWFjA39+/Vcc6OTnxPxYJ8PcuDf7epcHfuzT4e5eGvr/3240INeAEaiIiIjJrLENERERk1liGjEAul2Px4sWQy+VSRzEr/L1Lg793afD3Lg3+3qVh7N87J1ATERGRWePIEBEREZk1liEiIiIyayxDREREZNZYhoiIiMissQwZwapVqxASEgJbW1tERkbi0KFDUkfq0A4ePIjx48fD19cXMpkM3333ndSRzEJcXBwGDBgAR0dHeHp6YuLEiUhLS5M6Voe3evVq9OnTR7f4XExMDH788UepY5mVuLg4yGQyzJs3T+ooHd6SJUsgk8kaPby9vQ3+OSxDBrZ582bMmzcPr7zyCk6dOoWhQ4ciNjYWWVlZUkfrsCoqKhAREYGVK1dKHcWsHDhwAM888wwSExOxd+9e1NXVYfTo0aioqJA6Wofm7++PZcuWISkpCUlJSRg1ahQmTJiAlJQUqaOZhePHj2PNmjXo06eP1FHMRs+ePZGXl6d7nD171uCfwUvrDSw6Ohr9+/fH6tWrddvCwsIwceJExMXFSZjMPMhkMmzbtg0TJ06UOorZuX79Ojw9PXHgwAEMGzZM6jhmxdXVFe+++y5mzZoldZQOrby8HP3798eqVavw5ptvom/fvlixYoXUsTq0JUuW4LvvvkNycrJRP4cjQwZUU1ODEydOYPTo0Y22jx49GkeOHJEoFVHbUCqVAOq/mKltaDQafPPNN6ioqEBMTIzUcTq8Z555Bvfddx/uueceqaOYlYsXL8LX1xchISGYMmUKLl26ZPDP4I1aDaiwsBAajQZeXl6Ntnt5eSE/P1+iVETGJ4TA/PnzMWTIEPTq1UvqOB3e2bNnERMTg+rqajg4OGDbtm0IDw+XOlaH9s033+DkyZM4fvy41FHMSnR0NDZs2IBu3brh2rVrePPNNzF48GCkpKTAzc3NYJ/DMmQEMpms0XMhRJNtRB3J3LlzcebMGfzyyy9SRzEL3bt3R3JyMkpLS7FlyxbMmDEDBw4cYCEykuzsbDz33HPYs2cPbG1tpY5jVmJjY3V/7t27N2JiYtC5c2esX78e8+fPN9jnsAwZkLu7OywtLZuMAhUUFDQZLSLqKP7+97/j+++/x8GDB+Hv7y91HLNgY2ODLl26AACioqJw/PhxfPjhh/j0008lTtYxnThxAgUFBYiMjNRt02g0OHjwIFauXAm1Wg1LS0sJE5qPTp06oXfv3rh48aJB35dzhgzIxsYGkZGR2Lt3b6Pte/fuxeDBgyVKRWQcQgjMnTsXW7duxb59+xASEiJ1JLMlhIBarZY6Rod199134+zZs0hOTtY9oqKi8NhjjyE5OZlFqA2p1WqkpqbCx8fHoO/LkSEDmz9/PqZNm4aoqCjExMRgzZo1yMrKwpw5c6SO1mGVl5cjPT1d9zwzMxPJyclwdXVFYGCghMk6tmeeeQZfffUV/ve//8HR0VE3IqpQKGBnZydxuo7r5ZdfRmxsLAICAlBWVoZvvvkGCQkJ2LVrl9TROixHR8cmc+E6deoENzc3zpEzsgULFmD8+PEIDAxEQUEB3nzzTahUKsyYMcOgn8MyZGCTJ09GUVERXn/9deTl5aFXr17YuXMngoKCpI7WYSUlJWHkyJG65w3nkWfMmIH4+HiJUnV8DctHjBgxotH2L774AjNnzmz7QGbi2rVrmDZtGvLy8qBQKNCnTx/s2rUL9957r9TRiAzu6tWr+Mtf/oLCwkJ4eHhg0KBBSExMNPh3KtcZIiIiIrPGOUNERERk1liGiIiIyKyxDBEREZFZYxkiIiIis8YyRERERGaNZYiIiIjMGssQERERmTWWISIiIjJrLENEdFsymQzfffed1DFaZMmSJejbt6/UMQxuxIgRmDdvXov3T0hIgEwmQ2lp6U33iY+Ph7Oz8x1nIzJ1LENEHdjMmTMxceJEqWOYvJaUhvfffx8KhQKVlZVNXquuroazszM++OCDVmfYunUr3njjjVYfT0Q3xzJERGQA06dPR1VVFbZs2dLktS1btqCyshLTpk3T+31ra2sBAK6urnB0dLzjnETUFMsQkRkZMWIEnn32Wbz44otwdXWFt7c3lixZ0mifixcvYtiwYbC1tUV4eDj27t3b5H1ycnIwefJkuLi4wM3NDRMmTMDly5d1rzeMSC1duhSenp5wcnLCU089hZqaGt0+QggsX74coaGhsLOzQ0REBL799lvd6w2neX7++WdERUXB3t4egwcPRlpaWqMsy5Ytg5eXFxwdHTFr1ixUV1c3yfvFF18gLCwMtra26NGjB1atWqV77fLly5DJZNi6dStGjhwJe3t7RERE4OjRo7ocjz/+OJRKJWQyGWQyWZPfGQB4eHhg/Pjx+Pzzz5u89vnnn+OBBx6Ah4cHXnrpJXTr1g329vYIDQ3Fa6+9pis8wB+n+T7//HOEhoZCLpdDCNHkNNnGjRsRFRUFR0dHeHt7Y+rUqSgoKGjy2YcPH0ZERARsbW0RHR2Ns2fPNtnnRtu3b0dkZCRsbW0RGhqKpUuXoq6u7pbHEJk8QUQd1owZM8SECRN0z4cPHy6cnJzEkiVLxG+//SbWr18vZDKZ2LNnjxBCCI1GI3r16iVGjBghTp06JQ4cOCD69esnAIht27YJIYSoqKgQXbt2FU888YQ4c+aMOH/+vJg6daro3r27UKvVus91cHAQkydPFufOnRM//PCD8PDwEC+//LIuy8svvyx69Oghdu3aJTIyMsQXX3wh5HK5SEhIEEIIsX//fgFAREdHi4SEBJGSkiKGDh0qBg8erHuPzZs3CxsbG/HZZ5+JCxcuiFdeeUU4OjqKiIgI3T5r1qwRPj4+YsuWLeLSpUtiy5YtwtXVVcTHxwshhMjMzBQARI8ePcQPP/wg0tLSxMMPPyyCgoJEbW2tUKvVYsWKFcLJyUnk5eWJvLw8UVZW1uzve8eOHUImk4lLly7ptmVmZgqZTCZ27twphBDijTfeEIcPHxaZmZni+++/F15eXuKdd97R7b948WLRqVMnMWbMGHHy5Elx+vRpodVqxfDhw8Vzzz2n22/dunVi586dIiMjQxw9elQMGjRIxMbG6l5v+P2FhYWJPXv2iDNnzoj7779fBAcHi5qaGiGEEF988YVQKBS6Y3bt2iWcnJxEfHy8yMjIEHv27BHBwcFiyZIlzf8LRtRBsAwRdWDNlaEhQ4Y02mfAgAHipZdeEkIIsXv3bmFpaSmys7N1r//444+NytC6detE9+7dhVar1e2jVquFnZ2d2L17t+5zXV1dRUVFhW6f1atXCwcHB6HRaER5ebmwtbUVR44caZRl1qxZ4i9/+YsQ4o8v859++kn3+o4dOwQAUVVVJYQQIiYmRsyZM6fRe0RHRzcqQwEBAeKrr75qtM8bb7whYmJihBB/lKG1a9fqXk9JSREARGpqqhCiaWm4mbq6OuHn5ycWLVqk27Zo0SLh5+cn6urqmj1m+fLlIjIyUvd88eLFwtraWhQUFDTa789l6M+OHTsmAOiKWsPv75tvvtHtU1RUJOzs7MTmzZub/bmGDh0q3n777Ubv++WXXwofH59b/+BEJs5KogEpIpJInz59Gj338fHRnV5JTU1FYGAg/P39da/HxMQ02v/EiRNIT09vMn+luroaGRkZuucRERGwt7dv9D7l5eXIzs5GQUEBqqurce+99zZ6j5qaGvTr1++meX18fAAABQUFCAwMRGpqKubMmdNo/5iYGOzfvx8AcP36dWRnZ2PWrFmYPXu2bp+6ujooFIoWfU6PHj3QUpaWlpgxYwbi4+OxePFiyGQyrF+/HjNnzoSlpSUA4Ntvv8WKFSuQnp6O8vJy1NXVwcnJqdH7BAUFwcPD45afderUKSxZsgTJyckoLi6GVqsFAGRlZSE8PLzR76OBq6srunfvjtTU1Gbf88SJEzh+/Djeeust3TaNRoPq6mpUVlY2+udJ1JGwDBGZGWtr60bPZTKZ7otUCNFkf5lM1ui5VqtFZGQkNm3a1GTf232B//nzduzYAT8/v0avy+Xym+ZtyNJw/O007PfZZ58hOjq60WsN5cQQn3OjJ554AnFxcdi3bx+A+nLy+OOPAwASExMxZcoULF26FGPGjIFCocA333yD999/v9F7dOrU6ZafUVFRgdGjR2P06NHYuHEjPDw8kJWVhTFjxjSal3Uzf/5n2kCr1WLp0qWYNGlSk9dsbW1v+75EpopliIh0wsPDkZWVhdzcXPj6+gKAbiJxg/79+2Pz5s26idE3c/r0aVRVVcHOzg5AfRFwcHCAv78/XFxcIJfLkZWVheHDh7c6b1hYGBITEzF9+nTdtsTERN2fvby84Ofnh0uXLuGxxx5r9efY2NhAo9G0aN/OnTtj+PDh+OKLL3QTnzt37gygfjJzUFAQXnnlFd3+V65c0TvPhQsXUFhYiGXLliEgIAAAkJSU1Oy+iYmJCAwMBACUlJTgt99+u+loV//+/ZGWloYuXbronYnIlLEMEZHOPffcg+7du2P69Ol4//33oVKpGn1xA8Bjjz2Gd999FxMmTMDrr78Of39/ZGVlYevWrXjhhRd0p9hqamowa9YsvPrqq7hy5QoWL16MuXPnwsLCAo6OjliwYAGef/55aLVaDBkyBCqVCkeOHIGDgwNmzJjRorzPPfccZsyYgaioKAwZMgSbNm1CSkoKQkNDdfssWbIEzz77LJycnBAbGwu1Wo2kpCSUlJRg/vz5Lfqc4OBglJeX4+eff9ad/rvVKaMbT8utXbtWt71Lly7IysrCN998gwEDBmDHjh3Ytm1bizLcKDAwEDY2Nvj4448xZ84cnDt37qZrEL3++utwc3ODl5cXXnnlFbi7u9907alFixbh/vvvR0BAAB555BFYWFjgzJkzOHv2LN588029cxKZCl5aT0Q6FhYW2LZtG9RqNQYOHIgnn3yy0fwRALC3t8fBgwcRGBiISZMmISwsDE888QSqqqoajRTdfffd6Nq1K4YNG4ZHH30U48ePb3RJ+htvvIFFixYhLi4OYWFhGDNmDLZv346QkJAW5508eTIWLVqEl156CZGRkbhy5Qr+9re/NdrnySefxNq1axEfH4/evXtj+PDhiI+P1+tzBg8ejDlz5mDy5Mnw8PDA8uXLb7n/Qw89BLlcDrlc3uiU04QJE/D8889j7ty56Nu3L44cOYLXXnutxTkaeHh4ID4+Hv/9738RHh6OZcuW4b333mt232XLluG5555DZGQk8vLy8P3338PGxqbZfceMGYMffvgBe/fuxYABAzBo0CB88MEHCAoK0jsjkSmRieYmCRAR3YGZM2eitLTUZG7hQUTmjSNDREREZNZYhoiIiMis8TQZERERmTWODBEREZFZYxkiIiIis8YyRERERGaNZYiIiIjMGssQERERmTWWISIiIjJrLENERERk1liGiIiIyKz9P1m3lW0a/c3hAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ "
"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "X = np.arange(-5.0, 5.0, 0.1)\n",
+ "\n",
+ "\n",
+ "Y = 1-4/(1+np.power(3, X-2))\n",
+ "\n",
+ "plt.plot(X,Y) \n",
+ "plt.ylabel('Dependent Variable')\n",
+ "plt.xlabel('Independent Variable')\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "# Non-Linear Regression example\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "For an example, we're going to try and fit a non-linear model to the datapoints corresponding to China's GDP from 1960 to 2014. We download a dataset with two columns, the first, a year between 1960 and 2014, the second, China's corresponding annual gross domestic income in US dollars for that year. \n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {
+ "tags": []
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "2025-10-20 14:01:10 URL:https://cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud/IBMDeveloperSkillsNetwork-ML0101EN-SkillsNetwork/labs/Module%202/data/china_gdp.csv [1218/1218] -> \"china_gdp.csv\" [1]\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
\n",
+ "
Year
\n",
+ "
Value
\n",
+ "
\n",
+ " \n",
+ " \n",
+ "
\n",
+ "
0
\n",
+ "
1960
\n",
+ "
5.918412e+10
\n",
+ "
\n",
+ "
\n",
+ "
1
\n",
+ "
1961
\n",
+ "
4.955705e+10
\n",
+ "
\n",
+ "
\n",
+ "
2
\n",
+ "
1962
\n",
+ "
4.668518e+10
\n",
+ "
\n",
+ "
\n",
+ "
3
\n",
+ "
1963
\n",
+ "
5.009730e+10
\n",
+ "
\n",
+ "
\n",
+ "
4
\n",
+ "
1964
\n",
+ "
5.906225e+10
\n",
+ "
\n",
+ "
\n",
+ "
5
\n",
+ "
1965
\n",
+ "
6.970915e+10
\n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Year Value\n",
+ "0 1960 5.918412e+10\n",
+ "1 1961 4.955705e+10\n",
+ "2 1962 4.668518e+10\n",
+ "3 1963 5.009730e+10\n",
+ "4 1964 5.906225e+10\n",
+ "5 1965 6.970915e+10"
+ ]
+ },
+ "execution_count": 14,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "import numpy as np\n",
+ "import pandas as pd\n",
+ "\n",
+ "#downloading dataset\n",
+ "!wget -nv -O china_gdp.csv https://cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud/IBMDeveloperSkillsNetwork-ML0101EN-SkillsNetwork/labs/Module%202/data/china_gdp.csv\n",
+ " \n",
+ "df = pd.read_csv(\"china_gdp.csv\")\n",
+ "df.head(6)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "__Did you know?__ When it comes to Machine Learning, you will likely be working with large datasets. As a business, where can you host your data? IBM is offering a unique opportunity for businesses, with 10 Tb of IBM Cloud Object Storage: [Sign up now for free](http://cocl.us/ML0101EN-IBM-Offer-CC)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Plotting the Dataset ###\n",
+ "This is what the datapoints look like. It kind of looks like an either logistic or exponential function. The growth starts off slow, then from 2005 on forward, the growth is very significant. And finally, it decelerates slightly in the 2010s.\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {
+ "tags": []
+ },
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAArMAAAHPCAYAAABA71I8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA4m0lEQVR4nO3de3SU1b3/8c+TCSQSzdAghISJSapSqfEGHBE0NVhNxUqh0Uq1C+q10CNC5NgqlePtWNObCi3ihaqtPYLUMNr2HA41LkHCxQs0WVWxyiVIiBMQlARBEzPZvz/ml5EhE5hJZvLMk3m/1pqVNXu+88yebNGPm/3sbRljjAAAAAAHSrG7AwAAAEB3EWYBAADgWIRZAAAAOBZhFgAAAI5FmAUAAIBjEWYBAADgWIRZAAAAOBZhFgAAAI5FmAUAAIBjEWYBAADgWEkdZtesWaOJEycqNzdXlmXpxRdfjOr9n3/+ua699lqdccYZSk1N1eTJkzvVrF27Vueff74GDRqk4447Tqeddpoefvjh2HwBAACAJJdqdwfsdPDgQZ111lm67rrrdMUVV0T9fr/fr+OOO06zZs3S8uXLw9ZkZGRo5syZOvPMM5WRkaG1a9dq+vTpysjI0I9+9KOefgUAAICkZhljjN2dSASWZemFF14ImV1tbW3VvHnz9Oyzz2r//v0qKirSL3/5S5WUlHR6/7XXXqv9+/dHNLtbVlamjIwM/elPf4rdFwAAAEhCSb3M4Fiuu+46rVu3Ts8995z++c9/6nvf+54uvfRSbdmypdvXrKmp0fr163XhhRfGsKcAAADJKamXGRzNtm3btHTpUu3atUu5ubmSpNtuu00rV67U008/rQceeCCq63k8Hn300Udqa2vTPffcoxtvvDEe3QYAAEgqhNku/OMf/5AxRsOHDw9pb2lp0aBBg6K+XnV1tT799FO99tpruuOOO3TKKafo6quvjlV3AQAAkhJhtgvt7e1yuVzatGmTXC5XyGvHH3981NcrLCyUJJ1xxhnavXu37rnnHsIsAABADxFmu3DOOefI7/drz549Ki4ujum1jTFqaWmJ6TUBAACSUVKH2U8//VRbt24NPq+rq1Ntba2ysrI0fPhw/eAHP9C0adP04IMP6pxzztHevXv1yiuv6IwzztBll10mSdq8ebNaW1v18ccf68CBA6qtrZUknX322ZKkRx55RCeddJJOO+00SYF9Z3/zm9/olltu6dXvCgAA0Bcl9dZcq1ev1vjx4zu1//CHP9Qf/vAHffHFF7r//vv1zDPPqKGhQYMGDdLYsWN177336owzzpAkFRQU6IMPPuh0jY5f6+9+9zs9/vjjqqurU2pqqk4++WTddNNNmj59ulJS2EwCAACgJ5I6zAIAAMDZmBoEAACAYxFmAQAA4FhJdwNYe3u7PvzwQ51wwgmyLMvu7gAAAOAIxhgdOHBAubm5x7zHKOnC7Icffqi8vDy7uwEAAIBjqK+vl8fjOWpN0oXZE044QVLgl5OZmWlzbwAAAHCk5uZm5eXlBXPb0SRdmO1YWpCZmUmYBQAASGCRLAnlBjAAAAA4FmEWAAAAjkWYBQAAgGMRZgEAAOBYhFkAAAA4FmEWAAAAjkWYBQAAgGMRZgEAAOBYhFkAAAA4VtKdAAYAAIAo+P1SdbXk80k5OVJxseRy2d2rIMIsAAAAwvN6pdmzpV27vmzzeKQFC6SyMvv6dRiWGQAAAKAzr1e68srQICtJDQ2Bdq/Xnn4dgTALAACAUH5/YEbWmM6vdbSVlwfqbEaYBQAAQKjq6s4zsoczRqqvD9TZjDALAACAUD5fbOviiDALAACAUDk5sa2LI8IsAAAAQhUXB3YtsKzwr1uWlJcXqLMZYRYAAAChXK7A9ltS50Db8Xz+/ITYb5YwCwAAgM7KyqTKSmnYsNB2jyfQniD7zHJoAgAAAMIrK5MmTeIEMAAAADiUyyWVlNjdiy6xzAAAAACOZWuYXbNmjSZOnKjc3FxZlqUXX3zxmO959dVXNWrUKKWnp+urX/2qHnvssfh3FAAAAAnJ1jB78OBBnXXWWVq4cGFE9XV1dbrssstUXFysmpoa/exnP9OsWbO0fPnyOPcUAAAAicjWNbMTJkzQhAkTIq5/7LHHdNJJJ2n+/PmSpBEjRmjjxo36zW9+oyuuuCJOvQQAAECictSa2Q0bNqi0tDSk7Vvf+pY2btyoL774Iux7Wlpa1NzcHPIAAABA3+CoMNvY2Kjs7OyQtuzsbLW1tWnv3r1h31NRUSG32x185OXl9UZXAQAA0AscFWYlyTriFApjTNj2DnPnzlVTU1PwUV9fH/c+AgAAoHc4ap/ZoUOHqrGxMaRtz549Sk1N1aBBg8K+Jy0tTWlpab3RPQAAAPQyR83Mjh07VlVVVSFtL730kkaPHq1+/frZ1CsAAADYxdYw++mnn6q2tla1tbWSAltv1dbWaufOnZICSwSmTZsWrJ8xY4Y++OADzZkzR++++66eeuopPfnkk7rtttvs6D4AAABsZusyg40bN2r8+PHB53PmzJEk/fCHP9Qf/vAH+Xy+YLCVpMLCQq1YsUK33nqrHnnkEeXm5uq3v/0t23IBAAAkKct03EGVJJqbm+V2u9XU1KTMzEy7uwMAAIAjRJPXHLVmFgAAADgcYRYAAACORZgFAACAYxFmAQAA4FiEWQAAADgWYRYAAACO5ajjbAEAABAjfr9UXS35fFJOjlRcLLlcdvcqaoRZAACAZOP1SrNnS7t2fdnm8UgLFkhlZfb1qxtYZgAAAJBMvF7pyitDg6wkNTQE2r1ee/rVTYRZAACAZOH3B2Zkwx0A29FWXh6ocwjCLAAAQLKoru48I3s4Y6T6+kCdQxBmAQAAkoXPF9u6BECYBQAASBY5ObGtSwCEWQAAgGRRXBzYtcCywr9uWVJeXqDOIQizAAAAycLlCmy/JXUOtB3P58931H6zhFkAAIBkUlYmVVZKw4aFtns8gXaH7TPLoQkAAADJpqxMmjSJE8AAAADgUC6XVFJidy96jGUGAAAAcCzCLAAAAByLMAsAAADHIswCAADAsQizAAAAcCzCLAAAAByLMAsAAADHIswCAADAsQizAAAAcCzCLAAAAByLMAsAAADHIswCAADAsQizAAAAcCzCLAAAAByLMAsAAADHIswCAADAsQizAAAAcCzCLAAAAByLMAsAAADHIswCAADAsQizAAAAcCzCLAAAAByLMAsAAADHSrW7AwAAAIgRv1+qrpZ8PiknRyoullwuu3sVV4RZAACAvsDrlWbPlnbt+rLN45EWLJDKyuzrV5yxzAAAAMDpvF7pyitDg6wkNTQE2r1ee/rVCwizAAAATub3B2Zkjen8WkdbeXmgrg8izAIAADhZdXXnGdnDGSPV1wfq+iDCLAAAgJP5fLGtcxjCLAAAgJPl5MS2zmEIswAAAE5WXBzYtcCywr9uWVJeXqCuDyLMAgAAOJnLFdh+S+ocaDuez5/fZ/ebJcwCAAA4XVmZVFkpDRsW2u7xBNr78D6zHJoAAADQF5SVSZMmcQIYAAAAHMrlkkpK7O5Fr2KZAQAAAByLMAsAAADHIswCAADAsQizAAAAcCzbw+yiRYtUWFio9PR0jRo1StXHODf42Wef1VlnnaUBAwYoJydH1113nfbt29dLvQUAAEAisTXMLlu2TOXl5brzzjtVU1Oj4uJiTZgwQTt37gxbv3btWk2bNk033HCD3nnnHT3//PN68803deONN/ZyzwEAAJAIbA2zDz30kG644QbdeOONGjFihObPn6+8vDw9+uijYetfe+01FRQUaNasWSosLNQFF1yg6dOna+PGjb3ccwAAACQC28Jsa2urNm3apNLS0pD20tJSrV+/Pux7xo0bp127dmnFihUyxmj37t2qrKzUt7/97S4/p6WlRc3NzSEPAAAA9A22hdm9e/fK7/crOzs7pD07O1uNjY1h3zNu3Dg9++yzmjJlivr376+hQ4dq4MCB+t3vftfl51RUVMjtdgcfeXl5Mf0eAAAAsI/tN4BZlhXy3BjTqa3D5s2bNWvWLN11113atGmTVq5cqbq6Os2YMaPL68+dO1dNTU3BR319fUz7DwAAAPvYdpztiSeeKJfL1WkWds+ePZ1maztUVFTo/PPP109+8hNJ0plnnqmMjAwVFxfr/vvvV05OTqf3pKWlKS0tLfZfAAAAALazbWa2f//+GjVqlKqqqkLaq6qqNG7cuLDvOXTokFJSQrvscrkkBWZ0AQAAkFxsXWYwZ84c/f73v9dTTz2ld999V7feeqt27twZXDYwd+5cTZs2LVg/ceJEeb1ePfroo9q+fbvWrVunWbNm6dxzz1Vubq5dXwMAAAA2sW2ZgSRNmTJF+/bt03333Sefz6eioiKtWLFC+fn5kiSfzxey5+y1116rAwcOaOHChfqP//gPDRw4UBdddJF++ctf2vUVAAAAYCPLJNnfzzc3N8vtdqupqUmZmZl2dwcAAABHiCav2b6bAQAAANBdhFkAAAA4FmEWAAAAjkWYBQAAgGMRZgEAAOBYtm7NBQAAgAj4/VJ1teTzSTk5UnGx9P8Pjkp2hFkAAIBE5vVKs2dLu3Z92ebxSAsWSGVl9vUrQbDMAAAAIFF5vdKVV4YGWUlqaAi0e7329CuBEGYBAAASkd8fmJENd75VR1t5eaAuiRFmAQAAElF1decZ2cMZI9XXB+qSGGEWAAAgEfl8sa3rowizAAAAiSgnJ7Z1fRRhFgAAIBEVFwd2LbCs8K9blpSXF6hLYoRZAACARORyBbbfkjoH2o7n8+cn/X6zhFkAAIBEVVYmVVZKw4aFtns8gXb2meXQBAAAgIRWViZNmsQJYF0gzAIAACQ6l0sqKbG7FwmJZQYAAABwLMIsAAAAHIswCwAAAMcizAIAAMCxCLMAAABwLMIsAAAAHIswCwAAAMcizAIAAMCxCLMAAABwLMIsAAAAHIswCwAAAMcizAIAAMCxCLMAAABwLMIsAAAAHIswCwAAAMcizAIAAMCxCLMAAABwLMIsAAAAHIswCwAAAMcizAIAAMCxCLMAAABwLMIsAAAAHIswCwAAAMcizAIAAMCxCLMAAABwLMIsAAAAHIswCwAAAMcizAIAAMCxCLMAAABwLMIsAAAAHIswCwAAAMcizAIAAMCxCLMAAABwLMIsAAAAHIswCwAAAMcizAIAAMCxCLMAAABwLMIsAAAAHCvV7g4AAAAkJb9fqq6WfD4pJ0cqLpZcLrt75TiEWQAAgN7m9UqzZ0u7dn3Z5vFICxZIZWX29cuBbF9msGjRIhUWFio9PV2jRo1SdXX1UetbWlp05513Kj8/X2lpaTr55JP11FNP9VJvAQAAesjrla68MjTISlJDQ6Dd67WnXw5l68zssmXLVF5erkWLFun888/X448/rgkTJmjz5s066aSTwr7nqquu0u7du/Xkk0/qlFNO0Z49e9TW1tbLPQcAAOgGvz8wI2tM59eMkSxLKi+XJk1iyUGELGPC/TZ7x5gxYzRy5Eg9+uijwbYRI0Zo8uTJqqio6FS/cuVKff/739f27duVlZXVrc9sbm6W2+1WU1OTMjMzu913AACAqK1eLY0ff+y6VaukkpJ49yZhRZPXbFtm0Nraqk2bNqm0tDSkvbS0VOvXrw/7nr/+9a8aPXq0fvWrX2nYsGEaPny4brvtNn322Wddfk5LS4uam5tDHgAAALbw+WJbB/uWGezdu1d+v1/Z2dkh7dnZ2WpsbAz7nu3bt2vt2rVKT0/XCy+8oL179+rf//3f9fHHH3e5braiokL33ntvzPsPAAAQtZyc2NbB/hvALMsKeW6M6dTWob29XZZl6dlnn9W5556ryy67TA899JD+8Ic/dDk7O3fuXDU1NQUf9fX1Mf8OAAAAESkuDuxa0EXWkWVJeXmBOkTEtjB74oknyuVydZqF3bNnT6fZ2g45OTkaNmyY3G53sG3EiBEyxmjXkXcE/n9paWnKzMwMeQAAANjC5QpsvyV1DrQdz+fP5+avKNgWZvv3769Ro0apqqoqpL2qqkrjxo0L+57zzz9fH374oT799NNg2/vvv6+UlBR5PJ649hcAACAmysqkykpp2LDQdo8n0M4+s1GxdTeDZcuWaerUqXrsscc0duxYPfHEE1q8eLHeeecd5efna+7cuWpoaNAzzzwjSfr00081YsQInXfeebr33nu1d+9e3Xjjjbrwwgu1ePHiiD6T3QwAAEBC4ASwLkWT12zdZ3bKlCnat2+f7rvvPvl8PhUVFWnFihXKz8+XJPl8Pu3cuTNYf/zxx6uqqkq33HKLRo8erUGDBumqq67S/fffb9dXAAAA6B6XK6m334oVW2dm7cDMLAAAQGJzxD6zAAAAQE8RZgEAAOBYhFkAAAA4FmEWAAAAjkWYBQAAgGMRZgEAAOBYhFkAAAA4FmEWAAAAjhX1CWAffPCBXnrpJX3xxRe68MILdfrpp8ejXwAAAMAxRRVm16xZo8suu0yHDh0KvDk1VX/84x919dVXx6VzAAAAwNFEtczgP//zPzV+/Hjt2rVL+/bt0/XXX6+f/vSn8eobAAAAcFSWMcZEWpyVlaU1a9aoqKhIknTw4EFlZmZq7969+spXvhK3TsZSNGf9AgAAoPdFk9eimpndv3+/hgwZEnyekZGhAQMGaP/+/d3qKAAAANATUd8AtnnzZjU2NgafG2P07rvv6sCBA8G2M888Mza9AwAAAI4iqmUGKSkpsixL4d7S0W5Zlvx+f0w7GUssMwAAAEhs0eS1qGZm6+rqetQxAAAAIJaiCrP5+fnx6gcAAAAQtajXzErSli1b9Je//EU7duyQZVkqLCzU5MmT9dWvfjXW/QMAAAC6FHWYraio0F133aX29nYNGTJExhh99NFHuuOOO/TAAw/otttui0c/AQAAgE6i2ppr1apVmjdvnu68807t3btXPp9PjY2NwTB7xx13aM2aNfHqKwAAABAiqt0MpkyZooEDB+rxxx8P+/qPfvQjHThwQEuXLo1ZB2ON3QwAAEBc+f1SdbXk80k5OVJxseRy2d0rR4nboQlvvPGGpk6d2uXrU6dO1WuvvRbNJQEAAPoOr1cqKJDGj5euuSbws6Ag0I64iCrM7t69WwUFBV2+XlhYGHKgAgAAQNLweqUrr5R27Qptb2gItBNo4yKqMPv555+rf//+Xb7er18/tba29rhTAAAAjuL3S7NnS+FWb3a0lZcH6hBTUe9m8Pvf/17HH3982NcOP9IWAAAgaVRXd56RPZwxUn19oK6kpNe6lQyiCrMnnXSSFi9efMwaAACApOLzxbYOEYsqzO7YsSNO3QAAAHCwnJzY1iFiUYXZzz//XC+//LIuv/xySdLcuXPV0tLy5cVSU3XfffcpPT09tr0EAABIZMXFkscTuNkr3LpZywq8Xlzc+33r46IKs3/84x/1P//zP8Ewu3DhQp1++uk67rjjJEn/+te/NHToUM2ZMyf2PQUAAEhULpe0YEFg1wLLCg20lhX4OX8++83GQVS7GTz77LO6/vrrQ9qWLFmiVatWadWqVfr1r3+t559/PqYdBAAAcISyMqmyUho2LLTd4wm0l5XZ068+LqqZ2ffff1/Dhw8PPk9PT1dKypd5+Nxzz9XNN98cu94BAAA4SVmZNGkSJ4D1oqjCbFNTk1JTv3zLRx99FPJ6e3t7yBpaAACApONysf1WL4pqmYHH49Hbb7/d5ev//Oc/5fF4etwpAAAAIBJRhdnLLrtMd911lz7//PNOr3322We699579e1vfztmnQMAAACOxjIm3P4R4e3evVtnn322+vfvr5kzZ2r48OGyLEv/+te/tHDhQrW1tammpkbZ2dnx7HOPNDc3y+12q6mpSZmZmXZ3BwAAAEeIJq9FtWY2Oztb69ev149//GPdcccd6sjBlmXpkksu0aJFixI6yAIAAKBviSrMSlJhYaFWrlypjz/+WFu3bpUknXLKKcrKyop55wAAAICjiTrMdsjKytK5554by74AAAAkLr+fLbcSULfDLAAAQNLweqXZs6Vdu75s83gCp35xGIKtotrNAAAAIOl4vYFjag8PspLU0BBo93rt6RckEWYBAAC65vcHZmTDbf7U0VZeHqiDLQizAAAAXamu7jwjezhjpPr6QB1sQZgFAADois8X2zrEHGEWAACgKzk5sa1DzBFmAQAAulJcHNi1wLLCv25ZUl5eoA62IMwCAAB0xeUKbL8ldQ60Hc/nz2e/WRsRZgEAAI6mrEyqrJSGDQtt93gC7ewzaysOTQAAADiWsjJp0iROAEtAhFkAAIBIuFxSSYndvcARWGYAAAAAxyLMAgAAwLEIswAAAHAswiwAAAAcizALAAAAxyLMAgAAwLEIswAAAHAswiwAAAAcy/Ywu2jRIhUWFio9PV2jRo1SdXV1RO9bt26dUlNTdfbZZ8e3gwAAAEhYtobZZcuWqby8XHfeeadqampUXFysCRMmaOfOnUd9X1NTk6ZNm6ZvfvObvdRTAAAAJCLLGGPs+vAxY8Zo5MiRevTRR4NtI0aM0OTJk1VRUdHl+77//e/r1FNPlcvl0osvvqja2tqIP7O5uVlut1tNTU3KzMzsSfcBAAAQB9HkNdtmZltbW7Vp0yaVlpaGtJeWlmr9+vVdvu/pp5/Wtm3bdPfdd0f0OS0tLWpubg55AAAAoG+wLczu3btXfr9f2dnZIe3Z2dlqbGwM+54tW7bojjvu0LPPPqvU1NSIPqeiokJutzv4yMvL63HfAQAAkBhsvwHMsqyQ58aYTm2S5Pf7dc011+jee+/V8OHDI77+3Llz1dTUFHzU19f3uM8AAABIDJFNb8bBiSeeKJfL1WkWds+ePZ1mayXpwIED2rhxo2pqajRz5kxJUnt7u4wxSk1N1UsvvaSLLrqo0/vS0tKUlpYWny8BAAAAW9k2M9u/f3+NGjVKVVVVIe1VVVUaN25cp/rMzEy99dZbqq2tDT5mzJihr33ta6qtrdWYMWN6q+sAAABIELbNzErSnDlzNHXqVI0ePVpjx47VE088oZ07d2rGjBmSAksEGhoa9MwzzyglJUVFRUUh7x8yZIjS09M7tQMAACA52Bpmp0yZon379um+++6Tz+dTUVGRVqxYofz8fEmSz+c75p6zAAAASF627jNrB/aZBQAASGyO2GcWAAAA6CnCLAAAAByLMAsAAADHIswCAADAsWzdzQAAAMBWfr9UXS35fFJOjlRcLLlcdvcKUSDMAgCA5OT1SrNnS7t2fdnm8UgLFkhlZfb1C1FhmQEAAEg+Xq905ZWhQVaSGhoC7V6vPf1C1AizAAAgufj9gRnZcFvtd7SVlwfqkPAIswAAILlUV3eekT2cMVJ9faAOCY8wCwAAkovPF9s62IowCwAAkktOTmzrYCvCLAAASC7FxYFdCywr/OuWJeXlBeqQ8AizAAAgubhcge23pM6BtuP5/PnsN+sQhFkAAJB8ysqkykpp2LDQdo8n0M4+s47BoQkAACA5lZVJkyZxApjDEWYBAEDycrmkkhK7e4EeYJkBAAAAHIswCwAAAMcizAIAAMCxCLMAAABwLMIsAAAAHIswCwAAAMcizAIAAMCxCLMAAABwLMIsAAAAHIswCwAAAMcizAIAAMCxCLMAAABwLMIsAAAAHIswCwAAAMcizAIAAMCxUu3uAAAAQMz5/VJ1teTzSTk5UnGx5HLZ3SvEAWEWAAD0LV6vNHu2tGvXl20ej7RggVRWZl+/EBcsMwAAAH2H1ytdeWVokJWkhoZAu9drT78QN4RZAADQN/j9gRlZYzq/1tFWXh6oQ59BmAUAAH1DdXXnGdnDGSPV1wfq0GcQZgEAQN/g88W2Do5AmAUAAH1DTk5s6+AIhFkAANA3FBcHdi2wrPCvW5aUlxeoQ59BmAUAAH2DyxXYfkvqHGg7ns+fz36zfQxhFgAA9B1lZVJlpTRsWGi7xxNoZ5/ZPodDEwAAQN9SViZNmsQJYEmCMAsAAPoel0sqKbG7F+gFLDMAAACAYxFmAQAA4FiEWQAAADgWYRYAAACOxQ1gAADAGfx+dihAJ4RZAACQ+LxeafZsadeuL9s8nsAhCewdm9RYZgAAABKb1ytdeWVokJWkhoZAu9drT7+QEAizAAAgcfn9gRlZYzq/1tFWXh6oQ1IizAIAgMRVXd15RvZwxkj19YE6JCXCLAAASFw+X2zr0OcQZgEAQOLKyYltHfocwiwAAEhcxcWBXQssK/zrliXl5QXqkJQIswAAIHG5XIHtt6TOgbbj+fz57DebxAizAAAgsZWVSZWV0rBhoe0eT6CdfWaTmu1hdtGiRSosLFR6erpGjRql6qPcjej1enXJJZdo8ODByszM1NixY/X3v/+9F3sLAABsUVYm7dghrVolLVkS+FlXR5CFvWF22bJlKi8v15133qmamhoVFxdrwoQJ2rlzZ9j6NWvW6JJLLtGKFSu0adMmjR8/XhMnTlRNTU0v9xwAAMSM3y+tXi0tXRr42dWesS6XVFIiXX114CdLCyDJMibcLsS9Y8yYMRo5cqQeffTRYNuIESM0efJkVVRURHSN008/XVOmTNFdd90VUX1zc7PcbreampqUmZnZrX4DAIAY4ZhahBFNXrNtZra1tVWbNm1SaWlpSHtpaanWr18f0TXa29t14MABZWVldVnT0tKi5ubmkAcAAEgAHFOLGLAtzO7du1d+v1/Z2dkh7dnZ2WpsbIzoGg8++KAOHjyoq666qsuaiooKud3u4CMvL69H/QYAADHAMbWIEdtvALOO2GbDGNOpLZylS5fqnnvu0bJlyzRkyJAu6+bOnaumpqbgo76+vsd9BgAAPcQxtYiRVLs++MQTT5TL5eo0C7tnz55Os7VHWrZsmW644QY9//zzuvjii49am5aWprS0tB73FwAAxBDH1CJGbJuZ7d+/v0aNGqWqqqqQ9qqqKo0bN67L9y1dulTXXnutlixZom9/+9vx7iYAAIgHjqlFjNg2MytJc+bM0dSpUzV69GiNHTtWTzzxhHbu3KkZM2ZICiwRaGho0DPPPCMpEGSnTZumBQsW6LzzzgvO6h533HFyu922fQ8AABCljmNqGxrCr5u1rMDrHFOLY7B1zeyUKVM0f/583XfffTr77LO1Zs0arVixQvn5+ZIkn88Xsufs448/rra2Nt18883KyckJPmbPnm3XVwAAAN3BMbWIEVv3mbUD+8wCAJBAwu0zm5cXCLLsM5u0oslrti4zAAAAfZTfH9iJwOcLrHstLg4/y1pWJk2aFFktEAZhFgAAxFa0p3p1HFMLdIPt+8wCAIA+hFO90MsIswAAIDY41Qs2IMwCAIDY4FQv2IAwCwAAYoNTvWADbgADAACRO9ouBZzqBRswMwsAACLj9UoFBdL48dI11wR+FhR8eVNXx6leRx6C0MGyAnvIcqoXYogwCwAAji2SXQo41Qs2IMwCAICji2aXgrIyqbJSGjYstM7jCbRzqhdijDWzAADg6KLZpaCkhFO90KsIswAA4Og3dnVnlwJO9UIvIcwCAJDsjnX8LLsUIIGxZhYAgGQWyY1d7FKABEaYBQAgWUV6Y5fELgVIWIRZAAD6Kr9fWr1aWro08NPvD309mhu72KUACYo1swAA9EXHWgcrRX9jF7sUIAERZgEA6Gs61sEeuXygYx1sx0xqd27sYpcCJBiWGQAA0JdEc8ABN3ahDyDMAgDgNEdbCxvNOliOn0UfQJgFAMBJvF6poEAaP1665prAz4KCQLvUvXWw3NgFB2PNLAAAieBoJ3B1iGQtbHfWwXJjFxzMMibcopq+q7m5WW63W01NTcrMzLS7OwAARLbzgN8fmIHtagmBZQXes3WrdPLJgYAb7j/xHXV1dYRVJKxo8hrLDAAAiKdj7fUayQlcUuRrYdevZx0skgphFgCAeDnW+tZodh6IZi0s62CRRFgzCwBAPESyvjUrK/KdB6JdC8s6WCQJwiwAALF2rBlXywrMuFZURHY9n0+66qrAzOqx1sIevicsBxwgCbDMAACAaB1rHWyk61s/+iiyz8vJYU9YoAuEWQAAonGsdbBS5OtbBw+O7gQu1sICnRBmAQCIVKQ7D0S6vnXYsOhnW8vKpB07pFWrpCVLAj/r6giySFrsMwsAQCQi3ee1ri7wvKAg8r1ew+0zm5cXCLKEVCShaPIaN4ABANDhaKdwRboOtro6cNPVggWB2VrLCg204WZc2XkA6DbCLAAA0rFP4Ypmn1fpy/Wt4a4ZbsaVnQeAbiHMAgAQyZ6w0e7zKjHjCvQC1swCAJJbpGtht26VTj458nWwALotmrzGbgYAgOQW6VrY9evZ5xVIQIRZAEByi2YtLPu8AgmHNbMAgL7taDsUSNGvhWUdLJBQCLMAgL7rWDsUSIEg6vEcey1sxylcEjsPAAmEZQYAgL4p0tO6XC7WwgIORpgFAPQ9fn9gRjbcTGtHW3l5oE5iLSzgYCwzAAAklmOtcY2kLtrTuiTWwgIORZgFACSOSNa4RlIX7WldHVgLCzgOYRYAEH+RzLZGcgpXWVn8TusC4EicAAYACBXpX/NHWhvJbGu0p3BxWhfQp3ECGAAkKr9fWr1aWro08LPjBqRE+WyvNxAqx4+Xrrkm8LOg4Ms7/6OtjXRHgUjXuC5axGldAEIQZgGgt0QTFGMdemMZPCOtjWZHgUjXuG7bFlkdp3UBSYNlBgDQUz1ZD9oxS3h4uIr0JqhYfvakSZH9NX9dXeB5JLVPPy1dfHH4msOtWhX4OX78sWsffli69dbIrtlxI1c0yyYAJIRo8hphFgC60tvrQevqpL/8JbahN9LPjkfwnDdPuv/+Y9ctWSJddVWgn8da48paWCApsGYWQN8QzV+1R1obaZ0d60FXr478r+Xj8dmR8PkiXxIQqZycyE/h6t+ftbAAQhBmgb4kHjcX2XXNWN+IFG2dHetBV6+OfeiNR/CMdDurkpLALOmRobODZUl5eYEZbynyNa6shQVwOJNkmpqajCTT1NRkd1eQ7NrajFm1ypglSwI/29p6Vrt8uTEejzGBOBN4eDyB9t64ZqTfJ5JrLl9ujGWF1kiBNsvqXm2kdW1tnft3ZH1enjEvv9x1zeGPVasCj0hq582LbV00n/3yy4HvHe53dPj3bmv78ncUSW3H7/3I2nBjGe0/S9H8GQLgKNHkNcIsEAk7g2esw188rhnp94nkmpGGycND1bFqW1oiv2asg+eSJZGHv0gDcjw+O9rgGW3tkb//vLyu/0cLQNIjzB4FYbaH4jFjkujXtDN4xjr8xeOaTpjxfPjhyK+5ZElsA+WqVaG/96OFv1iH3mg++2j/DHcVPKOpZRYVQBQIs0fR62E21kHNzpAYzexbLMOfnde0M3jGI/zF+podfzUdyfeJx4xnpMFz5szIrxmPv5Y/2j9zR4a/WIbeaD+7Qzz+PQMAUSDMHkWvhtlYBzU7Q2Ks1yU64Zp2B894hD87127GY8YzHjOzibAeNFahtzufDQAJgDB7FL0WZmMd1JxwQ0w06xKdcE27g2c8wl+srxmPIB2PG5E6xjzSmcxEWA8aq9ALAA7kqDD7yCOPmIKCApOWlmZGjhxp1qxZc9T61atXm5EjR5q0tDRTWFhoHn300ag+r1fCbKxDld0hMR6zX064pt3BMx7hL9bX7M4SB7tuRIp2JtMp60GZbQXQBzkmzD733HOmX79+ZvHixWbz5s1m9uzZJiMjw3zwwQdh67dv324GDBhgZs+ebTZv3mwWL15s+vXrZyorKyP+zF4Js7EOVXaHxHisS3TCNe0OnvEIf7G+ZrRrN+2+ESnamUyCIgDYwjFh9txzzzUzZswIaTvttNPMHXfcEbb+pz/9qTnttNNC2qZPn27OO++8iD+zV8JsrEOV3SHRCbOo8bim3cHTmPiEv1hfM1FmPNmbFAD6DEeE2ZaWFuNyuYzX6w1pnzVrlvnGN74R9j3FxcVm1qxZIW1er9ekpqaa1tbWsO/5/PPPTVNTU/BRX18f8S+n2/razGw81iU65Zp2B89oa3uyM0VPrsmMJwAghhwRZhsaGowks27dupD2n//852b48OFh33Pqqaean//85yFt69atM5LMhx9+GPY9d999t5HU6dEra2ZjFarsDnTGxGddopOuafe+m/EIf7G+JgEVABAjjgqz69evD2m///77zde+9rWw7zn11FPNAw88ENK2du1aI8n4fL6w77FlZtaY2IcquwNdR32s1yU65Zp2B08AAJKII8Jsby0zOJLt+8z2JFTZHeiMccbhDvG6JgAA6BXR5DXLGGNkkzFjxmjUqFFatGhRsO3rX/+6Jk2apIqKik71t99+u/72t79p8+bNwbYf//jHqq2t1YYNGyL6zObmZrndbjU1NSkzM7PnX+JY/H6pulry+aScHKm4WHK54l8Xr2sCAADEWTR5zdYwu2zZMk2dOlWPPfaYxo4dqyeeeEKLFy/WO++8o/z8fM2dO1cNDQ165plnJEl1dXUqKirS9OnTddNNN2nDhg2aMWOGli5dqiuuuCKiz+z1MAsAAICoRJPXUnupT2FNmTJF+/bt03333Sefz6eioiKtWLFC+fn5kiSfz6edO3cG6wsLC7VixQrdeuuteuSRR5Sbm6vf/va3EQdZAAAA9C22zszagZlZAACAxBZNXkvppT4BAAAAMUeYBQAAgGMRZgEAAOBYhFkAAAA4FmEWAAAAjkWYBQAAgGMRZgEAAOBYhFkAAAA4lq0ngNmh44yI5uZmm3sCAACAcDpyWiRneyVdmD1w4IAkKS8vz+aeAAAA4GgOHDggt9t91JqkO862vb1dH374oU444QRZltUrn9nc3Ky8vDzV19dzhG4CYnwSG+OT+BijxMb4JDbGJzxjjA4cOKDc3FylpBx9VWzSzcympKTI4/HY8tmZmZn8g5rAGJ/ExvgkPsYosTE+iY3x6exYM7IduAEMAAAAjkWYBQAAgGMRZntBWlqa7r77bqWlpdndFYTB+CQ2xifxMUaJjfFJbIxPzyXdDWAAAADoO5iZBQAAgGMRZgEAAOBYhFkAAAA4FmEWAAAAjkWYjcCaNWs0ceJE5ebmyrIsvfjiiyGv7969W9dee61yc3M1YMAAXXrppdqyZUun62zYsEEXXXSRMjIyNHDgQJWUlOizzz4Lvv7JJ59o6tSpcrvdcrvdmjp1qvbv3x/nb9c39HSMduzYIcuywj6ef/75YB1j1D2x+DPU2NioqVOnaujQocrIyNDIkSNVWVkZUsP4dF8sxmjbtm367ne/q8GDByszM1NXXXWVdu/eHVLDGEWvoqJC//Zv/6YTTjhBQ4YM0eTJk/Xee++F1BhjdM899yg3N1fHHXecSkpK9M4774TUtLS06JZbbtGJJ56ojIwMfec739GuXbtCahif7onVGD3xxBMqKSlRZmamLMsK+7tnjDojzEbg4MGDOuuss7Rw4cJOrxljNHnyZG3fvl1/+ctfVFNTo/z8fF188cU6ePBgsG7Dhg269NJLVVpaqjfeeENvvvmmZs6cGXJE2zXXXKPa2lqtXLlSK1euVG1traZOndor39HpejpGeXl58vl8IY97771XGRkZmjBhQvBajFH3xOLP0NSpU/Xee+/pr3/9q9566y2VlZVpypQpqqmpCdYwPt3X0zE6ePCgSktLZVmWXnnlFa1bt06tra2aOHGi2tvbg9dijKL36quv6uabb9Zrr72mqqoqtbW1qbS0NOTPx69+9Ss99NBDWrhwod58800NHTpUl1xyiQ4cOBCsKS8v1wsvvKDnnntOa9eu1aeffqrLL79cfr8/WMP4dE+sxujQoUO69NJL9bOf/azLz2KMwjCIiiTzwgsvBJ+/9957RpJ5++23g21tbW0mKyvLLF68ONg2ZswYM2/evC6vu3nzZiPJvPbaa8G2DRs2GEnmX//6V2y/RB/X3TE60tlnn22uv/764HPGKDa6Oz4ZGRnmmWeeCblWVlaW+f3vf2+MYXxiqTtj9Pe//92kpKSYpqamYM3HH39sJJmqqipjDGMUK3v27DGSzKuvvmqMMaa9vd0MHTrU/OIXvwjWfP7558btdpvHHnvMGGPM/v37Tb9+/cxzzz0XrGloaDApKSlm5cqVxhjGJ5a6M0aHW7VqlZFkPvnkk5B2xig8ZmZ7qKWlRZKUnp4ebHO5XOrfv7/Wrl0rSdqzZ49ef/11DRkyROPGjVN2drYuvPDC4OtSYObW7XZrzJgxwbbzzjtPbrdb69ev76Vv0zdFMkZH2rRpk2pra3XDDTcE2xij+Ih0fC644AItW7ZMH3/8sdrb2/Xcc8+ppaVFJSUlkhifeIpkjFpaWmRZVsjG7+np6UpJSQnWMEax0dTUJEnKysqSJNXV1amxsVGlpaXBmrS0NF144YXB3+umTZv0xRdfhNTk5uaqqKgoWMP4xE53xigSjFF4hNkeOu2005Sfn6+5c+fqk08+UWtrq37xi1+osbFRPp9PkrR9+3ZJ0j333KObbrpJK1eu1MiRI/XNb34zuOassbFRQ4YM6XT9IUOGqLGxsfe+UB8UyRgd6cknn9SIESM0bty4YBtjFB+Rjs+yZcvU1tamQYMGKS0tTdOnT9cLL7ygk08+WRLjE0+RjNF5552njIwM3X777Tp06JAOHjyon/zkJ2pvbw/WMEY9Z4zRnDlzdMEFF6ioqEiSgr+77OzskNrs7Ozga42Njerfv7++8pWvHLWG8em57o5RJBij8AizPdSvXz8tX75c77//vrKysjRgwACtXr1aEyZMkMvlkqTgerHp06fruuuu0znnnKOHH35YX/va1/TUU08Fr2VZVqfrG2PCtiNykYzR4T777DMtWbIkZFa2A2MUe5GOz7x58/TJJ5/o5Zdf1saNGzVnzhx973vf01tvvRWsYXziI5IxGjx4sJ5//nn97W9/0/HHHy+3262mpiaNHDkyZBwZo56ZOXOm/vnPf2rp0qWdXjvydxjJ7/XIGsan52I9Rse6Rnev05ek2t2BvmDUqFGqra1VU1OTWltbNXjwYI0ZM0ajR4+WJOXk5EiSvv71r4e8b8SIEdq5c6ckaejQoZ3u+pWkjz76qNP/ySF6xxqjw1VWVurQoUOaNm1aSDtjFD/HGp9t27Zp4cKFevvtt3X66adLks466yxVV1frkUce0WOPPcb4xFkkf4ZKS0u1bds27d27V6mpqRo4cKCGDh2qwsJCSfwZ6qlbbrlFf/3rX7VmzRp5PJ5g+9ChQyUFZu06/nsjBZa4dfxehw4dqtbWVn3yySchs7N79uwJ/g0U49NzPRmjSDBG4TEzG0Nut1uDBw/Wli1btHHjRk2aNEmSVFBQoNzc3E7bdLz//vvKz8+XJI0dO1ZNTU164403gq+//vrrampqCvmrbvRMV2N0uCeffFLf+c53NHjw4JB2xij+uhqfQ4cOSVLI7h9SYN1mx998MD69I5I/QyeeeKIGDhyoV155RXv27NF3vvMdSYxRdxljNHPmTHm9Xr3yyivB/znoUFhYqKFDh6qqqirY1traqldffTX4ex01apT69esXUuPz+fT2228Haxif7ovFGEWCMeqCLbedOcyBAwdMTU2NqampMZLMQw89ZGpqaswHH3xgjDHmz3/+s1m1apXZtm2befHFF01+fr4pKysLucbDDz9sMjMzzfPPP2+2bNli5s2bZ9LT083WrVuDNZdeeqk588wzzYYNG8yGDRvMGWecYS6//PJe/a5OFYsxMsaYLVu2GMuyzP/93/+F/RzGqHt6Oj6tra3mlFNOMcXFxeb11183W7duNb/5zW+MZVnmf//3f4N1jE/3xeLP0FNPPWU2bNhgtm7dav70pz+ZrKwsM2fOnJAaxih6P/7xj43b7TarV682Pp8v+Dh06FCw5he/+IVxu93G6/Wat956y1x99dUmJyfHNDc3B2tmzJhhPB6Pefnll80//vEPc9FFF5mzzjrLtLW1BWsYn+6J1Rj5fD5TU1NjFi9ebCSZNWvWmJqaGrNv375gDWPUGWE2Ah1bZBz5+OEPf2iMMWbBggXG4/GYfv36mZNOOsnMmzfPtLS0dLpORUWF8Xg8ZsCAAWbs2LGmuro65PV9+/aZH/zgB+aEE04wJ5xwgvnBD37QaVsOhBerMZo7d67xeDzG7/eH/RzGqHtiMT7vv/++KSsrM0OGDDEDBgwwZ555Zqetuhif7ovFGN1+++0mOzvb9OvXz5x66qnmwQcfNO3t7SE1jFH0wo2LJPP0008Ha9rb283dd99thg4datLS0sw3vvEN89Zbb4Vc57PPPjMzZ840WVlZ5rjjjjOXX3652blzZ0gN49M9sRqju++++5jXYYw6s4wxJl6zvgAAAEA8sWYWAAAAjkWYBQAAgGMRZgEAAOBYhFkAAAA4FmEWAAAAjkWYBQAAgGMRZgEAAOBYhFkAAAA4FmEWABKIMUYXX3yxvvWtb3V6bdGiRXK73dq5c6cNPQOAxESYBYAEYlmWnn76ab3++ut6/PHHg+11dXW6/fbbtWDBAp100kkx/cwvvvgiptcDgN5EmAWABJOXl6cFCxbotttuU11dnYwxuuGGG/TNb35T5557ri677DIdf/zxys7O1tSpU7V3797ge1euXKkLLrhAAwcO1KBBg3T55Zdr27Ztwdd37Nghy7L05z//WSUlJUpPT9d///d/2/E1ASAmLGOMsbsTAIDOJk+erP379+uKK67Qf/3Xf+nNN9/U6NGjddNNN2natGn67LPPdPvtt6utrU2vvPKKJGn58uWyLEtnnHGGDh48qLvuuks7duxQbW2tUlJStGPHDhUWFqqgoEAPPvigzjnnHKWlpSk3N9fmbwsA3UOYBYAEtWfPHhUVFWnfvn2qrKxUTU2NXn/9df39738P1uzatUt5eXl67733NHz48E7X+OijjzRkyBC99dZbKioqCobZ+fPna/bs2b35dQAgLlhmAAAJasiQIfrRj36kESNG6Lvf/a42bdqkVatW6fjjjw8+TjvtNEkKLiXYtm2brrnmGn31q19VZmamCgsLJanTTWOjR4/u3S8DAHGSancHAABdS01NVWpq4F/V7e3tmjhxon75y192qsvJyZEkTZw4UXl5eVq8eLFyc3PV3t6uoqIitba2htRnZGTEv/MA0AsIswDgECNHjtTy5ctVUFAQDLiH27dvn9599109/vjjKi4uliStXbu2t7sJAL2KZQYA4BA333yzPv74Y1199dV64403tH37dr300ku6/vrr5ff79ZWvfEWDBg3SE088oa1bt+qVV17RnDlz7O42AMQVYRYAHCI3N1fr1q2T3+/Xt771LRUVFWn27Nlyu91KSUlRSkqKnnvuOW3atElFRUW69dZb9etf/9rubgNAXLGbAQAAAByLmVkAAAA4FmEWAAAAjkWYBQAAgGMRZgEAAOBYhFkAAAA4FmEWAAAAjkWYBQAAgGMRZgEAAOBYhFkAAAA4FmEWAAAAjkWYBQAAgGMRZgEAAOBY/w99KbzwXu7KKQAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ "
"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "plt.figure(figsize=(8,5))\n",
+ "x_data, y_data = (df[\"Year\"].values, df[\"Value\"].values)\n",
+ "plt.plot(x_data, y_data, 'ro')\n",
+ "plt.ylabel('GDP')\n",
+ "plt.xlabel('Year')\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Choosing a model ###\n",
+ "\n",
+ "From an initial look at the plot, we determine that the logistic function could be a good approximation,\n",
+ "since it has the property of starting with a slow growth, increasing growth in the middle, and then decreasing again at the end; as illustrated below:\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {
+ "tags": []
+ },
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGwCAYAAABVdURTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAABRkElEQVR4nO3dd3xT5eIG8CfpSLqS0k2hk1kos4Wyl9iCyhDvBRXZ8LtcB6OKilym3FtEURQFRYSCIvYqQ5EKFJkyLrRQZhlt6aCD7qZ7JOf3RyVaW6CBtCdJn+/nkw/tyUnyNFrycM573lciCIIAIiIiIhMhFTsAERERkT6x3BAREZFJYbkhIiIik8JyQ0RERCaF5YaIiIhMCssNERERmRSWGyIiIjIp5mIHaGoajQbp6emws7ODRCIROw4RERE1gCAIKCoqgru7O6TSBx+baXblJj09HR4eHmLHICIiokeQmpqK1q1bP3CfZldu7OzsANS8OQqFQuQ0RERE1BAqlQoeHh7az/EHaXbl5t6pKIVCwXJDRERkZBoypIQDiomIiMiksNwQERGRSWG5ISIiIpPCckNEREQmheWGiIiITArLDREREZkUlhsiIiIyKSw3REREZFJELTfHjx/HqFGj4O7uDolEgj179jz0MceOHUNAQADkcjl8fX3x+eefN35QIiIiMhqilpuSkhJ069YNn376aYP2v337Np566ikMHDgQFy5cwDvvvIM5c+Zg586djZyUiIiIjIWoyy+MHDkSI0eObPD+n3/+OTw9PbF27VoAgJ+fH6Kjo/HBBx/gueeeq/cxFRUVqKio0H6vUqkeKzMREREZNqMac3P69GkEBwfX2hYSEoLo6GhUVVXV+5iwsDAolUrtjSuCExERmTajKjeZmZlwdXWttc3V1RXV1dXIycmp9zELFy5EYWGh9paamtoUUYmIiJoVQRBQUlGNu6pypOaViprF6FYF/+tqoIIg1Lv9HplMBplM1ui5iIiIjJ0gCCirUiOvpBIFpVXIL635s6CsCoW/f11YVnNTlVehsKwaqrIqFFdUo7iiGmpNzWdyK3srnHx7mGg/h1GVGzc3N2RmZtbalpWVBXNzczg6OoqUioiIyHAJgoD80ipkF1Ugq6gc2UUVyC6qQE5xBXKLK5FTUom8kpqv80oqUVGteazXM5NKIBX5vJBRlZu+ffti7969tbYdPHgQgYGBsLCwECkVERGRODQaAdnFFUgvKENGYTnSC8qQXlCOTFUZ7qoqkFlYU2Yq1boVFkszKRxsLGFvbVFzs6r5WmllAYXVH38q5ObaP+3kFrCTm8PKwuy+Z1Oaiqjlpri4GPHx8drvb9++jdjYWDg4OMDT0xMLFy5EWloatm3bBgCYPXs2Pv30U4SGhmLWrFk4ffo0vvrqK+zYsUOsH4GIiKhRqcqrkJJbiuTcUiTlluBOfhnu5JfiTn4Z0vLLGlxcWlhbwMVODmc7GZztZHCytYSjrQyONpZwspXBwcZSe7O2FL+gPA5Ry010dDSGDh2q/T40NBQAMGXKFISHhyMjIwMpKSna+318fBAZGYn58+fjs88+g7u7Oz755JP7XgZORERkDKrVGiTlliIhuxiJ2SVIzC5GYk4JbueUIK+k8oGPNZNK4GonQ0t7K7jbW8FdKYebUg43hRwuCjlcFTK42MlhaW5U1xA9Folwb0RuM6FSqaBUKlFYWAiFQiF2HCIiakYEQUBaQRniMopwPUOFm1nFuHW3CInZJQ88AuNoYwkvR2t4OdrAw8EaHi2s0LqFNTwcrOCmkMPczPSLiy6f30Y15oaIiMhYqDUCbucU49KdQly6U4hrGSpcz1BBVV5d7/5WFmZo42IDXydb+DrbwNfZFr5ONvBytIadnONKdcFyQ0REpAd3VeU4n5yPC6kFiE0twNW0QpRUquvsZ2EmQRtnW/i1VKC9qx3au9qivasdWtlbQSo13nEuhoTlhoiISEeCIOBWVjH+l5iLs0n5OJ+cj7SCsjr7WVuawd9dCf9WSnR2V8CvpQJtXWyb1fgXMbDcEBERPYQgCEjILsZvt3JwOjEX55Ly6wz0lUqADm4K9PS0Rw/PFujWWglfZ1uY8WhMk2O5ISIiqkdeSSVO3MrGiVs5OBmfg4zC8lr3yy2kCPBqgd7ejujl3QJdPexhK+PHqiHgfwUiIiLUHJ25nlmEw9ezcPh6Fi6k5EPzp+uJLc2l6OXdAv3aOKGPrwO6tLLn6SUDxXJDRETNllojICY5H79cycDBq3frjJvp6GaHQe2dMaCtE3r7OEBuYSZSUtIFyw0RETUrao2A/93Oxc+XagpNTnGF9j65hRT92zhhaEcXDOvoAnd7KxGT0qNiuSEiIpMnCAKupqvwY2wa9l7MQKbqj/EzCrk5hndyxYjObhjU3plHZ0wAyw0REZms7KIK7Dp/B9/H3EF8VrF2u0Jujqe6tMTILi3R19eRY2dMDMsNERGZlGq1BsdvZSPiXCp+jctC9e+jgmXmUgz3c8WY7u4Y3MEZMnMeoTFVLDdERGQScosr8N25VGw/k4z0P1223d3DHhN6eeDpri2h4DIGzQLLDRERGbVLdwoQfioJP1/M0C4+2cLaAs/2aI0JvTzQwc1O5ITU1FhuiIjI6Gg0Ao7ezMLnxxJx9naednvX1kpM6euNp7u25MDgZozlhoiIjEZltQZ7L6bji+MJuHm3ZoCwhZkET3dpiSn9vNHDs4XICckQsNwQEZHBq6zW4IeYO/jsSLx2oj1bmTleDPLEtP7eaKnkfDT0B5YbIiIyWFXqmlLz6eE/So2znQzT+/vgxSBPKK04QJjqYrkhIiKDo9EI2BObhg+jbuJO/h+l5p+D2+DFIE+Op6EHYrkhIiKDcuJWNsIir+NahgoA4GQrwz+HtMFElhpqIJYbIiIyCHEZKoT9ch3Hb2YDAOxk5vjn0DaY1s8HVpYsNdRwLDdERCSqwtIqrIm6gW/OJEMj1Fz9NKmPN14d1hYONpZixyMjxHJDRESi0GgE/Dc6FasP3EBeSSUA4OkuLfHmiA7wcrQROR0ZM5YbIiJqclfSCrFo92VcvFMIAGjnYovlYzqjXxsnkZORKWC5ISKiJlNepcZHh25i04nbUGsE2MnMMe/J9pjc1wsWZlyZm/SD5YaIiJrE6YRcLNx1CUm5pQCAZ7q2xJJRneBiJxc5GZkalhsiImpUxRXV+E9kHL79XwoAwE0hx8qx/hjeyVXkZGSqWG6IiKjRxCTnY35ELFLyao7WTAzyxFsjO0Ih58zC1HhYboiISO+q1Bp88ustfHYkHhoBaGVvhQ/+3g192ziKHY2aAZYbIiLSq8TsYsyLiMWl36+EGtejFZaN6cyjNdRkWG6IiEhvfoxNwzu7LqOkUg2llQX+82wXPN21pdixqJlhuSEiosdWXqXGuz9fw/bfBw0H+Tjg4+d7wE3JK6Go6bHcEBHRY0nOLcHL28/janrNQpevDWuLuU+0gznnrSGRsNwQEdEjO3z9LubuiEVRRTVaWFvgowndMaSDi9ixqJljuSEiIp0JgoANxxLw/oEbEAQgwKsFPn2xB1oqrcSORsRyQ0REuimrVOOtnZfw08V0AMALvT2xfHRnWJrzNBQZBpYbIiJqsPSCMvzf19G4kqaCuVSCpaM7Y1IfL7FjEdXCckNERA1yJa0Q08PPIauoAg42llg/sSf6+HJSPjI8LDdERPRQx25m4+VvYlBSqUYHVztsmhIIDwdrsWMR1YvlhoiIHui/51KxcPdlqDUC+rVxxOeTAjjbMBk0lhsiIqqXIAhYe+gWPv71FoCaZRRWPdeVA4fJ4LHcEBFRHRqNgMU/XtHOOPzq0LZ4Pbg9JBKJyMmIHo7lhoiIaqlSa7Dg+4vYE5sOiQRYOdYfE4N4RRQZD5YbIiLSKq9S47UdFxB17S7MpRJ8NKE7RnVzFzsWkU5YboiICABQUlGN//s6Gifjc2FpLsXnL/XEsI6uYsci0hnLDRERobiiGlM2n0VMcj5sLM3w5ZRA9GvjJHYsokfCckNE1MwVV1Rj6u/FRiE3x9bpvdHDs4XYsYgeGcsNEVEzVlJRjelbziH692KzfWYfdGmtFDsW0WPhZAVERM1UaWU1poefw9mkPNjJzfH1jCAWGzIJLDdERM1QWaUaM8Kj8b/bebCTmWPb9N7o5mEvdiwivWC5ISJqZiqrNfjn9hicTsyFjaUZwjnGhkwMyw0RUTOi0Qh44/uLOHojG3ILKcKn90aAF4sNmRaWGyKiZkIQBCz96Sp+upgOc6kEG14KQC9vB7FjEekdyw0RUTPx0aFb+PpMMiQSYM34bhjawUXsSESNguWGiKgZ2HLyNj75fXXvFaM7Y0z3ViInImo8LDdERCYu8nIGlu+9BgAIfbI9JvX1FjcQUSNjuSEiMmExyXmYFxELAJjc1wuvDWsrbiCiJsByQ0RkopJySjBrWwwqqzUY7ueCpaM6QyKRiB2LqNGJXm7Wr18PHx8fyOVyBAQE4MSJEw/cf/v27ejWrRusra3RsmVLTJs2Dbm5uU2UlojIOOSXVGJa+DnklVSiSyslPnmhB8ykLDbUPIhabiIiIjBv3jwsWrQIFy5cwMCBAzFy5EikpKTUu/9vv/2GyZMnY8aMGbh69Sq+//57nDt3DjNnzmzi5EREhqu8So1Z26JxO6cEreyt8NXUQFhbcilBaj5ELTcffvghZsyYgZkzZ8LPzw9r166Fh4cHNmzYUO/+Z86cgbe3N+bMmQMfHx8MGDAA//jHPxAdHd3EyYmIDJMgCHh75yVEJ+fDTm6OLdN6wcVOLnYsoiYlWrmprKxETEwMgoODa20PDg7GqVOn6n1Mv379cOfOHURGRkIQBNy9exc//PADnn766fu+TkVFBVQqVa0bEZGp+uJ4IvbE1kzS98VLAWjvaid2JKImJ1q5ycnJgVqthqura63trq6uyMzMrPcx/fr1w/bt2zFhwgRYWlrCzc0N9vb2WLdu3X1fJywsDEqlUnvz8PDQ689BRGQojlzPwnv7rwMAlo7qhH5tnURORCQO0QcU/3XkviAI9x3Nf+3aNcyZMwdLlixBTEwM9u/fj9u3b2P27Nn3ff6FCxeisLBQe0tNTdVrfiIiQxCfVYw5Oy5AEIAXenvipT5eYkciEo1oI8ycnJxgZmZW5yhNVlZWnaM594SFhaF///5YsGABAKBr166wsbHBwIEDsXLlSrRs2bLOY2QyGWQymf5/ACIiA1FYWoVZ26JRVFGN3t4OWD6al3xT8ybakRtLS0sEBAQgKiqq1vaoqCj069ev3seUlpZCKq0d2czMDEDNER8iouZGrRHw2ncXtFdGrX+pJyzNRT8oTyQqUX8DQkNDsWnTJmzevBlxcXGYP38+UlJStKeZFi5ciMmTJ2v3HzVqFHbt2oUNGzYgMTERJ0+exJw5c9C7d2+4u7uL9WMQEYlm7aGbOH4zG3ILKTZODoCTLY9UE4k68cGECROQm5uLFStWICMjA/7+/oiMjISXV8254oyMjFpz3kydOhVFRUX49NNP8frrr8Pe3h7Dhg3De++9J9aPQEQkmsPX72Ld4XgAwHvPdUVnd6XIiYgMg0RoZudzVCoVlEolCgsLoVAoxI5DRPRIUvNK8fQnJ6Aqr8bkvl5YMcZf7EhEjUqXz2+emCUiMjLlVWr8c3sMVOXV6O5hj0VP+4kdicigsNwQERmZ5Xuv4kqaCi2sLbB+Yk/IzM3EjkRkUFhuiIiMyA8xd7DjbCokEuCTF3rA3d5K7EhEBoflhojISMRnFWPxnisAgPnD22NgO2eRExEZJpYbIiIjUF6lxqvfnkdZlRoD2jrh1aFtxY5EZLBYboiIjEBYZByuZxbB0cYSH47vBqmUMxAT3Q/LDRGRgTt4NRNbTycDANaM7wYXhVzkRESGjeWGiMiApReUYcEPlwAAswb6YEgHF5ETERk+lhsiIgNVrdZg3nexKCyrQtfWSiwI6Sh2JCKjwHJDRGSgPj+WgLNJebCVmWPdCz24ICZRA/E3hYjIAF2+U4i1h24BAJaP7gwvRxuRExEZD5YbIiIDU16lxryIC6jWCHiqixvG9WwldiQio8JyQ0RkYFb9ch0J2SVwsZPh32O7QCLhZd9EumC5ISIyIMdvZiP8VBIA4P2/d0MLG0txAxEZIZYbIiIDUVBaiQU/XAQATO7rhcHtubwC0aNguSEiMhCLf7yKu6oK+DrbYOFIP7HjEBktlhsiIgPwy+UM7L2YDjOpBB+N7w4rSzOxIxEZLZYbIiKR5ZVUYvGPNat9/3NwG3TzsBc3EJGRY7khIhLZ0p+uIqe4Eu1dbfHaE1ztm+hxsdwQEYlo/5U/Tkd98PdukJnzdBTR42K5ISISSX5JJf61p+Z01D8G+aJra3txAxGZCJYbIiKRLNtbczqqnYst5g5vJ3YcIpPBckNEJIKoa3fxY2w6pJKayfp4OopIf1huiIiaWFF5FRb/fjpq1kBfdOfVUUR6xXJDRNTEVu+/gUxVOTwdrDFveHux4xCZHJYbIqImFJOch2/+lwwACBvXhZP1ETUClhsioiZSUa3G2zsvQxCAvwW0Rv+2TmJHIjJJLDdERE3k86OJuJVVDEcbSyx6imtHETWWRy43lZWVuHHjBqqrq/WZh4jIJMVnFeGzI/EAgCWjOqGFjaXIiYhMl87lprS0FDNmzIC1tTU6d+6MlJQUAMCcOXOwatUqvQckIjJ2Go2Ad3ZdQaVagyEdnDG6m7vYkYhMms7lZuHChbh48SKOHj0KuVyu3T58+HBEREToNRwRkSn44fwdnE3Kg5WFGVaO9YdEIhE7EpFJM9f1AXv27EFERAT69OlT6xe0U6dOSEhI0Gs4IiJjl19SibDIOADAvOHt0LqFtciJiEyfzkdusrOz4eLiUmd7SUkJ/zVCRPQX7+2/jvzSKnRwtcP0AT5ixyFqFnQuN7169cK+ffu0398rNF9++SX69u2rv2REREYuJjkP351LBQCsfNYfFma8QJWoKeh8WiosLAwjRozAtWvXUF1djY8//hhXr17F6dOncezYscbISERkdKrVGizaXbPEwvjA1ujl7SByIqLmQ+d/RvTr1w8nT55EaWkp2rRpg4MHD8LV1RWnT59GQEBAY2QkIjI64aeScD2zCPbWFnh7JOe0IWpKOh+5AYAuXbpg69at+s5CRGQSMgrL8FHUTQDAwpEd4cA5bYiaVIPKjUqlavATKhSKRw5DRGQKVu6LQ0mlGgFeLfD3AA+x4xA1Ow0qN/b29g+9EkoQBEgkEqjVar0EIyIyRqfic7DvUgakEuDdMf6QSnkVKVFTa1C5OXLkSGPnICIyelVqDZb+dBUAMKmPFzq580g2kRgaVG4GDx7c2DmIiIzettPJuJVVDAcbS4Q+2UHsOETN1iMNKM7Pz8dXX32FuLg4SCQS+Pn5Ydq0aXBw4KWORNQ8ZRWVY+3vg4jfDOkApbWFyImImi+dLwU/duwYvL298cknnyA/Px95eXn45JNP4OPjw3luiKjZeu+XGyiqqEa31kqMD+QgYiIx6Xzk5pVXXsGECROwYcMGmJmZAQDUajVefvllvPLKK7hy5YreQxIRGbKY5DzsPH8HALCcg4iJRKfzkZuEhAS8/vrr2mIDAGZmZggNDeXCmUTU7Kg1gnYQ8YRAD3T3sBc3EBHpXm569uyJuLi4Otvj4uLQvXt3fWQiIjIa30en4kqaCnZycywYwUHERIagQaelLl26pP16zpw5mDt3LuLj49GnTx8AwJkzZ/DZZ59h1apVjZOSiMgAqcqr8P6BGwCAecPbw8lWJnIiIgIAiSAIwsN2kkqlkEgkeNiuxjCJn0qlglKpRGFhIWdTJqLH8p/IOGw8nghfZxscmDeIq34TNSJdPr8bdOTm9u3beglGRGQqbueUYMvJmr8bFz/TicWGyIA0qNx4eXk1dg4iIqPy733XUKUWMKSDM4Z2cBE7DhH9ySNN4gcA165dQ0pKCiorK2ttHz169GOHIiIyZMdvZuNQXBbMpRL86+lOYschor/QudwkJibi2WefxeXLl2uNw7m3sKahj7khInocVWoN3v35GgBgcl9vtHWxFTkREf2VzieJ586dCx8fH9y9exfW1ta4evUqjh8/jsDAQBw9erQRIhIRGY7tZ2rWj2phbYG5T7QTOw4R1UPnIzenT5/G4cOH4ezsDKlUCqlUigEDBiAsLAxz5szBhQsXGiMnEZHoCkursPbXWwCA0GCuH0VkqHQ+cqNWq2FrW3MY1snJCenp6QBqBh3fuHFDv+mIiAzIp0duoaC0Cu1cbPFCL64fRWSodD5y4+/vj0uXLsHX1xdBQUFYvXo1LC0tsXHjRvj6+jZGRiIi0SXnliD8VBIAYNHTfjDnpd9EBkvncvOvf/0LJSUlAICVK1fimWeewcCBA+Ho6IiIiAi9ByQiMgSrfrmOKrWAQe2dMYSXfhMZNJ3/6RESEoJx48YBAHx9fXHt2jXk5OQgKysLw4YN0znA+vXr4ePjA7lcjoCAAJw4ceKB+1dUVGDRokXw8vKCTCZDmzZtsHnzZp1fl4iooc7ezsMvVzIhlQCLnvITOw4RPcQjz3PzZw4ODo/0uIiICMybNw/r169H//798cUXX2DkyJG4du0aPD09633M+PHjcffuXXz11Vdo27YtsrKyUF1d/TjxiYjuS6MRsHJfzaXfz/f2RAc3O5ETEdHDNGhtqXHjxiE8PBwKhUJ71OZ+du3a1eAXDwoKQs+ePbFhwwbtNj8/P4wdOxZhYWF19t+/fz+ef/55JCYmPnKh4tpSRKSL3RfuYH7ERdjKzHHkjSFwtuPimERi0OXzu0GnpZRKpXaSPqVS+cBbQ1VWViImJgbBwcG1tgcHB+PUqVP1Puann35CYGAgVq9ejVatWqF9+/Z44403UFZWdt/XqaiogEqlqnUjImqIsko1Vu+vuQr05aFtWGyIjESDTktt2bIFACAIApYtWwZnZ2dYW1s/1gvn5ORArVbD1dW11nZXV1dkZmbW+5jExET89ttvkMvl2L17N3JycvDyyy8jLy/vvuNuwsLCsHz58sfKSkTN0+aTt5FRWI5W9laY3t9H7DhE1EA6DSgWBAHt2rVDWlqa3gLcOyL059f467Z7NBoNJBIJtm/fjt69e+Opp57Chx9+iPDw8PsevVm4cCEKCwu1t9TUVL1lJyLTlVNcgQ1HEwAAC0I6QG5hJnIiImooncqNVCpFu3btkJub+9gv7OTkBDMzszpHabKysuoczbmnZcuWaNWqVa3TX35+fhAEAXfu3Kn3MTKZDAqFotaNiOhhPvn1FoorquHfSoHR3dzFjkNEOtD5UvDVq1djwYIFuHLlymO9sKWlJQICAhAVFVVre1RUFPr161fvY/r374/09HQUFxdrt928eRNSqRStW7d+rDxERPckZhfj2/+lAADeecoPUmn9R5OJyDDpXG5eeuklnD17Ft26dYOVlRUcHBxq3XQRGhqKTZs2YfPmzYiLi8P8+fORkpKC2bNnA6g5pTR58mTt/i+++CIcHR0xbdo0XLt2DcePH8eCBQswffp0WFlZ6fqjEBHV673911GtEfBERxf0a+Mkdhwi0pHO89ysXbtWby8+YcIE5ObmYsWKFcjIyIC/vz8iIyPh5eUFAMjIyEBKSop2f1tbW0RFReG1115DYGAgHB0dMX78eKxcuVJvmYioeTt7Ow8Hrt6FVAK8PbKj2HGI6BE0aJ4bU8J5bojofgRBwLPrTyE2tQAv9PZE2LguYkciot/p8vn9WDMUl5WVoaqqqtY2FgYiMlb7LmcgNrUA1pZmmP9kO7HjENEj0nnMTUlJCV599VW4uLjA1tYWLVq0qHUjIjJGldUa7YR9/zfIFy52cpETEdGj0rncvPnmmzh8+DDWr18PmUyGTZs2Yfny5XB3d8e2bdsaIyMRUaP79n/JSMkrhZOtDLMG+oodh4geg86npfbu3Ytt27ZhyJAhmD59OgYOHIi2bdvCy8sL27dvx8SJExsjJxFRoykqr8Inh+MBAPOGt4ONTC9rChORSHQ+cpOXlwcfn5ppyBUKBfLy8gAAAwYMwPHjx/WbjoioCWw8noi8kkr4OtlgQi8PseMQ0WPSudz4+voiKSkJANCpUyf897//BVBzRMfe3l6f2YiIGl2WqhybTtwGALw5ogMszHT+a5GIDIzOv8XTpk3DxYsXAdRMsndv7M38+fOxYMECvQckImpMHx26hbIqNXp62iOks5vYcYhIDxp8YnnevHmYOXMm5s+fr902dOhQXL9+HdHR0WjTpg26devWKCGJiBpDfFYx/htds5juwqf87rtoLxEZlwYfudm/fz+6deuG3r17Y+PGjVCpVAAAT09PjBs3jsWGiIzO6v3XodYIGO7nil7eui0fQ0SGq8Hl5vr16zh+/Di6dOmCN954A+7u7pg8eTIHERORUYpJzsPBazXLLLw1ooPYcYhIj3Qac9O/f3989dVXyMzMxLp165CUlIQhQ4agXbt2WLVqFdLT0xsrJxGR3giCgLDI6wCAvwd4oJ2rnciJiEifHumyAGtra0ybNg3Hjx/HrVu3MH78eKxevRre3t56jkdEpH+/xmUhOjkfMnMp5j/ZXuw4RKRnj3XNY0lJCY4dO4Zjx46hoKAAbdq00VcuIqJGodYIWH2g5qjNtP4+cFNymQUiU/NI5eb48eOYNm0a3NzcMHfuXLRv3x4nTpxAXFycvvMREenVrvN3cPNuMZRWFvjnYP6DjMgUNfhS8Dt37mDr1q0IDw9HQkICgoKC8NFHH+H555+Hra1tY2YkItKL8io1Poy6CQB4ZWgbKK0tRE5ERI2hweXG29sbjo6OmDRpEmbMmAE/P7/GzEVEpHfbTicho7AcLZVyTO7rLXYcImokDS43//3vfzF69GiYm3NBOSIyPoVlVfjsSAIAYP6T7SG3MBM5ERE1lgY3lXHjxjVmDiKiRvX5sQQUllWhvastnuvZWuw4RNSIuEIcEZm8u6pybDlZszjmgpCOMJNymQUiU8ZyQ0Qmb+2hWyiv0iDQqwWG+7mIHYeIGhnLDRGZtITsPxbHfGtkRy6OSdQM6Fxupk+fjqKiojrbS0pKMH36dL2EIiLSlzUHb0CtEfBERxcujknUTOhcbrZu3YqysrI628vKyrBt2za9hCIi0oeLqQWIvJwJiQRYwMUxiZqNBl8tpVKpIAgCBEFAUVER5PI/pixXq9WIjIyEiwvPZRORYRAEAe/tr1lm4dkerdDRTSFyIiJqKg0uN/b29pBIJJBIJGjfvu5CcxKJBMuXL9drOCKiR3XiVg5OJeTC0kyKUC6OSdSsNLjcHDlyBIIgYNiwYdi5cyccHP44d21paQkvLy+4u7s3SkgiIl1oNH8ctXmpjxdat7AWORERNaUGl5vBgwcDAG7fvg0PDw9IpbzQiogM08+XM3A1XQVbmTleHdZW7DhE1MR0XkvBy8sLBQUFOHv2LLKysqDRaGrdP3nyZL2FIyLSVWW1BmsO3gAA/N8gXzjYWIqciIiams7lZu/evZg4cSJKSkpgZ2dXa84IiUTCckNEooo4l4Lk3FI42cowY4CP2HGISAQ6n1t6/fXXtXPdFBQUID8/X3vLy8trjIxERA1SUlGNj3+NBwDMeaItbGRc6JeoOdK53KSlpWHOnDmwtuYAPSIyLJt/u42c4gp4Oljj+V6eYschIpHoXG5CQkIQHR3dGFmIiB5ZXkklvjieCAB4Pbg9LM150QNRc6XzMdunn34aCxYswLVr19ClSxdYWFjUun/06NF6C0dE1FCfHYlHcUU1OrsrMKorp6Ugas4kgiAIujzgQZeASyQSqNXqxw7VmFQqFZRKJQoLC6FQcMZSIlNwJ78Uwz44hkq1Blun98bg9s5iRyIiPdPl81vnIzd/vfSbiEhsH0XdQqVag76+jhjUzknsOEQkssc6KV1eXq6vHEREj+RGZhF2XbgDAHhrZMda01MQUfOkc7lRq9V499130apVK9ja2iIxsWYA3+LFi/HVV1/pPSAR0YO8f+A6BAEY6e+G7h72YschIgOgc7n597//jfDwcKxevRqWln/M/NmlSxds2rRJr+GIiB7kXFIeDsVlwUwqwRshHcSOQ0QGQudys23bNmzcuBETJ06EmZmZdnvXrl1x/fp1vYYjIrofQRCw6peav3Mm9PJAG2dbkRMRkaF4pEn82ratuxCdRqNBVVWVXkIRET1M1LW7iEnOh9xCirlPtBM7DhEZEJ3LTefOnXHixIk627///nv06NFDL6GIiB6kWq3B6gM1i2POGOADV4Vc5EREZEh0vhR86dKlmDRpEtLS0qDRaLBr1y7cuHED27Ztw88//9wYGYmIatl1Pg3xWcWwt7bAPwa3ETsOERkYnY/cjBo1ChEREYiMjIREIsGSJUsQFxeHvXv34sknn2yMjEREWuVVanwYdRMA8OrQtlDILR7yCCJqbh5pydyQkBCEhIToOwsR0UOFn0pCpqocreyt8FIfL7HjEJEB4spyRGQ0Ckorsf5IPABg/pPtIbcwe8gjiKg5atCRmxYtWjR41s+8vLzHCkREdD+fHYmHqrwaHd3s8GyPVmLHISID1aBys3btWu3Xubm5WLlyJUJCQtC3b18AwOnTp3HgwAEsXry4UUISEd3JL8XWU8kAgLdHdoSZlMssEFH9dF4V/LnnnsPQoUPx6quv1tr+6aef4tChQ9izZ48+8+kdVwUnMk6hEbHYdSEN/do4YvvMIK4hRdTM6PL5rfOYmwMHDmDEiBF1toeEhODQoUO6Ph0R0UNdTS/E7tg0AMDCkX4sNkT0QDqXG0dHR+zevbvO9j179sDR0VEvoYiI/mzVLzWLY47q5o4urZVixyEiA6fzpeDLly/HjBkzcPToUe2YmzNnzmD//v1cOJOI9O63Wzk4cSsHFmYSLAjm4phE9HA6l5upU6fCz88Pn3zyCXbt2gVBENCpUyecPHkSQUFBjZGRiJopjUbAqv1xAICJQV7wdLQWORERGYNHmsQvKCgI27dv13cWIqJafryYhitpKtjKzPHasLoL9hIR1eeRyo1Go0F8fDyysrKg0Whq3Tdo0CC9BCOi5q28So0PDtQss/DPIW3gaCsTORERGQudy82ZM2fw4osvIjk5GX+9ilwikUCtVustHBE1X+GnkpBWUIaWSjlmDPAROw4RGRGdy83s2bMRGBiIffv2oWXLlrwkk4j0Lr+kEp/9vszC68EduMwCEelE53Jz69Yt/PDDD2jblue/iahxfHL4ForKq+HXUsFlFohIZzrPcxMUFIT4+Hi9BVi/fj18fHwgl8sREBCAEydONOhxJ0+ehLm5Obp37663LEQkvuTcEnxzpmaZhXee4jILRKQ7nY/cvPbaa3j99deRmZmJLl26wMLCotb9Xbt2bfBzRUREYN68eVi/fj369++PL774AiNHjsS1a9fg6el538cVFhZi8uTJeOKJJ3D37l1dfwQiMmCr999AlVrA4PbOGNjOWew4RGSEdF5bSiqte7BHIpFAEASdBxQHBQWhZ8+e2LBhg3abn58fxo4di7CwsPs+7vnnn0e7du1gZmaGPXv2IDY2tsGvybWliAzX+ZR8jFt/ClIJEDl3IDq68XeUiGro8vmt85Gb27dvP3KwP6usrERMTAzefvvtWtuDg4Nx6tSp+z5uy5YtSEhIwDfffIOVK1c+9HUqKipQUVGh/V6lUj16aCJqNIIgYOXP1wAAfwtozWJDRI9M53Lj5eWllxfOycmBWq2Gq6trre2urq7IzMys9zG3bt3C22+/jRMnTsDcvGHRw8LCsHz58sfOS0SNa9/lDJxPKYCVhRle5zILRPQYdB5QDABff/01+vfvD3d3dyQn1wz8W7t2LX788Uedn+uvl5LfO731V2q1Gi+++CKWL1+O9u3bN/j5Fy5ciMLCQu0tNTVV54xE1LjKq9R4b/91AMDswW3gqpCLnIiIjJnO5WbDhg0IDQ3FU089hYKCAu0YG3t7e6xdu7bBz+Pk5AQzM7M6R2mysrLqHM0BgKKiIkRHR+PVV1+Fubk5zM3NsWLFCly8eBHm5uY4fPhwva8jk8mgUChq3YjIsGw9lYTUvDK4KeSYNYgT9hHR49G53Kxbtw5ffvklFi1aBDOzPybWCgwMxOXLlxv8PJaWlggICEBUVFSt7VFRUejXr1+d/RUKBS5fvozY2Fjtbfbs2ejQoQNiY2O5aCeRkcotrsCnh2uml1gQ0gHWlo+0KgwRkdYjDSju0aNHne0ymQwlJSU6PVdoaCgmTZqEwMBA9O3bFxs3bkRKSgpmz54NoOaUUlpaGrZt2wapVAp/f/9aj3dxcYFcLq+znYiMx9pDt1BUUQ3/Vpywj4j0Q+dy4+Pjg9jY2DoDi3/55Rd06tRJp+eaMGECcnNzsWLFCmRkZMDf3x+RkZHa587IyEBKSoquEYnISNy6W4Rvz9b8ji96qhOknLCPiPRA53lutmzZgsWLF2PNmjWYMWMGNm3ahISEBISFhWHTpk14/vnnGyurXnCeGyLDMW3LWRy5kY3gTq7YODlQ7DhEZMAadZ6badOmobq6Gm+++SZKS0vx4osvolWrVvj4448NvtgQkeE4djMbR25kw1wqwcKn/MSOQ0Qm5JFG7s2aNQuzZs1CTk4ONBoNXFxc9J2LiExYlVqDd3+fsG9KP2/4ONmInIiITMkjX5aQlZWFGzduQCKRQCKRwNmZa8AQUcN8cyYZ8VnFcLCxxJwn2okdh4hMjM6XgqtUKkyaNAnu7u4YPHgwBg0aBHd3d7z00ksoLCxsjIxEZELySirxUdRNAMAbwR2gtLJ4yCOIiHSjc7mZOXMm/ve//2Hfvn0oKChAYWEhfv75Z0RHR2PWrFmNkZGITMhHUTehKq+GX0sFJvTyEDsOEZkgnU9L7du3DwcOHMCAAQO020JCQvDll19ixIgReg1HRKbleqYK2/9Xs2TLkmc6wYyXfhNRI9D5yI2joyOUSmWd7UqlEi1atNBLKCIyPYIg4N2fr0EjACP93dC3jaPYkYjIROlcbv71r38hNDQUGRkZ2m2ZmZlYsGABFi9erNdwRGQ6oq7dxcn4XFiaS/EOL/0mokak82mpDRs2ID4+Hl5eXvD09AQApKSkQCaTITs7G1988YV23/Pnz+svKREZrfIqNd7dV3Pp96yBPvBwsBY5ERGZMp3LzdixYxshBhGZso3HE7Wrfr88pK3YcYjIxOlcbpYuXdoYOYjIRKXmleKzIzWrfi962g82Mq76TUSNS+cxNwBQUFCATZs2YeHChcjLywNQcwoqLS1Nr+GIyPj9e18cKqo16OPrgGe6thQ7DhE1Azr/E+rSpUsYPnw4lEolkpKSMGvWLDg4OGD37t1ITk7Gtm3bGiMnERmhE7eysf9qJsykEiwb3RkSCS/9JqLGp/ORm9DQUEydOhW3bt2CXC7Xbh85ciSOHz+u13BEZLwqqzVY9tNVAMDkvl7o6PbgVXyJiPRF53Jz7tw5/OMf/6izvVWrVsjMzNRLKCIyfuGnbiMhuwROtpaYN7y92HGIqBnRudzI5XKoVKo622/cuMHFM4kIAHBXVY6PD90CALw5oiPXjyKiJqVzuRkzZgxWrFiBqqoqAIBEIkFKSgrefvttPPfcc3oPSETGZ8XP11BSqUZ3D3v8rWdrseMQUTOjc7n54IMPkJ2dDRcXF5SVlWHw4MFo27Yt7Ozs8O9//7sxMhKRETl+Mxv7LmVAKgFWjvWHlOtHEVET0/lqKYVCgd9++w2HDx/G+fPnodFo0LNnTwwfPrwx8hGRESmvUmPJj1cAAFP6ecO/Vd116IiIGtsjz6Y1bNgwDBs2TJ9ZiMjIbTiagKTcUrgqZAh9koOIiUgcOpUbjUaD8PBw7Nq1C0lJSZBIJPDx8cHf/vY3TJo0iXNYEDVjt3NKsOFoAgBgyTOdYSfnIGIiEkeDx9wIgoDRo0dj5syZSEtLQ5cuXdC5c2ckJydj6tSpePbZZxszJxEZMEEQsOTHK6hUazCovTOe6uImdiQiasYafOQmPDwcx48fx6+//oqhQ4fWuu/w4cMYO3Ystm3bhsmTJ+s9JBEZtp8vZeDErRxYmkuxgjMRE5HIGnzkZseOHXjnnXfqFBugZvzN22+/je3bt+s1HBEZvsLSKqz4+RoA4JUhbeHtZCNyIiJq7hpcbi5duoQRI0bc9/6RI0fi4sWLeglFRMZj1f44ZBdVoI2zDWYP8RU7DhFRw8tNXl4eXF1d73u/q6sr8vPz9RKKiIzDmcRc7DibCgBY9VxXyMzNRE5ERKRDuVGr1TA3v/8QHTMzM1RXV+slFBEZvvIqNd7ZdRkA8GKQJ3p5O4iciIioRoMHFAuCgKlTp0Imk9V7f0VFhd5CEZHh+/RwPBJzSuBiJ8PbIzuKHYeISKvB5WbKlCkP3YdXShE1D9czVfj8WM2cNivGdIaCc9oQkQFpcLnZsmVLY+YgIiOh1gh4e+dlVGsEBHdyxQj/lmJHIiKqReeFM4moedt6KgmxqQWwk5ljxRh/seMQEdXBckNEDZaUU4LVB64DAN5+qiPclHKRExER1cVyQ0QNotEIePOHSyiv0qBfG0e82NtT7EhERPViuSGiBtl6Oglnk/JgbWmG957ryiUWiMhgsdwQ0UMl5ZTgvf01p6MWPuUHDwdrkRMREd0fyw0RPZBGI+DNnX+cjprI01FEZOBYbojogb4+k4yzt/84HSWV8nQUERk2lhsiuq/E7GKs+uX301EjO/J0FBEZBZYbIqpXlVqD+RGxKKtSo39bR0wM8hI7EhFRg7DcEFG9PjsSj4t3CqGQm+ODv3fj6SgiMhosN0RUR2xqAdYdjgcAvDvWHy2VViInIiJqOJYbIqqltLIa8yNiodYIGN3NHWO6txI7EhGRTlhuiKiW/0TG4XZOCdwUcrzLtaOIyAix3BCR1pHrWfjmTAoAYM34blBaW4iciIhIdyw3RAQAuKsqx+vfXwQATO/vg/5tnURORET0aFhuiAhqjYD5EbHIK6lEp5YKvDWyg9iRiIgeGcsNEeHzYwk4lZALa0szrHuxB2TmZmJHIiJ6ZCw3RM1cTHIePoy6CQBYMcYfbZxtRU5ERPR4WG6ImrHC0irM2VFz2ffY7u54ricv+yYi48dyQ9RMCYKAt3ddQlpBGbwcrbHy2S6QSDgLMREZP5YbomZq88kk/HIlExZmEqx7oQdsZeZiRyIi0guWG6JmKDopD2GRcQCAfz3dCV1b24sbiIhIj1huiJqZ7KIKvPLteVRrBIzq5o7JfbnaNxGZFpYbomakWq3BnB0XcFdVgbYutlg1juNsiMj0sNwQNSNrom7idGLNfDafv9QTNhxnQ0QmiOWGqJk4eDUTG44mAADee64r2rrYiZyIiKhxsNwQNQM37xZhfkQsAGBqP2+M6uYubiAiokYkerlZv349fHx8IJfLERAQgBMnTtx33127duHJJ5+Es7MzFAoF+vbtiwMHDjRhWiLjk19SiZlbo1FSqUYfXwcsetpP7EhERI1K1HITERGBefPmYdGiRbhw4QIGDhyIkSNHIiUlpd79jx8/jieffBKRkZGIiYnB0KFDMWrUKFy4cKGJkxMZh2q1Bq/uOI+UvFK0bmGF9RMDYGEm+r9piIgalUQQBEGsFw8KCkLPnj2xYcMG7TY/Pz+MHTsWYWFhDXqOzp07Y8KECViyZEmD9lepVFAqlSgsLIRCoXik3ETGYtlPVxF+KgnWlmbY9XI/dHTj//NEZJx0+fwW7Z9wlZWViImJQXBwcK3twcHBOHXqVIOeQ6PRoKioCA4ODvfdp6KiAiqVqtaNqDn477lUhJ9KAgB8OL47iw0RNRuilZucnByo1Wq4urrW2u7q6orMzMwGPceaNWtQUlKC8ePH33efsLAwKJVK7c3Dw+OxchMZgzOJuVi05zIAYP7w9hjh7yZyIiKipiP6yfe/TiAmCEKDJhXbsWMHli1bhoiICLi4uNx3v4ULF6KwsFB7S01NfezMRIYsPqsI/7ctGlVqAU93aYnXhrUVOxIRUZMSbQYvJycnmJmZ1TlKk5WVVedozl9FRERgxowZ+P777zF8+PAH7iuTySCTyR47L5ExyC6qwNQt56Aqr0ZPT3usGd8NUilnICai5kW0IzeWlpYICAhAVFRUre1RUVHo16/ffR+3Y8cOTJ06Fd9++y2efvrpxo5JZDTKKtWYuS0ad/LL4OVojS8nB0JuYSZ2LCKiJifq3OuhoaGYNGkSAgMD0bdvX2zcuBEpKSmYPXs2gJpTSmlpadi2bRuAmmIzefJkfPzxx+jTp4/2qI+VlRWUSqVoPweR2NQaAXO/u4CLqQVoYW2B8Gm94WjLI5ZE1DyJWm4mTJiA3NxcrFixAhkZGfD390dkZCS8vGpWKc7IyKg1580XX3yB6upqvPLKK3jllVe026dMmYLw8PCmjk9kEARBwIq9V3Hw2l1Ymkvx5eRA+DjZiB2LiEg0os5zIwbOc0OmZu2hm1h76BYAYN0LPbi0AhGZJKOY54aIHt/WU0naYrN8dGcWGyIisNwQGa0fY9Ow9KerAIB5w9thSj9vcQMRERkIlhsiI3TkehZe/+9FADWrfM99op3IiYiIDAfLDZGROZ2Qi39uj0G1RsDY7u5Y8kynBk18SUTUXLDcEBmRM4m5mB5+DuVVGjzR0QXv/52T9BER/RXLDZGROHs7D9PDz6GsSo3B7Z3x2cSesDDjrzAR0V/xb0YiIxCdlIepW86itFKNge2c8MWkAM4+TER0Hyw3RAYuJjkfUzbXFJsBbZ24rAIR0UOIOkMxET3YqYQczNwajdJKNfq1cWSxISJqAJYbIgN16NpdvPzteVRWazCgrRM2Tg6AlSWLDRHRw7DcEBmgny6mIzQiFtUaAU92csW6F3rwiA0RUQOx3BAZmB1nU/DO7ssQBODZHq2w+m9deVUUEZEOWG6IDIQgCFh/NAHvH7gBAHipjydWjPbnPDZERDpiuSEyANVqDRb/eAU7zqYCAP45pA3eDOnAmYeJiB4Byw2RyEoqqvHqt+dx5EY2pBJg2ejOmNzXW+xYRERGi+WGSERZReWYHn4OV9JUkFtI8cnzPRDc2U3sWERERo3lhkgkV9ML8X/bYpBWUAYHG0t8NSUQPTxbiB2LiMjosdwQieDnS+l44/uLKK/SwMfJBlum9oK3k43YsYiITALLDVET0mgEfBh1E58eiQcADGrvjHXP94DS2kLkZEREpoPlhqiJFJVXYX7ERRyKuwsA+L9BvnhrREeY8VJvIiK9YrkhagJX0wvxyvbzSMothaW5FKvGdcG4nq3FjkVEZJJYbogakSAI2HE2Fcv2XkVltQat7K3w2cSe6O5hL3Y0IiKTxXJD1EhKKqrxzu7L+DE2HQDwREcXrBnfDfbWliInIyIybSw3RI3g0p0CzIuIRWJ2CcykEiwI6YD/G+jLpRSIiJoAyw2RHlWrNfj8WALWHrqFao0AV4UM617oid4+DmJHIyJqNlhuiPQkJbcU8/8bi5jkfADAU13c8O+xXdDChqehiIiaEssN0WPSaATsOJeC/+yLQ0mlGrYycywf3RnjerbiwpdERCJguSF6DInZxXh712WcvZ0HAOjt7YA147vBw8Fa5GRERM0Xyw3RI6hSa/DliUSsPXQLldUaWFmYYUFIB0zp581J+YiIRMZyQ6SjmOQ8LN5zFdcyVACAge2c8J9nu/BoDRGRgWC5IWqg7KIKrPrlOnaevwMAUFpZYPEznfAcx9YQERkUlhuih6hSa/D16WR8FHUTRRXVAIAJgR5YMKIDnGxlIqcjIqK/Yrkhug9BEBB17S5W7b+OxOwSAEDX1kosH90ZPTxbiJyOiIjuh+WGqB7nU/IRFhmHc0k1c9Y42FhiQUgHjA/04IBhIiIDx3JD9Cc37xbho6ib+OVKJgBAbiHFzAG++MdgX9jJLUROR0REDcFyQwTg1t0ifPzrLey7nAFBAKQS4G8BrRH6ZAe4KeVixyMiIh2w3FCzdutuEdYdjsfeS+kQhJptI/3dMG94e3RwsxM3HBERPRKWG2p2BEFAdHI+vjiWgENxWdrtIzq7Yc4T7dDJXSFiOiIielwsN9RsqDU1Vz9tPJ6A8ykFAACJBAjp5IbXnmiLzu5KcQMSEZFesNyQycsvqUREdCq+Pp2MtIIyAICluRTP9WyNWQN94OtsK3JCIiLSJ5YbMkmCIOByWiG+OZOMH2PTUVGtAQDYW1vgxd6emNrfGy52HChMRGSKWG7IpBSUVmL3hTREnEvF9cwi7fbO7gpM6eeN0d3cIbcwEzEhERE1NpYbMnpVag1+u5WDnefv4ODVu6hU1xylsTSXYqS/Gyb39UJPzxZc/4mIqJlguSGjJAgCYpLz8WNsOvZdzkBeSaX2vk4tFZjQywNjurvD3tpSxJRERCQGlhsyGmqNgPMp+fjlciYOXM3UDg4GACdbSzzT1R1/C2gN/1a86omIqDljuSGDVl6lxumEXByKu4sDV+8ip7hCe5+NpRlC/N0wtnsr9GvjCHMzqYhJiYjIULDckMFJLyjDkRtZOByXhZMJOSiv0mjvs5Ob40k/V4zwd8Og9s4cHExERHWw3JDoisqrcCYxD7/dysaJ+BwkZpfUur+lUo6hHV0Q0tkNfX0dYWnOIzRERHR/LDfU5FTlVYhJyseZ27n4X2IeLqcVQq0RtPdLJUB3D3sM6+iCYR1d4dfSjlc6ERFRg7HcUKMSBAGpeWU4n5KvvV1LV+FPXQYA4O1ojf5tnTCwnRP6+jpBaW0hTmAiIjJ6LDekVznFFbh8pxCX7hTicloBYlMLaw0Cvsfb0Rq9fRwQ5OOIIF8HtG5hLUJaIiIyRSw39Eg0GgFJuSWIyyhCXIYKcRkqXMtQIaOwvM6+FmYSdHZXoqdnC/T0skeglwPclFz6gIiIGgfLDT1QtVqDO/llSMguxs27xbh1twg3s4oQn1Vc6yqmeyQSoI2zLbq2UqJLayW6tlais7uSVzUREVGTYbkhqDUCMgrLkJxb+vutBLdzSpCYU4Lk3BJUqYV6Hyczl6KDmx06tVTA7/dbJ3cFbGX834qIiMTDT6FmoEqtQWZhOTIKy5FeUIa0gjLcyS9Fal7Nn2kFZfctMAAgt5DC29EG7Vzt0N7FtuZPV1t4Olhz4jwiIjI4LDdGTK0RkFtSgeyiP25ZRRXILCxHpqocWaqaQpNdXAHh/t0FQM24GA8Ha3g5WMPL0QbejtbwdbaFr7MN3JVWkEp5KTYRERkHlhsDIQgCSivVKCirQkFpJQpKq5BXUomC0krklVQhv7QSuSWVyC2uQG5xJXJLKpBXUlnnkur7sTSXoqVSDnelFdztreDhYIXWLazRuoUVWrewQkulFcxYYIiIyASw3OiJWiMgt7gCRRXVKKmoRnF5NYor/rgVlVdDVV6FovLfvy6rgqq8CoVlVVCVVaOwrPKBp4buRyoBHG1lcLaVwclOBlc7GdyUcrgo5HBTyOGqkMHd3gqONpacCI+IiJoF0cvN+vXr8f777yMjIwOdO3fG2rVrMXDgwPvuf+zYMYSGhuLq1atwd3fHm2++idmzZzdh4vplFJZhwHtHHvt5LMwksLe2hL2VBRxsLOFgYwl7a0s42FjA0UYGR1vLP/78/WsecSEiIvqDqOUmIiIC8+bNw/r169G/f3988cUXGDlyJK5duwZPT886+9++fRtPPfUUZs2ahW+++QYnT57Eyy+/DGdnZzz33HMi/AR/sJWZQyqp+dNWZg5buTlsfv/aTm4OO5kFbOW/fy23gNLKAgq5ORRWFlDILWBvXXOzsjDjERYiIqLHIBGEhw01bTxBQUHo2bMnNmzYoN3m5+eHsWPHIiwsrM7+b731Fn766SfExcVpt82ePRsXL17E6dOn632NiooKVFT8MUOuSqWCh4cHCgsLoVAo9Paz3HsbWUyIiIj0T6VSQalUNujzW7TreCsrKxETE4Pg4OBa24ODg3Hq1Kl6H3P69Ok6+4eEhCA6OhpVVVX1PiYsLAxKpVJ78/Dw0M8P8BcSiYTFhoiIyACIVm5ycnKgVqvh6upaa7urqysyMzPrfUxmZma9+1dXVyMnJ6fexyxcuBCFhYXaW2pqqn5+ACIiIjJIog8o/uvRDkEQHngEpL7969t+j0wmg0wme8yUREREZCxEO3Lj5OQEMzOzOkdpsrKy6hyducfNza3e/c3NzeHo6NhoWYmIiMh4iFZuLC0tERAQgKioqFrbo6Ki0K9fv3of07dv3zr7Hzx4EIGBgbCwsGi0rERERGQ8RF0YKDQ0FJs2bcLmzZsRFxeH+fPnIyUlRTtvzcKFCzF58mTt/rNnz0ZycjJCQ0MRFxeHzZs346uvvsIbb7wh1o9AREREBkbUMTcTJkxAbm4uVqxYgYyMDPj7+yMyMhJeXl4AgIyMDKSkpGj39/HxQWRkJObPn4/PPvsM7u7u+OSTT0Sf44aIiIgMh6jz3IhBl+vkiYiIyDAYxTw3RERERI2B5YaIiIhMCssNERERmRSWGyIiIjIpLDdERERkUlhuiIiIyKSIvrZUU7t35btKpRI5CRERETXUvc/thsxg0+zKTVFREQDAw8ND5CRERESkq6KiIiiVygfu0+wm8dNoNEhPT4ednd0DVx9vLlQqFTw8PJCamspJDZsA3++mw/e66fC9bjrN+b0WBAFFRUVwd3eHVPrgUTXN7siNVCpF69atxY5hcBQKRbP7RRET3++mw/e66fC9bjrN9b1+2BGbezigmIiIiEwKyw0RERGZFJabZk4mk2Hp0qWQyWRiR2kW+H43Hb7XTYfvddPhe90wzW5AMREREZk2HrkhIiIik8JyQ0RERCaF5YaIiIhMCssNERERmRSWG6pXRUUFunfvDolEgtjYWLHjmJykpCTMmDEDPj4+sLKyQps2bbB06VJUVlaKHc0krF+/Hj4+PpDL5QgICMCJEyfEjmRywsLC0KtXL9jZ2cHFxQVjx47FjRs3xI7VLISFhUEikWDevHliRzFYLDdUrzfffBPu7u5ixzBZ169fh0ajwRdffIGrV6/io48+wueff4533nlH7GhGLyIiAvPmzcOiRYtw4cIFDBw4ECNHjkRKSorY0UzKsWPH8Morr+DMmTOIiopCdXU1goODUVJSInY0k3bu3Dls3LgRXbt2FTuKQeOl4FTHL7/8gtDQUOzcuROdO3fGhQsX0L17d7Fjmbz3338fGzZsQGJiothRjFpQUBB69uyJDRs2aLf5+flh7NixCAsLEzGZacvOzoaLiwuOHTuGQYMGiR3HJBUXF6Nnz55Yv349Vq5cie7du2Pt2rVixzJIPHJDtdy9exezZs3C119/DWtra7HjNCuFhYVwcHAQO4ZRq6ysRExMDIKDg2ttDw4OxqlTp0RK1TwUFhYCAP8fbkSvvPIKnn76aQwfPlzsKAav2S2cSfcnCAKmTp2K2bNnIzAwEElJSWJHajYSEhKwbt06rFmzRuwoRi0nJwdqtRqurq61tru6uiIzM1OkVKZPEASEhoZiwIAB8Pf3FzuOSfruu+9w/vx5nDt3TuwoRoFHbpqBZcuWQSKRPPAWHR2NdevWQaVSYeHChWJHNloNfa//LD09HSNGjMDf//53zJw5U6TkpkUikdT6XhCEOttIf1599VVcunQJO3bsEDuKSUpNTcXcuXPxzTffQC6Xix3HKHDMTTOQk5ODnJycB+7j7e2N559/Hnv37q31IaBWq2FmZoaJEydi69atjR3V6DX0vb73F1R6ejqGDh2KoKAghIeHQyrlvzceR2VlJaytrfH999/j2Wef1W6fO3cuYmNjcezYMRHTmabXXnsNe/bswfHjx+Hj4yN2HJO0Z88ePPvsszAzM9NuU6vVkEgkkEqlqKioqHUfsdzQn6SkpEClUmm/T09PR0hICH744QcEBQWhdevWIqYzPWlpaRg6dCgCAgLwzTff8C8nPQkKCkJAQADWr1+v3dapUyeMGTOGA4r1SBAEvPbaa9i9ezeOHj2Kdu3aiR3JZBUVFSE5ObnWtmnTpqFjx4546623eCqwHhxzQ1qenp61vre1tQUAtGnThsVGz9LT0zFkyBB4enrigw8+QHZ2tvY+Nzc3EZMZv9DQUEyaNAmBgYHo27cvNm7ciJSUFMyePVvsaCbllVdewbfffosff/wRdnZ22jFNSqUSVlZWIqczLXZ2dnUKjI2NDRwdHVls7oPlhkgEBw8eRHx8POLj4+sURx5MfTwTJkxAbm4uVqxYgYyMDPj7+yMyMhJeXl5iRzMp9y61HzJkSK3tW7ZswdSpU5s+ENGf8LQUERERmRSOXiQiIiKTwnJDREREJoXlhoiIiEwKyw0RERGZFJYbIiIiMiksN0RERGRSWG6IiIjIpLDcEBERkUlhuSFqhiQSCfbs2SN2jAZZtmwZunfvLnYMvRsyZAjmzZvX4P2PHj0KiUSCgoKC++4THh4Oe3v7x85GZOxYboiMyNSpUzF27FixYxi9hpSANWvWQKlUorS0tM595eXlsLe3x4cffvjIGXbt2oV33333kR9PRPfHckNEVI/JkyejrKwMO3furHPfzp07UVpaikmTJun8vFVVVQAABwcH2NnZPXZOIqqL5YbIiA0ZMgRz5szBm2++CQcHB7i5uWHZsmW19rl16xYGDRoEuVyOTp06ISoqqs7zpKWlYcKECWjRogUcHR0xZswYJCUlae+/d8Ro+fLlcHFxgUKhwD/+8Q9UVlZq9xEEAatXr4avry+srKzQrVs3/PDDD9r7751W+fXXXxEYGAhra2v069cPN27cqJVl1apVcHV1hZ2dHWbMmIHy8vI6ebds2QI/Pz/I5XJ07NgR69ev196XlJQEiUSCXbt2YejQobC2tka3bt1w+vRpbY5p06ahsLAQEokEEomkznsGAM7Ozhg1ahQ2b95c577Nmzdj9OjRcHZ2xltvvYX27dvD2toavr6+WLx4sbbAAH+cVtu8eTN8fX0hk8kgCEKd01LffPMNAgMDYWdnBzc3N7z44ovIysqq89onT55Et27dIJfLERQUhMuXL9fZ58/27t2LgIAAyOVy+Pr6Yvny5aiurn7gY4iMnkBERmPKlCnCmDFjtN8PHjxYUCgUwrJly4SbN28KW7duFSQSiXDw4EFBEARBrVYL/v7+wpAhQ4QLFy4Ix44dE3r06CEAEHbv3i0IgiCUlJQI7dq1E6ZPny5cunRJuHbtmvDiiy8KHTp0ECoqKrSva2trK0yYMEG4cuWK8PPPPwvOzs7CO++8o83yzjvvCB07dhT2798vJCQkCFu2bBFkMplw9OhRQRAE4ciRIwIAISgoSDh69Khw9epVYeDAgUK/fv20zxERESFYWloKX375pXD9+nVh0aJFgp2dndCtWzftPhs3bhRatmwp7Ny5U0hMTBR27twpODg4COHh4YIgCMLt27cFAELHjh2Fn3/+Wbhx44bwt7/9TfDy8hKqqqqEiooKYe3atYJCoRAyMjKEjIwMoaioqN73e9++fYJEIhESExO1227fvi1IJBIhMjJSEARBePfdd4WTJ08Kt2/fFn766SfB1dVVeO+997T7L126VLCxsRFCQkKE8+fPCxcvXhQ0Go0wePBgYe7cudr9vvrqKyEyMlJISEgQTp8+LfTp00cYOXKk9v5775+fn59w8OBB4dKlS8IzzzwjeHt7C5WVlYIgCMKWLVsEpVKpfcz+/fsFhUIhhIeHCwkJCcLBgwcFb29vYdmyZfX/D0ZkIlhuiIxIfeVmwIABtfbp1auX8NZbbwmCIAgHDhwQzMzMhNTUVO39v/zyS61y89VXXwkdOnQQNBqNdp+KigrByspKOHDggPZ1HRwchJKSEu0+GzZsEGxtbQW1Wi0UFxcLcrlcOHXqVK0sM2bMEF544QVBEP74cD506JD2/n379gkAhLKyMkEQBKFv377C7Nmzaz1HUFBQrXLj4eEhfPvtt7X2effdd4W+ffsKgvBHudm0aZP2/qtXrwoAhLi4OEEQ6paA+6murhZatWolLFmyRLttyZIlQqtWrYTq6up6H7N69WohICBA+/3SpUsFCwsLISsrq9Z+fy03f3X27FkBgLZ43Xv/vvvuO+0+ubm5gpWVlRAREVHvzzVw4EDhP//5T63n/frrr4WWLVs++AcnMnLmIh0wIiI96dq1a63vW7ZsqT2dERcXB09PT7Ru3Vp7f9++fWvtHxMTg/j4+DrjP8rLy5GQkKD9vlu3brC2tq71PMXFxUhNTUVWVhbKy8vx5JNP1nqOyspK9OjR4755W7ZsCQDIysqCp6cn4uLiMHv27Fr79+3bF0eOHAEAZGdnIzU1FTNmzMCsWbO0+1RXV0OpVDbodTp27IiGMjMzw5QpUxAeHo6lS5dCIpFg69atmDp1KszMzAAAP/zwA9auXYv4+HgUFxejuroaCoWi1vN4eXnB2dn5ga914cIFLFu2DLGxscjLy4NGowEApKSkoFOnTrXej3scHBzQoUMHxMXF1fucMTExOHfuHP79739rt6nVapSXl6O0tLTWf08iU8JyQ2TkLCwsan0vkUi0H4yCINTZXyKR1Ppeo9EgICAA27dvr7Pvwz6Q//p6+/btQ6tWrWrdL5PJ7pv3XpZ7j3+Ye/t9+eWXCAoKqnXfvbKhj9f5s+nTpyMsLAyHDx8GUFM2pk2bBgA4c+YMnn/+eSxfvhwhISFQKpX47rvvsGbNmlrPYWNj88DXKCkpQXBwMIKDg/HNN9/A2dkZKSkpCAkJqTWu6X7++t/0Ho1Gg+XLl2PcuHF17pPL5Q99XiJjxXJDZMI6deqElJQUpKenw93dHQC0A2vv6dmzJyIiIrQDhe/n4sWLKCsrg5WVFYCaD3ZbW1u0bt0aLVq0gEwmQ0pKCgYPHvzIef38/HDmzBlMnjxZu+3MmTPar11dXdGqVSskJiZi4sSJj/w6lpaWUKvVDdq3TZs2GDx4MLZs2aIdCNymTRsANYN7vby8sGjRIu3+ycnJOue5fv06cnJysGrVKnh4eAAAoqOj6933zJkz8PT0BADk5+fj5s2b9z0a1bNnT9y4cQNt27bVORORMWO5ITJhw4cPR4cOHTB58mSsWbMGKpWq1gcxAEycOBHvv/8+xowZgxUrVqB169ZISUnBrl27sGDBAu0prcrKSsyYMQP/+te/kJycjKVLl+LVV1+FVCqFnZ0d3njjDcyfPx8ajQYDBgyASqXCqVOnYGtriylTpjQo79y5czFlyhQEBgZiwIAB2L59O65evQpfX1/tPsuWLcOcOXOgUCgwcuRIVFRUIDo6Gvn5+QgNDW3Q63h7e6O4uBi//vqr9nTbg07R/Pk02KZNm7Tb27Zti5SUFHz33Xfo1asX9u3bh927dzcow595enrC0tIS69atw+zZs3HlypX7zoGzYsUKODo6wtXVFYsWLYKTk9N95z5asmQJnnnmGXh4eODvf/87pFIpLl26hMuXL2PlypU65yQyFrwUnMiESaVS7N69GxUVFejduzdmzpxZa/wFAFhbW+P48ePw9PTEuHHj4Ofnh+nTp6OsrKzWkZwnnngC7dq1w6BBgzB+/HiMGjWq1iXU7777LpYsWYKwsDD4+fkhJCQEe/fuhY+PT4PzTpgwAUuWLMFbb72FgIAAJCcn45///GetfWbOnIlNmzYhPDwcXbp0weDBgxEeHq7T6/Tr1w+zZ8/GhAkT4OzsjNWrVz9w/+eeew4ymQwymazWKZ4xY8Zg/vz5ePXVV9G9e3ecOnUKixcvbnCOe5ydnREeHo7vv/8enTp1wqpVq/DBBx/Uu++qVaswd+5cBAQEICMjAz/99BMsLS3r3TckJAQ///wzoqKi0KtXL/Tp0wcffvghvLy8dM5IZEwkQn0n5YmI/mTq1KkoKCgwmiUbiKh545EbIiIiMiksN0RERGRSeFqKiIiITAqP3BAREZFJYbkhIiIik8JyQ0RERCaF5YaIiIhMCssNERERmRSWGyIiIjIpLDdERERkUlhuiIiIyKT8P7Gd3MhYXCfAAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ "
\n",
+ "\n",
+ "IBM SPSS Modeler is a comprehensive analytics platform that has many machine learning algorithms. It has been designed to bring predictive intelligence to decisions made by individuals, by groups, by systems – by your enterprise as a whole. A free trial is available through this course, available here: SPSS Modeler\n",
+ "\n",
+ "Also, you can use Watson Studio to run these notebooks faster with bigger datasets. Watson Studio is IBM's leading cloud solution for data scientists, built by data scientists. With Jupyter notebooks, RStudio, Apache Spark and popular libraries pre-packaged in the cloud, Watson Studio enables data scientists to collaborate on their projects without having to install anything. Join the fast-growing community of Watson Studio users today with a free account at Watson Studio\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Thank you for completing this lab!\n",
+ "\n",
+ "\n",
+ "## Author\n",
+ "\n",
+ "Saeed Aghabozorgi\n",
+ "\n",
+ "\n",
+ "### Other Contributors\n",
+ "\n",
+ "Joseph Santarcangelo\n",
+ "\n",
+ "\n",
+ "##
"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "plt.scatter(cdf.ENGINESIZE, cdf.CO2EMISSIONS, color='blue')\n",
+ "plt.xlabel(\"Engine size\")\n",
+ "plt.ylabel(\"Emission\")\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#### Creating train and test dataset\n",
+ "Train/Test Split involves splitting the dataset into training and testing sets respectively, which are mutually exclusive. After which, you train with the training set and test with the testing set.\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "tags": []
+ },
+ "outputs": [],
+ "source": [
+ "msk = np.random.rand(len(df)) < 0.8\n",
+ "train = cdf[msk]\n",
+ "test = cdf[~msk]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "tags": []
+ },
+ "source": [
+ "
Polynomial regression
\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Sometimes, the trend of data is not really linear, and looks curvy. In this case we can use Polynomial regression methods. In fact, many different regressions exist that can be used to fit whatever the dataset looks like, such as quadratic, cubic, and so on, and it can go on and on to infinite degrees.\n",
+ "\n",
+ "In essence, we can call all of these, polynomial regression, where the relationship between the independent variable x and the dependent variable y is modeled as an nth degree polynomial in x. Lets say you want to have a polynomial regression (let's make 2 degree polynomial):\n",
+ "\n",
+ "\n",
+ "$$y = b + \\theta_1 x + \\theta_2 x^2$$\n",
+ "\n",
+ "\n",
+ "\n",
+ "Now, the question is: how we can fit our data on this equation while we have only x values, such as __Engine Size__? \n",
+ "Well, we can create a few additional features: 1, $x$, and $x^2$.\n",
+ "\n",
+ "\n",
+ "\n",
+ "__PolynomialFeatures()__ function in Scikit-learn library, drives a new feature sets from the original feature set. That is, a matrix will be generated consisting of all polynomial combinations of the features with degree less than or equal to the specified degree. For example, lets say the original feature set has only one feature, _ENGINESIZE_. Now, if we select the degree of the polynomial to be 2, then it generates 3 features, degree=0, degree=1 and degree=2: \n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "tags": []
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "array([[ 1. , 2. , 4. ],\n",
+ " [ 1. , 2.4 , 5.76],\n",
+ " [ 1. , 1.5 , 2.25],\n",
+ " ...,\n",
+ " [ 1. , 3. , 9. ],\n",
+ " [ 1. , 3.2 , 10.24],\n",
+ " [ 1. , 3.2 , 10.24]])"
+ ]
+ },
+ "execution_count": 9,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "from sklearn.preprocessing import PolynomialFeatures\n",
+ "from sklearn import linear_model\n",
+ "train_x = np.asanyarray(train[['ENGINESIZE']])\n",
+ "train_y = np.asanyarray(train[['CO2EMISSIONS']])\n",
+ "\n",
+ "test_x = np.asanyarray(test[['ENGINESIZE']])\n",
+ "test_y = np.asanyarray(test[['CO2EMISSIONS']])\n",
+ "\n",
+ "\n",
+ "poly = PolynomialFeatures(degree=2)\n",
+ "train_x_poly = poly.fit_transform(train_x)\n",
+ "train_x_poly"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "**fit_transform** takes our x values, and output a list of our data raised from power of 0 to power of 2 (since we set the degree of our polynomial to 2). \n",
+ "\n",
+ "The equation and the sample example is displayed below. \n",
+ "\n",
+ "\n",
+ "$$\n",
+ "\\begin{bmatrix}\n",
+ " v_1\\\\\\\\\\\\\n",
+ " v_2\\\\\\\\\n",
+ " \\vdots\\\\\\\\\n",
+ " v_n\n",
+ "\\end{bmatrix}\\longrightarrow \\begin{bmatrix}\n",
+ " [ 1 & v_1 & v_1^2]\\\\\\\\\n",
+ " [ 1 & v_2 & v_2^2]\\\\\\\\\n",
+ " \\vdots & \\vdots & \\vdots\\\\\\\\\n",
+ " [ 1 & v_n & v_n^2]\n",
+ "\\end{bmatrix}\n",
+ "$$\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "$$\n",
+ "\\begin{bmatrix}\n",
+ " 2.\\\\\\\\\n",
+ " 2.4\\\\\\\\\n",
+ " 1.5\\\\\\\\\n",
+ " \\vdots\n",
+ "\\end{bmatrix} \\longrightarrow \\begin{bmatrix}\n",
+ " [ 1 & 2. & 4.]\\\\\\\\\n",
+ " [ 1 & 2.4 & 5.76]\\\\\\\\\n",
+ " [ 1 & 1.5 & 2.25]\\\\\\\\\n",
+ " \\vdots & \\vdots & \\vdots\\\\\\\\\n",
+ "\\end{bmatrix}\n",
+ "$$\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "It looks like feature sets for multiple linear regression analysis, right? Yes. It Does. \n",
+ "Indeed, Polynomial regression is a special case of linear regression, with the main idea of how do you select your features. Just consider replacing the $x$ with $x_1$, $x_1^2$ with $x_2$, and so on. Then the 2nd degree equation would be turn into:\n",
+ "\n",
+ "$$y = b + \\theta_1 x_1 + \\theta_2 x_2$$\n",
+ "\n",
+ "Now, we can deal with it as a 'linear regression' problem. Therefore, this polynomial regression is considered to be a special case of traditional multiple linear regression. So, you can use the same mechanism as linear regression to solve such problems. \n",
+ "\n",
+ "\n",
+ "\n",
+ "so we can use __LinearRegression()__ function to solve it:\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "tags": []
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Coefficients: [[ 0. 52.03884901 -1.6971995 ]]\n",
+ "Intercept: [104.27341021]\n"
+ ]
+ }
+ ],
+ "source": [
+ "clf = linear_model.LinearRegression()\n",
+ "train_y_ = clf.fit(train_x_poly, train_y)\n",
+ "# The coefficients\n",
+ "print ('Coefficients: ', clf.coef_)\n",
+ "print ('Intercept: ',clf.intercept_)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "As mentioned before, __Coefficient__ and __Intercept__ , are the parameters of the fit curvy line. \n",
+ "Given that it is a typical multiple linear regression, with 3 parameters, and knowing that the parameters are the intercept and coefficients of hyperplane, sklearn has estimated them from our new set of feature sets. Lets plot it:\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "tags": []
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "Text(0, 0.5, 'Emission')"
+ ]
+ },
+ "execution_count": 11,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAGwCAYAAABPSaTdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAACCdUlEQVR4nO3deViUVfsH8O8wLAIiCipLoFlpm1qm5p6aey6omWlWWr6mr0vinq3aooaFLaZmlpZGWIpL5WtqgWlaIWai9TMzLEKQcgFxARnO74/jDMwwyzPDMwvD93Ndc+E8c+aZM6M1N+e5z31rhBACRERERF7Kx90TICIiInImBjtERETk1RjsEBERkVdjsENERERejcEOEREReTUGO0REROTVGOwQERGRV/N19wQ8QVlZGU6dOoWQkBBoNBp3T4eIiIgUEELgwoULiI6Oho+P5fUbBjsATp06hdjYWHdPg4iIiByQnZ2NmJgYi48z2AEQEhICQH5YderUcfNsiIiISInCwkLExsYavsctYbADGC5d1alTh8EOERFRNWMrBcWtCcrz5s2DRqMxukVGRhoeF0Jg3rx5iI6ORmBgILp164ajR48anaO4uBhTpkxB/fr1ERwcjEGDBuHvv/929VshIiIiD+X23Vi33347cnNzDbfMzEzDYwkJCUhMTMTSpUuRnp6OyMhI9OrVCxcuXDCMiY+Px6ZNm5CcnIy9e/eiqKgIAwYMgE6nc8fbISIiIg/j9stYvr6+Rqs5ekIIvPHGG3jmmWcwdOhQAMCHH36IiIgIJCUlYfz48SgoKMD777+PtWvXomfPngCAdevWITY2Frt27UKfPn3MvmZxcTGKi4sN9wsLC53wzoiIiMgTuH1l5/jx44iOjkaTJk0wYsQI/PHHHwCArKws5OXloXfv3oaxAQEB6Nq1K/bt2wcAyMjIwNWrV43GREdHo3nz5oYx5ixcuBChoaGGG3diEREReS+3Bjvt2rXDRx99hK+++grvvfce8vLy0LFjR5w5cwZ5eXkAgIiICKPnREREGB7Ly8uDv78/6tWrZ3GMOXPnzkVBQYHhlp2drfI7IyIiIk/h1stY/fr1M/y5RYsW6NChA2688UZ8+OGHaN++PYDKGdZCCJtZ17bGBAQEICAgoAozJyIiourC7ZexKgoODkaLFi1w/PhxQx6P6QpNfn6+YbUnMjISJSUlOHfunMUxREREVLN5VLBTXFyMX3/9FVFRUWjSpAkiIyOxc+dOw+MlJSXYvXs3OnbsCABo3bo1/Pz8jMbk5ubiyJEjhjFERERUs7n1MtbMmTMxcOBANGrUCPn5+Xj55ZdRWFiI0aNHQ6PRID4+HgsWLEDTpk3RtGlTLFiwAEFBQXjooYcAAKGhoRg7dixmzJiB8PBwhIWFYebMmWjRooVhdxYRERHVbG4Ndv7++2+MHDkS//77Lxo0aID27dvj+++/R+PGjQEAs2fPxuXLlzFx4kScO3cO7dq1w44dO4zKQi9ZsgS+vr4YPnw4Ll++jB49emDNmjXQarXueltERF5JpwP27AFyc4GoKKBLF4D/q6XqQCOEEO6ehLsVFhYiNDQUBQUFbBdBRGRGSgowdSpQsUB9TAzw5pvAtVJoRC6n9Pvbo3J2iIjI86SkAMOGGQc6AJCTI4+npLhnXkRKMdghIiKLdDq5omPuGoD+WHy8HEfkqRjsEBGRRXv2VF7RqUgIIDtbjiPyVAx2iIjIotxcdccRuQODHSIisigqSt1xRO7AYIeIiCzq0kXuurLUgUejAWJj5TgiT8Vgh4iILNJq5fZyoHLAo7//xhust0OejcEOERFZNXQosGEDcN11xsdjYuRx1tkhT+fWCspERFQ9DB0KxMWxgjJVTwx2iIhIEa0W6NbN3bMgsh8vYxEREZFXY7BDREREXo3BDhEREXk1BjtERETk1RjsEBERkVdjsENERERejcEOEREReTUGO0REROTVGOwQERGRV2OwQ0RERF6NwQ4RERF5NQY7RERE5NUY7BAREZFXY7BDREREXo3BDhEREXk1BjtERETk1RjsEBERkVdjsENERERejcEOEREReTUGO0REROTVGOwQERGRV2OwQ0RERF6NwQ4RERE5x+XLwKefAnFxwMmTbpuGxwQ7CxcuhEajQXx8vOHYmDFjoNFojG7t27c3el5xcTGmTJmC+vXrIzg4GIMGDcLff//t4tkTERERAECnA77+GnjsMSAiAnjwQWDrVuCTT9w2JV+3vXIF6enpWLlyJVq2bFnpsb59+2L16tWG+/7+/kaPx8fH4/PPP0dycjLCw8MxY8YMDBgwABkZGdBqtU6fOxEREQHIzATWrgU+/hg4dar8eOPGwKhRwNChbpua24OdoqIijBo1Cu+99x5efvnlSo8HBAQgMjLS7HMLCgrw/vvvY+3atejZsycAYN26dYiNjcWuXbvQp08fs88rLi5GcXGx4X5hYaEK74SIiKiGycuTwc3atcDPP5cfr1cPGD5cBjmdOgE+7r2Q5PbLWJMmTUL//v0NwYqptLQ0NGzYEM2aNcO4ceOQn59veCwjIwNXr15F7969Dceio6PRvHlz7Nu3z+JrLly4EKGhoYZbbGysem+IiIjIm125AqxfD9x3H3DddcDMmTLQ8fMDhgwBUlKA3FxgxQqgSxe3BzqAm1d2kpOTcfDgQaSnp5t9vF+/fnjggQfQuHFjZGVl4bnnnsO9996LjIwMBAQEIC8vD/7+/qhXr57R8yIiIpCXl2fxdefOnYvp06cb7hcWFjLgISIiskQI4PvvgTVrZKBTUFD+WIcOwKOPypWcsDC3TdEatwU72dnZmDp1Knbs2IFatWqZHfPggw8a/ty8eXO0adMGjRs3xpdffomhVq79CSGg0WgsPh4QEICAgADHJ09ERFQT5OTIS1Rr1gDHjpUfb9RIBjiPPgo0beq26SnltmAnIyMD+fn5aN26teGYTqfDt99+i6VLl6K4uLhSgnFUVBQaN26M48ePAwAiIyNRUlKCc+fOGa3u5Ofno2PHjq55I0RERN6kuBj4/HPggw+Ar74Cysrk8aAgYNgwYMwYoGtXj7g8pZTbgp0ePXogMzPT6Nhjjz2GW265BXPmzDG7k+rMmTPIzs5GVFQUAKB169bw8/PDzp07MXz4cABAbm4ujhw5goSEBOe/CSIiIm+RmQm8/z6wbh1w5kz58c6d5TbyBx4AQkLcN78qcFuwExISgubNmxsdCw4ORnh4OJo3b46ioiLMmzcP999/P6KionDy5Ek8/fTTqF+/PoYMGQIACA0NxdixYzFjxgyEh4cjLCwMM2fORIsWLSwmPBMREdE1hYVAcjKwahVQMX82OhoYPVoGOdXgMpUtbt96bolWq0VmZiY++ugjnD9/HlFRUejevTvWr1+PkAqR5ZIlS+Dr64vhw4fj8uXL6NGjB9asWcMaO0REROYIAezfLwOc9euBS5fkcV9fYNAgYOxYoHdved9LaIQQwt2TcLfCwkKEhoaioKAAderUcfd0iIg8kk4H7NkjdxVHRcldxfy9sho5e1YmG7/3HnD0aPnxW24B/vMf4JFHgIYN3Tc/Byj9/vaesI2IyMuUlADLlgEnTgA33ghMnAiYFJF3mZQUYOpUoGI3npgY4M033VoYl2wRAti7F1i5EvjsM5l8DACBgXKr+LhxQMeOgJUdzN6AKzvgyg4ReZ7Zs4HERLmaoqfVAtOnA67ef5GSIjfhmH5b6L8fN2xgwONxzp0DPvoIePdd4Ndfy4/fcQfwxBOysnFoqPvmpxKl398MdsBgh4g8y+zZwOLFlh+fNct1AY9OB1x/vfGKTkUajVzhycriJS23EwL48Udg+XKZi3PlijweFASMHAmMHw+0aeNVqzgMduzAYIeIPEVJifxuqriiY0qrlTmlrriklZYGdO9ue1xqKtCtm7NnQ2YVFQFJSbI9w08/lR9v2VIGOF6yimMOc3aIiKqhZcusBzqAfHzZMiA+3vnzyc1Vdxyp6Ndf5T+Ejz6SW8gBICAAePBBYMIEoH17r1rFqQoGO0REHuTECXXHVdW1Gq6qjaMqKi0FtmwB3nlHLqfp3XSTDHDGjAHCw902PU/FYIeIyIM0aqTuuKrq0kXm5OTkVE5QBspzdrp0cc18aqzTp+WW8RUr5F8GINs1DBokt+n16FGt2je4GoMdIiKySKuV28uHDZOBTcWAR3+F5I03mJzsFPqE47ffBj79FLh6VR5v0EBuGR8/3nVRbzXHMJCIyIP89Ze649QwdKjcXn7ddcbHY2K47dwpiotlf6p27WTezccfy0CnfXt5PDsbeOUVBjp24MoOEZEHufFGdcepZehQIC6OFZSdKjdX1sVZsUJetgJkwvGIEcDkyXLbODmEW8/BredE5Dk8bes5ucCBA/Ja4fr15ZeqrrtO5uKMGycvW5FZSr+/eRmLiMiD+PvLKsnWTJ/OQKfaKy2V7Rs6dwbatpWXp65ela0b1q+XVRqffpqBjkp4GYuIyMPoqyN7SrsIUtH587Lb+Ntvlyde+fnJ2jhTp/JSlZPwMhZ4GYuIlHF1129nNQJl93I3OHECeOst4IMPZMVjAKhfH/jvf+WNhYocwgrKREQqstT1OzFRXmlwRuDg769+lWR2L3exffuA118HNm0q37d/++3AtGmyjUOtWu6dXw3BlR1wZYeIrLPU9dscTw4c2L3cRUpLZXCTmAh8/3358b59ZZDTqxfbOKiEjUDtwGCHiCyx1fXblKcGDuxe7gIXL8rLVEuWyA8SkMtzjzwik61uu8298/NC3I1FRKSCPXuUBzpA+apJfLzthp6uZOt9CCFr1e3Z47o5eY3Tp4FnnwViY4Enn5SBTng48NxzMgl51SoGOm7GnB0iIisc6eZdMXDo1k31KTmE3cud4LffZD7Ohx/KqseAzCSfMQMYPVoWTCKPwGCHiKo1Z+1Y0qvKJhlXBA5Kd1axe7mKfvhB7v+vmHTcrh0waxYweDCvA3ogBjtEVG3Nnl25Fs3MmerWorHV9dsaZwcO9uysYvfyKhIC+OorYNEiYPfu8uMDBsggp0sXJh17MObsEFG1NHs2sHhx5bwYnU4enz1bndfRd/0GlH+XaTQyfcOZgYN+Z5VpHk5OjjyekmJ83Nr7YPdyK0pLgeRkoFUroF8/Gej4+srLVEeOAJ9/DtxzDwMdD8fdWOBuLKLqxh39o8ytopjjit1YVdlZZe59xMbKQMeTdo+53ZUrMhcnIQH44w95LDgYeOIJuX08Nta98yMA3HpuFwY7RNXLG2/I7xtblixRXpRPSe6PaX7Mv//Kebg6cEhLA7p3tz0uNdV8gjQrKFtx4YLsPP7660BenjwWHi53WU2aJP9MHoMVlInIa504oe44pbk/Wm3l4GHIENcHDlXdWWXufdR4Z87IflVvvQWcOyePxcTIfwj/+Y9c1aFqi8EOEanO2TukbrxRvXH63B9T+twfwHqyszsCB+6sUlFenlzFWb5cFgUEgGbNgDlzgIcfZnt5L8HLWOBlLCI1mVslUbtbt1o5O+7I/VGDPmfH1s4qVkO24q+/5D/IVavKa+TccQfwzDPyGiQ/uGqBFZSJyOVctUPK318GT9ZMn247QFm2zHaVY51OjvMk3FlVBSdOAOPGATfdBLzzjgx0OnQAvvgC+Okn4IEH+MF5IQY7RKSKkhK5omNNYqIcp4aEBFnexPR7SauVx5WsIqmd++NKQ4fKHV/XXWd8PCbG8/pyeYRjx+R28Ztvlqs5V6/KLO9vvgG++w7o35/bx70Yc3aISBX2rJIo3SFlS0IC8PLLjucHqZn74w5Dh8qads7Mj6r2fvlF/iNJTi6/5te3r+xb1bGje+dGLsNgh4hU4a5VEn9/x4OniRPlZhtbOTsTJzp2fmczVzPn9dfNV1CucY4cAV56Cfjss/IgZ+BAGeS0beveuZHL8TIWEamiOq6SqJX74w72VlCuMTIzZd5NixbAp5/KQGfIEODgQWDrVgY6NZTHBDsLFy6ERqNBfIVf0YQQmDdvHqKjoxEYGIhu3brh6NGjRs8rLi7GlClTUL9+fQQHB2PQoEH421aJUyJS3cSJtvM6PXGVJCEBiIsz/1hcnHo7yNSk08kVHXM7sfTH4uNtX1b0KkeOAMOHAy1byqQlQEZ9P/8sI79Wrdw7P3Irjwh20tPTsXLlSrRs2dLoeEJCAhITE7F06VKkp6cjMjISvXr1woULFwxj4uPjsWnTJiQnJ2Pv3r0oKirCgAEDoKtR/5UTuV91XSVJSZG/8JvSaORxT1wh2bPHetsKIYDsbDnO6x09KoOcFi3kJStAruwcPizvm3yvUA0l3OzChQuiadOmYufOnaJr165i6tSpQgghysrKRGRkpFi0aJFh7JUrV0RoaKhYsWKFEEKI8+fPCz8/P5GcnGwYk5OTI3x8fMT27dsVz6GgoEAAEAUFBeq8KaIabNYsIbRaIeRXrrxptfK4pyktFSImxniuFW8ajRCxsXKcfnxqqhBJSfKn/rirJSVZnnPFW1KSe+bnEr/+KsSIEfIvSf+Ghw0T4vBhd8+MXEjp97fbV3YmTZqE/v37o2fPnkbHs7KykJeXh969exuOBQQEoGvXrti3bx8AICMjA1evXjUaEx0djebNmxvGmFNcXIzCwkKjGxGpIyFBFuFbsgSYPFn+vHTJMy8H2bNCkpIiC/l17w489JD8ef317ln5qdEVlI8fBx55BLj99vIdVkOHystVn30mV3iITLh1N1ZycjIOHjyI9PT0So/lXWvAFhERYXQ8IiICf/75p2GMv78/6tWrV2mM/vnmLFy4EPPnz6/q9InIgqrskHIlpT2mtmyRO5xMc2T0ycCurmvTpYusp2OrgnKXLq6bk9OdPCl3V334YXkyUlwcMG8ecOedbpwYVQduW9nJzs7G1KlTsW7dOtSqVcviOI1JkSchRKVjpmyNmTt3LgoKCgy37Oxs+yZPRF5B6crHunWelQzsqgrKRUVyI1PLlvJnUVHVzueQnByZ1d6sGfDBB/KDvu8+4MABYPNmBjqkiNuCnYyMDOTn56N169bw9fWFr68vdu/ejbfeegu+vr6GFR3TFZr8/HzDY5GRkSgpKcE5fYdaM2PMCQgIQJ06dYxuRFTz6FdILP1upNEADRoA//5r+RzuSgZ2dgXlu+8GQkJkPJGZKX+GhMjjLvHPPzKj/cYbZZPOq1eBnj2BffuAL78EWrd20UTIG7gt2OnRowcyMzNx6NAhw61NmzYYNWoUDh06hBtuuAGRkZHYuXOn4TklJSXYvXs3Ol6retm6dWv4+fkZjcnNzcWRI0cMY4iILFGyQjJqlLJzKb0kpqahQ+XVndRUIClJ/szKUifQMZNdAEAed2rAc/68LPzXpIlM+CouBjp3lm9u507Zx4rITm7L2QkJCUHz5s2NjgUHByM8PNxwPD4+HgsWLEDTpk3RtGlTLFiwAEFBQXjooYcAAKGhoRg7dixmzJiB8PBwhIWFYebMmWjRokWlhGciInP0KySmlYhjYuSloLAw+dMWdyUDa7VAt27qna+oyHKgo5eeLsfVrq3e6+LiReDtt2Umu361vnVr2eqhTx/2raIq8eh2EbNnz8bly5cxceJEnDt3Du3atcOOHTsQEhJiGLNkyRL4+vpi+PDhuHz5Mnr06IE1a9ZAy661RKTQ0KEy13XPHrlCExUlL3FptTJFpCYlAz/yiPJxmzap8IIlJcB778mgRp+2cOut8v6QIdUuyNHpzP87IvfSCGHuP9+apbCwEKGhoSgoKGD+DhFVom/NABgHPPrvYW/qMt6ypczRsaVFC1m3z2E6HfDJJ8Dzz8trb4Dcyz9/vrx2WA0jBHO9ymJi2KvMmZR+f7u9zg4RkSU6HZCWJr8T09Lc1/7A2cnAnsTpPc6EkAnGrVrJ5aGsLCAiAli6FDh2DHj00Wob6LBXmefiyg64skPkiTzxt+SacImiqEjuurLlwgUHcnb27QPmzAH27pX3Q0Pl/SefBIKD7Z6rp9Dp5KKUpQKV+kudWVne9+/F3ZR+f3t0zg4R1Uz635I9pYifnqPJwNUpSKpdWzYGt5ak3LatnYHO0aPA00+XNyGrVUsGOHPmyAzwas6eStxqJpOTcryMRUQexds6entSmwmlfvxRBjTmtG0rH1ckOxsYO1YmAm3dKiO8ceNky4dXX/WKQAdQXnbAHeUJSGKwQ0QexZM7etubQ+SKPA5nVTn+8Ud5qWrwYJmMPHiwvK8o0Dl3Tq7a6Ksel5XJpbgjR4CVK+U1HS9So3uVVRO8jEVEHsWTfkvOy5PdCM6fl1deatUCTp8uf9xSDpE+KBo3zvIKlUYjV6ji4ixf0rp8GZg1Sy6ENG0KLF4MBAaWP25a/C8zU+bb2LX6YkXt2nZuLy8uBt55R24b19fK6dJF1s5p377qE/JQNbJXWTXDlR0i8iie8ltycLB8jdOn5Xd4QYFxoAOYX6HRX7bq2RM4e9by+W2tUA0eDAQFydhhxw75MyhIHgfcXOXYVFmZLOF8yy3AjBky0Ln9duDzz4Hdu7060AFc16uMHMdgh4g8ipJ+VbGxzv0tOTgYuHTJ9jjTHCJLl62sMbdCNXiw7LRuzpYtwIAByqscO11qqoysRo2SvSuio4H33wd+/llOtJoVBXRUTSpPUB0x2CEij+Lu35Lz8pQFOnr6FZq0NMuJ1dY0bGh8//Jly4GO3pdfKjv3ww/bNxe7/PorMHAgcO+9QEaGvH72yivymtvjj9fIZQxn9SqjqmPODhF5HFv9qpz55XHnnY49Ly3NvhUdS2bNqvo59KpU4diS06eBefNkiwedTgY1EyYAL7wgW8TXcGr3KiN1MNghIo9krV+VM50/79zzm8rPN75//Lh65w4PV+9cuHxZdiFfuLD8+tjgwcCiRcDNN6v4QkTq42UsIvJY+t+SR46UP11xZaRuXfvG63OIHP1t3jTRumlTx85jznPPqXCSsjJg3ToZ0DzzjAx02rSRicebNjHQoWqBwQ4ReSx39MY6dEj52Io5RN26WU+sNvdcc4nWixcrf31bfv+9iifYswdo1072sMrOlhNetw744QfgnntUmSORKzDYISKP5K7Kw5GRcou3EhV32lhLrDZHCPOJ1oGB8vKdNU2aKJufvpm43f74A3jgARnQHDggk48XLJCNOkeNAnz41UHVC//FEpFbWFu1cXcH6YsXLQc8AQGWd9pY2n5sr82bLQc8cXGyrZQSdncmLyiQlY9vvVW+ER8f4IknZCLR3LnGFQ2JqhF2PQe7nhO5mrWO5nFxntNBumIF5bp15SWuyEjbz9MHcsOHWy4sqOR9WKqgXFIigzFrl/W0WrmF3t/f9nyh08naOM8+C/zzjzzWsyeQmCh7RRB5KHY9JyKPZKuj+bx5ntNBOjJSBjx6+iDG1u4wrVbelFZQtvQ+AgOBpUsrH/f3B6ZPt57fM326wkAnLU1WRfz5ZwDA6brN8P2w19FvaX/4B9SMgoDk/XgZi4hcRklHc33eiy2u7iBtbw6Rs3t8JSTIVR/TYEurlccTEmyc4I8/gPvvl2/k559xDnUxFW8g5vwRDF41AEHBGsye7djciDwNgx0ichklHc2trYZU5IoO0iUlMom4Xz8ZF9iTQ+SKHl8JCbIT+aRJQO/e8ueFCzYCnaIiuYX8ttuAlBSUaXzwDiaiKY7jLUxFKfwAyMB08WIw4CGvwJwdMGeHyFU++USuitii0Vhvu2BXPoqDZs+WKSu2trtbyr3R6eTKj61O2FXJPbKW+1SpyrS+WeecOcCpU/LQvT3RKm0JDpc1t/garvisiRyl9PubKztE5DJKVzFs/Qqm0wH79lV9PpbMni1XNZTU9dHn3sybZ7yrzNk9vuzZsab74QAKWnaW9XJOnYK44QZg82a8NWCH1UAHkO9n2TLH5kjkKRjsEJHLKOloHham7FzOytkpKZErOvZ6+eXKeTzO6oStJPcpPh7Q5ebjZM//QNP+boQe3Y8iBOMpLMRNxb8gRReHE38oS0A+ccKxeRJ5CgY7ROQySlY7pk5Vdi61c3b0O63+85+qVWo2XVlxRidsW7lPWnEVQ7LfxNUbmuH6r9+HDwQ+wiNoht/wKp5C1qkADBtW3uLKFrvr9RB5GObsgDk7RK5mLtckNlZe1tHX2XFmrouS+VSFs2sBWct96o5v8Dam4Hb8AgA4gNZ4Em9hPzpWmmN0tNxar1q9HiIXY84OEXksa6sdtlZ/hJCrL59+qk6/LEu5L1VRsYaOUvqdX1OmyJ8lJZbHmlvVisVfWI/h+AY9cDt+wT+oj//gPbTDD5UCHf0c9atQ1iiu10PkyQSJgoICAUAUFBS4eypEdM3GjULExAghv5blLTxc3ioei4mRYx1RWlr5NdS8JSUpm8esWUJotcbP1WrlcXMuXSof548r4mm8LIoQJAQgSuEj3sQUURdnFc/R3tcn8hRKv79ZQZmIPNLQofKS1p49Mhn5+HG548lS5WVHEn5t5b5UlZK8Iv3OL1P6OjdA5bo5774rf/bF//AWnkRTyPbmu3EPpuBtZKKlXXMcOVImWC9bJpORb7wRmDiRKzrkPZizA+bsEHk6fc0atftlKa37Yy/T+eh05UFbxTYTSnpcaTTAhAlAs2blAcgLo0+i1UfxGIwtAIBTiMJMvIZPMBJA+bW/4GCZb+Oq3CciV2NvLCLyGkoqL1vrM2Up2HBWFWYhymvoWCv899dftnOOhACWL5d/fnpGMVI6LsZzP7wCX1xBKbR4A/F4Ec/jAir/j/6BB4APP6xcpFGNOj9E1QkTlInI41Wlz5S1nlb6uj/OYqvw344dys/VG1/h57Lm6Lv3OfhevYI0dMMd+Bmz8JrZQEerlZe7nFHnh6i64coOEXk8R/tM2eqwvmGDzFex1j3cERpNeb0gS4X/NBpg/37b57oOf2MJpuEBbAAA5CISszSv49hdI/FLhuWigHfdJS95meY+WevWTuStmLMD5uwQeToluS2m9WCU5Plcd135FmxLatUCGjSQl8mcwcdHtq0y5YurmIo3MQ/zUBsXoYMP3sYUvID5KESoR/QPI3I31tkhompPX9X4pZds57aY9stSkufz99/WAx0AuHIF+OgjYONG51zyuu++ysc64jscxF14DbNQGxfxHTriLhzENLyBQoQa5m8Ne1oRlXNrsLN8+XK0bNkSderUQZ06ddChQwf873//Mzw+ZswYaDQao1v79u2NzlFcXIwpU6agfv36CA4OxqBBg/C3M/eSEpFLVMy1efllZc+pGLio2TsrN9e4EOKzz6p37hkzgFmz5EpMOP7FKozFd+iMFjiCfxGOx/E+umAPDuMOu899/Lh68ySqztwa7MTExGDRokU4cOAADhw4gHvvvRdxcXE4evSoYUzfvn2Rm5truG3bts3oHPHx8di0aROSk5Oxd+9eFBUVYcCAAdBVtawqEanGnurAgONVjf/5p/zPau600p9Lq5W7vebNs93QNCbG9pjYWJk/k7CoDFeWfYDsoJsxFh8AAN7Df3AzjmE1Hodw8H/Vll6bqMZxQYFDu9SrV0+sWrVKCCHE6NGjRVxcnMWx58+fF35+fiI5OdlwLCcnR/j4+Ijt27crfk1WUCZyHnur81alqvG6dfadJyZGiOuuE0KjMf+4RiNEbKw8l/6cqamy6vD8+fJx0+fqj23cKG+2xogjR4To0qX8wRYtxNKHvrM67379lH0eH33k7L9dIvdS+v3tMTk7Op0OycnJuHjxIjp06GA4npaWhoYNG6JZs2YYN24c8vPzDY9lZGTg6tWr6N27t+FYdHQ0mjdvjn0VL96bKC4uRmFhodGNiNSnrw5sutCqrw48e3bl51SlqnHFLdZardxpZc3IkcBbb8k/W+rCXrFeTsUt7C+8AISFyVtFMTGyb1dYGFBcLFeBzG393vTxJQxNnwvcead800FBwGuvARkZmPRxR8OlrYq0WnnJy9znZk5srLJxRN7O7buxMjMz0aFDB1y5cgW1a9dGUlIS7ruWsbd+/XrUrl0bjRs3RlZWFp577jmUlpYiIyMDAQEBSEpKwmOPPYbi4mKjc/bu3RtNmjTBu/qa6ibmzZuH+fPnVzrO3VhE6nFkBxXgeFVje3djATIYyMoCtmwx34V94UK5Pf3gQVkA0JR+R9T8+UDTpvJy1z//yOaZFc913XXAE0+Uj+lycTu0UybKFweAQYOAt98GGjUyOn9JifkWDo5+tkTeRvFuapesM1lRXFwsjh8/LtLT08VTTz0l6tevL44ePWp27KlTp4Sfn5/YeK3r38cffyz8/f0rjevZs6cYP368xde8cuWKKCgoMNyys7N5GYtIZUuWKLvUsmSJ8fNSUx1vvJmaav959M+peIkqNVWINm2UPb/ipS79ZStzYzQaIb5YlSvEiBHG19E2bbL7s7X3vRF5q2rTCNTf3x833XQTAKBNmzZIT0/Hm2++aXZVJioqCo0bN8bxa1sMIiMjUVJSgnPnzqFevXqGcfn5+ejYsaPF1wwICEBAQIDK74SIKjpxwrFx+qrGOTm2t1ebqrgDy9aWctNx+uRjALj7buDAAWXP17eqSEuTq0Nm5yzK8ATeQ+dxcwBRIIvrTJ0ql4RCQpS9UAVVqShNVBN5TM6OnhCi0mUpvTNnziA7OxtR17ZGtG7dGn5+fti5c6dhTG5uLo4cOWI12CEi57vxRsfGabWybxRg/26iijuwKu7MssZ0XFERkJ5u3+sCMtgxd8nsNhzFHnTBCkxAqCjAhWat5QskJjoU6ACOV5QmqqncGuw8/fTT2LNnD06ePInMzEw888wzSEtLw6hRo1BUVISZM2di//79OHnyJNLS0jBw4EDUr18fQ4YMAQCEhoZi7NixmDFjBr7++mv89NNPePjhh9GiRQv07NnTnW+NqMabONF2SwKtVo4zNXSo+Z5OllTcxq0XHq7suabjHnlE2fNsCcAVzMfz+Amt0An7UIRgTMUbmNTmB5Q0v6tK59avfinZ1k5Ebg52Tp8+jUceeQQ333wzevTogR9++AHbt29Hr169oNVqkZmZibi4ODRr1gyjR49Gs2bNsH//foRU+G1oyZIlGDx4MIYPH45OnTohKCgIn3/+ObRs/ELkVv7+MlHXmnvukUX1zNXeqVjELylJXvHRaGzvmtLLy1M2T9NxSi+/VXz92Fjjbutd8C1+xh14Hi/BH1fxOQbgNvyCtzAVa5O0CApSvqPKHP3ql6XLfBW7rhMR3J+g7AlYZ4fIeczV2TFXe8Za7R29uDjzibjmynGNGqUsiXfUKOPnDR6sPCG6Yr2c0lIhbos+J1ZinGFADqLE/fhMAGVmn2/r/TryWVj7TIi8TbWrs0NE3qNixeToaOD8eWDJEmDyZFmnRv+VXJG12juAPL5li/nHtmyp/LyiImVzNR23dq2y5wHyUtKGDcDQIQLazRuRcelWjMN7AIAVGI/b8As2YhgA89ebEhNtV5M25/Jly5+F3pYtchwReWCCMhFVb7Nnyxow06YBS5fKn3XrAqdOAa+/Dnz7rfXnmwsASkrkcXueFxmpbL6m42rXBtq2tf6cG26Ql9eysoCh7XLkNbdhw1DrfB4uRN+M+xt8i/9iBQpQ1+p5HG3WOWOGuuOIvB2DHSI30Xf0/uQT+dMT2rlVdU62Kib37ause7lpALBsmf3Pq1CNwipz43780XLA07atzOvpdk8ZtO+vBG67Ddi8GfDzA557DiEnDuHT3C4YPFjZ69ubIwQo3y3myK4yIm/EYIfIDUxbD3TvLu+npFTfOSlZfUlNVXYu0wDAkZo9Pgr/72ZpXMWE40rHjx8H7r0XGD8eKCwE2rWTZZZffBGoVQtaLdC1q7LXV7pFv6KqBHJENRGDHSIXs9TROydHHndHwKPGnJSsvihlGgA4UrPHtGeVJebG6VeoTGlRCixOwNXbWgK7d8vrdUuWAN99BzRvbjS2KlvvbeFlLCL7MNghciGdznKVXf2x+HjXXtJSa05KV19sFQo0FwA4Ejg4mrNjaYWqJX7G92iPBMyBX+kVlPXoBRw5Ij8cM5NTsvV++nTHelf17AnUqmV9TGCgHEdEDHaIXMpWR29964E9e6rfnJSuvli6PKRXMQDQ5xBt3ChXmJQ+D1BekNB0nOkKlT+K8SKewwG0QRtk4Bzq4jF8gLf6fwU0aWL13O3bW39tW49botUCH39sfcy6dayzQ6THYIfIhTyxp5Fac1K6+rJ9OzBrVuWxWq08npAg75vmEK1fL3dKmebYmD5Pr2NHZfMx7SxTcYXqbvyAg7gLz+Fl+KEUGzEUt+JXrMFjOPGH9SUq/YqZJRpN1Vbxhg4F4uLMPxYXJx8nIonBDpELeWJPI3vnZGnHlj2XbRISgEuXymvvLFki71cMdMzlEF28KFeaHnvM/PMq2rdP2Q6uffuMj914I1ALl7EYM7EPHXE7fkEeInA/NmAYNuI0Ig3jrFFjxcza7jh76w4R1WguKnLo0VhBmVyltFSImJjK1YMrVuSNjZXjPHFOGzfKsRUfj4mRx/XMVUxWUh3ZdD7WqhYr+YySkpRVQU5KMn5eydffimNoahjwIR4RYfi30vspLnbO6+tZ+6yLiyt/xqY3JXMkqu5YQZnIA1nr6G2px5OnzGnLFmU7tmyt2tiiVg6R3atoFy8CU6fCr2dXNMNx5CAaA/A5RuMjnIVxt1AlicVVWcWztTtuwgTH6hUR1VguCr48Gld2yNU2bhTiuuusr5C4Y06mKwmxseV9n9RYbamotFSI1FS5spGaWv7cqq6IVDy/4lW0tDQhbrih/MGxY8VzU86pskJl7yqeks+6dm1ln9Hkycr/PoiqI6Xf377uDraIaipbW7BdTZ/wumePTEaOigK6dJErP2lpyldbbO22AuTKxdSpxueMiZErTGrlNelXrIYNk591xa31+s/+7YVF0E59CnjnHXkgNhZ47z2gTx+8CODZ1+TqyIkTMkdn4kTlW8X1r3///eYfF8L8Kp6SlS2lfb8cKVhI5I0Y7BC5mP4ShWldG/0lig0b3LeTRqs1H6youYvM1vtfv14GPjk55mv/aDTy8S5dbL/W0KHy8zQXWK37Txruee5x2eAKAJ54QlYSrFPHMM7fX+6YciW1duJpNI4VLCTyRhohzP3vxLbz58/jxx9/RH5+PsrKyowee/TRR1WZnKsUFhYiNDQUBQUFqFPhf3REatPp5HZqS7+567/Is7I8q0ZKWprcAm5Laqr1lR2l7z8xERg+XB4ztyJTMSDU6cyvRlVUUlK+QnNzzEX896+50C57Wz7YqBGwahXQq5ftN2gHR/+ulX7WShQXy4BNyWdEVB0p/v525BrZ1q1bRUhIiPDx8RGhoaGibt26hlu9evUcOaVbMWeHXCU1VVmuRWqqu2dq7NIlZfO+dMn6eex5/0p2dSnZHVZxTGd8K47jxvLBTzwhhJP+u3f071pJrk9oqLJzJyQo+4yIqiun7saaMWMGHn/8cVy4cAHnz5/HuXPnDLezZ886Fp4R1QCeWFRQiXffVWec0ve1ZQvw2mvmu6e/9pq8FKakn5d+zL9/X0YipmE3uuImnMBfiEUffIWUPu8aXbZSk6N/10p2xynNa/rgA8/rw0bkDg4FOzk5OXjyyScRFBSk9nyIvJqrigpaK0bniOPH1RnXsKGy86xbZz5fR2/qVNv9vKZOBZ58ErhbfI9DuBPT8AZ8ILAKY9ECmdiB3jYrGJ89C7RoAYSHy5/2/C5Xlb9rfa6RaSuLmBh5PDy88nPMOXHC+mfk6j5sRO7iULDTp08fHDhwQO25EHm9Ll3kF5alnVgajdwQpCT51hLTNgvdu8v7VfktXunOMbV2mP37r+XHhJArFbZ2LOX/XYyJOU/jO3TCzfgNOYhGP2zDOKxCIUIBWK/XExkpg4ojR2SQc+SIvK+0wWhV/66HDgVOnpR5UElJ8mdWlvU2EaauXrX8WMUddETezqHdWP3798esWbPwyy+/oEWLFvDz8zN6fNCgQapMjsjbKNkOXZWigs7a6dWuXfnubFvjrMnPt/+1HXEHDuEjPIqWyAQAfIRHMBVv4jzqVRqbk1P5+ZGRwOnT5s99+rR8PC/P+hzU+Lu2tDtu6lRgzhzrq19KedolUyKncCQhSKPRWLz5+Pg4lGTkTkxQJlezVsDPUbaK0QFChIUJsWuX/e0o1Eqs3rZN2XkcvWlxVTyDl0QJfIUARB4aijhssvqcJUuM53jmjLLXOnNG2WfnrAThWbOsz+/++5W9j23bqjYPIndyaoJyWVmZxZuOF4CJbLJ2icJRtorRAfJyTM+e9l/WsrVio3Sc0kTnWrWsX/657rrKKyLNcAzfoRNexnPwQyk24H40xxFswWCrr1XPZLGna1dlc1Q6Dqi8AqPGikxCguz2bqkLfIMGys6zdWvV50Lk6dgbi8hN9JcoRo6UP6ta98SeyxH27sZRazfWH38oO48+kdnSbqQnnihPrNWgDFPwFg7hTrTDjziHuhiFdXgAn+Ff2P7GT083vn/qlLI5Khmnv6xoeqns1Cl1dkMlJACXL5vvQ6b0s1Y6jqg6czjY2b17NwYOHIibbroJTZs2xaBBg7CHmW5EbmPPDi57d+OcOKHsvLbGKW1fcNdd1ncjNW167T6ysQO98RamIhBX8BV6owUykYRRAJRlS5uuskRHK5ujflxJicy9mTJF/iwpkcd1Ots7xtTYDaWv8vz22/Knvp2F/jOyRek4ourMoWBn3bp16NmzJ4KCgvDkk09i8uTJCAwMRI8ePZCUlKT2HIlIAVu7f0zZsxtHaZBia9zatcrOs3at9Ut9UZECD2MtMtECPfE1LiIIE/EO+mI7chCj7EWuMf2y371b2fN27wZmzwaCgoBp04ClS+XPoCB5XK3u7Y5avFjdcUTVmiMJQbfccotITEysdPz1118Xt9xyiyOndCsmKJO32LjRcuVdS7fevWWSbnGx5fMWF1euZlwpOVhbfg5LHc2FEKJtW+vnadvWxpv85x9RNrQ8+3Y/2omb8JvROTQa28na+nHm3ndEhPXnRUTYThAeMEDZ52+re3tVxMVZf+24OOe9NpErKP3+dijY8ff3F8ePH690/Pjx4yIgIMCRU7oVgx3yJra+4KwFKxVbMZiy9eWuf66S3UeWAh6bgc62bUJERgoBCJ3WVzyDl4UvrlYKYDQaIdavtx34WQp2hLAc8EREKAv+fHyUfe7Obg1i6d8DAx3yBk7djRUbG4uvv/660vGvv/4asbGxVVppIiLHzZ4tWy04QqeTlzRmzzb/eEKC5WJ2cXHy8ZQU4P77K1+++ftveVyfkPvjj8CFC8DgwbIy8eDB8v6PP1qY3KVLwKRJwH33yQI3t94Knx++x10bn0FkjHG5MH1ez6lT8mvdGiFkg1Bz8vKAM2eA5s2BsDD588wZeXzZMtu5NmVlQECA9TEhIVUrIKnE5s3lH1/v3vLnpUvyOFFN4VBRwRkzZuDJJ5/EoUOH0LFjR2g0Guzduxdr1qzBm/qmLkRkldqdqEtKZLfwqkpMBF5+uTzRVS8lxfw2ZY1GHt+wAZgwwfq5n3hCBkZaLVC7NrBpk4IJpacDDz8M/PYbAKDsyanYe99C5PwWiKgomRS9b1/lz3HKFGXv11pSdVgYkJlZ+bjS9hnFxdYfLyqS+Uj6SsrO6kQeGChziohqLEeXjlJSUkSnTp1EWFiYCAsLE506dRKbN2929HRuxctY5GrOKDS3ZIljl6/M3UwL7dkqWKjRCNGggbJz79ql8A1dvSrESy+VXy+KjhZ7nt+h+HN79VVl83n1Vfs/60mT1Pus1fr7J6qJnHoZCwCGDBmCvXv34syZMzhz5gz27t2LOKUNW4hqMCXduh2hdHu4I+dSsrPon3+UnTstTcGgP/6QVfuee04ugQ0fjs8XZOKel3op/tycWWdGaZFFe7ATOZHzsKggkQs5s/aK0u3hjpzLZf2ThADWrAHuuENem6pTB1i7FrqPkzHx2TC7PjdnBjtKa/HYo6p//0RkmeJgJywsDP9ea0Vcr149hIWFWbwRkXnOrL0ycaI6OR9arTxXRfYULLTFXGNLALKXxQMPAI89JpNZunQBfv4ZePhh7NmrUfS5vf12eaAQHKxsPtbG6XRyJeqTT+RPe4MQe7vAV+Xvn4gsU5ygvGTJEoSEhBj+rLH3v2Izli9fjuXLl+PkyZMAgNtvvx3PP/88+vXrBwAQQmD+/PlYuXIlzp07h3bt2uGdd97B7bffbjhHcXExZs6ciU8++QSXL19Gjx49sGzZMsTE2FdYjMgVlK6QOLKS4u8PTJ9e9SJx06dXTk7u0kUmFBcVWX5eSAjg5ydjFkvCwy0EO998Azz6qLyW4+sLvPii3BZ2LXpT+nlMmwa8/rrsNj54sLIdR4MHmz+ekiJX4SoGWTEx8ty2Eo/1+vcHvvhC2diK2ImcSGWuSSEyb+vWreLLL78Ux44dE8eOHRNPP/208PPzE0eOHBFCCLFo0SIREhIiNm7cKDIzM8WDDz4ooqKiRGFhoeEcEyZMENddd53YuXOnOHjwoOjevbu44447RKkdbZ2ZoEyusmuXykm8JjZudDxBVqsVYsYM88UAi4tt143x8REiOdn6mEoJuFeuCDFzZvmAZs2EOHDA8HBxsUyWHjxY+fvQ19l54QXHP2tLxRn1537uOWXn3rFD1h+yVZPH9Obs2jtE3sKpRQUzMjLE4cOHDfc3b94s4uLixNy5c0WxtTKsCtSrV0+sWrVKlJWVicjISLFo0SLDY1euXBGhoaFixYoVQgghzp8/L/z8/ERycrJhTE5OjvDx8RHbt29X/JoMdshVnBns2NoxZek2eLAMKNavt7xDTOlOryVL5PjrrjN/HiO//irEnXeWDxo/XoiiIsPDjgQJFYMSR3eHKdl5VqeOsnO//ro8pz5omzhRiNBQy8UONRohYmONK04TkWVO3Y01fvx4/Hat5sUff/yBBx98EEFBQfjss88w21JFMht0Oh2Sk5Nx8eJFdOjQAVlZWcjLy0Pv3r0NYwICAtC1a1fs27cPAJCRkYGrV68ajYmOjkbz5s0NY8wpLi5GYWGh0Y3IFfLz1R1Xka18IEuGDwcaNQJGjLC8Q+yrr5Sd68QJ2bvqzz+Ne1qdPCmPA5Df6+++K7t9Hjokr21t3gysWGFIoJk9W16OczRRVwjlu8NMP2sleVVK/5eRlSV/6pt1vvMO8MEH8pilju5vvOG8ejtENZVDwc5vv/2GO++8EwDw2WefoWvXrkhKSsKaNWuwceNGu86VmZmJ2rVrIyAgABMmTMCmTZtw2223IS8vDwAQERFhND4iIsLwWF5eHvz9/VGvXj2LY8xZuHAhQkNDDTdWfSZXUZroqx9nT4Kso3ke9evb3iFm5XcHI/pdSlqtzM0ZOVL+NHx5nzkjo54JE4DLl4GePYHDh41KM6tVHFEp078TNfNl/v1X/r1dvlzeGf2vv4DkZMsd3Q1BoUJVTaImqgkcqqAshEBZWRkAYNeuXRgwYAAA2UZCv2NLqZtvvhmHDh3C+fPnsXHjRowePRq7K7QdNk2EFkLYTI62NWbu3LmYPn264X5hYSEDHnIJfWdyaysH+mq61hJkzX0hOrpjKjNTvZWM/futPJiaKishnzolM5kXLpQZxT7Gv3MpacWgVP36MuCwRP9ZV6TmzrPkZHkzpdXKlZ4BA6pWQdvefyNENZVDKztt2rTByy+/jLVr12L37t3o378/ACArK6vSSowt/v7+uOmmm9CmTRssXLgQd9xxB958801ERkYCQKUVmvz8fMNrREZGoqSkBOfOnbM4xpyAgADUqVPH6EbkClqtXO2wZsQI2d/K3sKD+h1T9tJfalHDtY2Vxq5eBebOBXr0kIHOzTcDP/yAovEzMOR+H7RsCQwZUr7TS2lxxFq1rD8eHg6MHm19zIgRlQOMLl3s3zJuL51O7hrbts3M6pdCzipOSeSNHAp23njjDRw8eBCTJ0/GM888g5tuugkAsGHDBnTs2LFKExJCoLi4GE2aNEFkZCR27txpeKykpAS7d+82vEbr1q3h5+dnNCY3NxdHjhyp8jyInEGnk5cbrPnkE8cKD+p0ssGjvc6csf85llQqbHjiBNC5M7BoESAEvrttHJY+loE241ohJESm6mRmyp8hIcDddysvjuij4P9e5lZVTB83/RzPnjX/2TtDYqK8bGcvZxanJPJKamZFX758WZSUlCgeP3fuXPHtt9+KrKwscfjwYfH0008LHx8fsWPHDiGE3HoeGhoqUlJSRGZmphg5cqTZrecxMTFi165d4uDBg+Lee+/l1nPyWKmpju0uUrI9Wc3eWKY7hKKjlY29cKHChNauFSIkRAhAnEVdcT8+U3SO1q1t78KytQ2+Kp/j9dc753O0dDPtQ6bmvyNuYSdvp/T726GcnezsbGg0GkPhvh9//BFJSUm47bbb8MQTTyg+z+nTp/HII48gNzcXoaGhaNmyJbZv345evXoBAGbPno3Lly9j4sSJhqKCO3bsMBQ3BGSBQ19fXwwfPtxQVHDNmjXQcjtDjaJ2B3G9khKZQ3LihFxxmDixcsE9e/z5Z9XnpGeaSKu0E7c99Jdz3nwTeOgheUXKEj8/2V0bFy4AkyYBa9cCAL5FFzyMdchGI0WvmZEhVy3efNPymPvuc6xYnzk5Ocb3le7iUosjPc2cWZySyCs5Ekl17txZfPTRR0IIIXJzc0WdOnVEhw4dRHh4uJg/f74jp3QrruxUb87oIC6E+TovWq087ih7iuPZ+1u7Mzpxx8bKz1HpSkL6uxlCNG0qBCDKfHzEfM0LQourdr/u4MHWP381V8gWLzb+HOvV48oOUXXh1KKCdevWFf/3f/8nhBDizTffFB07dhRCCPHVV1+JJk2aOHJKt2KwU33ZqnTraMAza5b1LxFHA55evZR9SQUE2F947qOP1PsCfvZZ4wrKSUm2nlMmpmKJKNX6yQMxMWL95G8dfv0WLeTr6ovxTZ4sf+prluoL/1n7jIKClL3WqFHGn+OYMa4LdLTa8vdkDyXvn8UJqSZwalHBq1evIiAgAIDcej5o0CAAwC233IJcrpuSizgrSVNJnRdHE0ubNVM2rnt3+dOewnNqduJu1sx4h1DDhpbHhuNffI6BeAPToNVdlc2mfv4Ze9DF8pNs0Ccp64vxvf22/Km/hKjVll/msvQZNW+u7LUuXjS+f8cdjszYMeb6kCmh5P2zOCFROYeCndtvvx0rVqzAnj17sHPnTvTt2xcAcOrUKYSHh6s6QSJLnNVBXEmdF51OjrOX0iadKSmywJxahefs9cMPysbdg934GXdgAL7EFQTg/6a8IycfFqZ4V5U519J9rBbMGzrU+mc0fLiy1+rc2fi+ku7xPj7ydR3doq7VArNmAQkJjj0fsP3+WWeHqAJHlo1SU1NF3bp1hY+Pj3jssccMx+fOnSuGDBniyCndipexqifbl1bkLSnJvvNOnqzsvJMn2z/n0lLLlx4qXoLQX34oLTXfmLMqn4eS28SJ1s/tg1LxAl4QpZDbon7BLaIFfjb6rJU0DzV3a9tWPl9pLpalz0hp81Jzl5GUXMbUX0K19fcJyN1sjz1W+XKcGuz5N0LkbZyasyOEEKWlpeLs2bNGx7KyssTp06cdPaXbMNipnpyVpGlP00t7bdum7Nzbttl/bqVNRh15bxU/62j8LVLR1XDgfTwmglBU6bMuLRWidm3HAx01crGqknulJEHdXEBm7lbVHDIiMs/pwY43YbBTPRUX267H4kgCqLPOK4QQd92l7Ev/rrvsP7eawY5RvRxRnhDbD1+KfNQXAhCFqC0ewjrDc0wTYh3ZMTVrlrKu4/Yk386aVXmFR+muOksJ0qafTWqqEOvWCVG/vnrzJiLbVK+zc9ddd+Hrr79GvXr10KpVK6u9pw4ePFjFi2tEtu3bpyy3Zt8+mWyrlL+/TBy1ll/jaGKp0tYMjrRwcKRTuiWrVsmEYD1t2VW8VesZDIH8UA6iFR7EevyOpoYxd91lnOviyF6FxYtlo0yluVhK/l7bt5e1lyrW04mMlMdt0SdIW6NvepqWZr0Pl73zJiL1KA524uLiDDuwBg8e7Kz5ECnmzMJq+sTRxETjgEqrlYGOo4mlISGASSs3i+PspWYDy2PHKtw5eRJlI0ZiyO/fAwDewhTMwmKUIMDoOV98IXeo6YNAR+fz6afKxm3cKH9aKyCp7x8lhPHxU6fkcTUTeVnoj8hzaYQw/d9AzVNYWIjQ0FAUFBSwKWg1kpZWvkXbmtRUx3+TVruCcv/+svmjLffdB3z5pX3n1umA66+3viqiVKdOwN69kB1Jx4wBzp/HOdTFWLyPTbAcHSxZUr4Sop9PTk7lYENNlrp82/o8NBr53Kwsy8GSPZW5XfHvkYiMKf3+dqhdREVFRUUoKyszOsaAgVyhSxf5ZWXpy1T/ZdbF8XIvii5j2KNxY3XHVaTVAq1bqxPshASUANOfktELgJMRd6Pb6fX4E9dbfV7F1gf6WjDDhsm/C3sCntq1Zf0bJc/Rd/k2XaWxpzSBueAjJUXWcap4DkuBFeCaf4/mOKtVCpE3cajOTlZWFvr374/g4GCEhoaiXr16qFevHurWrYt69eqpPUciszylsJq1WjCmmjRRdk6l4yoqKVGnX1RjnMTLu7sYAh1Mn46tM/fYDHSAyh3LLdWCseWBB+RPJXVs9IGFaQHJqlxW0l/+Mg2W9IFVSkrl57jj32NKily96t5d9i7r3l3eNzc/ohrNkeznDh06iA4dOojk5GSRmpoq0tLSjG7VDXdjVW/mtv/qezq547Wt9eVatEjZrqRFi+yfixpdzwdhsziLukIA4gzqiYHYItq2rfoONf2OpY8+sl37Rn8epdu6K94qbn13tDRBVXeDuerfo7NapRBVJ07deh4cHGzojeUNGOxUf+4orObIl43SRqCDB9s/n//+1/Egxxcl4jVMNxzYj3aiEU4aHm/bVr1+YfacR//3qrTQY8Wiho72j1KjfpOz/z2qvT2fqLpSfet5RW3btkV2djZuvvlmNReZiBym3/7rKrb6cmk08rJKXJzxZYvgYGXntzbOUo6Go7k6sfgL6/EgOkDutkrENDyFRbiK8kzs9HTgm2/knx3ZoWaa6D1tGvDWW7bPU/HvdelS2++l4g4wazlD1i4rqbGrytn/Hquaj0RU0zgU7KxatQoTJkxATk4OmjdvDj8/P6PHW7ZsqcrkiDyVo182d9wBfPyx7fNbakZpLWnWkT5N/bANa/EIwnEW5xGKMViDLRhsduwjjwCbNgEvv2zfDrXZs80HSFOnArGxys7jaPKvPmfI3Gf2xhvmE42VbplXc6u/vbjNncg+DgU7//zzD06cOIHHHnvMcEyj0UAIAY1GA529baaJqhlHv2yUdiY3N85SzRh90qw9u3y0KMWLeB5PYyEAIB1tMByf4iQsZ0brd1rZs0Nt9mzzxRl1OhkAzZolO5rbnK+DqzSADGji4pTvWNIHVtaC2dhY9XdV2aM6BGREnsShYOfxxx9Hq1at8MknnyAiIsJqNWUiV3D19tuGDR0b16CBsufpx+nfV06OvPRj7bLZkSPKzh2JXHyCkeiG3QCAtzEZM/FapSKBpuztYl5SIgMaaxIT5UqRktpFQ4cCM2dWXiXy8ZGXv6wVB7TnspKSLfym1aJdzV3b3ImqK4eCnT///BNbt27FTTfdpPZ8iOxmbz0Ud8rMVD6uqKjy+7JECODsWdvjuiINyRiBSJzGBdTGf7AKn+JBRXNau1bRMINly5S181i2TNlKUUqK5VWixYtl+wc1/r6VbOE3rRbtalVZ6SKqiRyqs3Pvvffi559/VnsuRHZzpB6KGpT2oTIdd/Kksuft2mX+fTlKgzLMwSJ8jR6IxGlkojna4IDiQKdtW1nozx5GLSeqOE6nA554wvqYJ56wHVwpYU+Q5k6WahjFxKjbBoPIGzi0sjNw4EBMmzYNmZmZaNGiRaUE5UGDBqkyOSJrHN0RpQZHcyaUVkbet8/8+3JEXZzDR3gUAyGXK9ZgNCZiGS4jSNHz27YFfvzR/tfNy1NvXFoacOaM9TFnzshxPXpUfsyey5wVq0Bbo3ScM9mbj0RUUzkU7EyYMAEA8OKLL1Z6jAnK5Cru3H7r7JyJwsKqzU+vFQ5iA4bhBmThCgIwCe/gA4y1+byAAKBfP3npyt4VHT01k2jT0pSdy1ywY+9lTqW5SfbmMDmLq8suEFVHDl3GKisrs3hjoEOu4s7tt462BvjzT/XnYp7AOKzEPnTEDcjCCdyADtivKNAB5ArUpk2OBzoA0KyZuuMc4chlzokTba+MaLVyHBFVD3YFO/fddx8KCgoM91955RWcP3/ecP/MmTO47bbbVJsckTXu3n7rSM5EbKxz5lJRIC5hNR7DSoxHLRRjCwahNTJwCK0Un0ONeqFqBg1KV8gqjrN1mROo3E8LkEnH06dbf53p092XnExE9rMr2Pnqq69QXFxsuP/qq6/ibIUtIKWlpTimNCuRqIq6dAHCw62PCQ+371KSaVPPkhLrTT6HDpVJx6mpQFKS/JmVZTk5NCtL2TyCguwvEujrC9yAE9iHjhiDD6GDD57CQgzBJhSgrl3nuv9+y48pbXyqZtCgNAel4jh7LnOaSkiQNYBMX1erlcetVYsmIs9jV86OMPkVyfQ+UXVmLrfDdFtvdLQsglcxmLEnZ+L335WNu+km4PBhZWP1+pd9jjV4BHVRgNNoiBFIRhq623eSa/7v/2QgY5rsam/+iz4ocKTFREWO7H6r6mXOhAT7q0W7g6trTBFVS/Y03NJoNOL06dOG+7Vr1xYnTpww3M/LyxM+Pj72nNIjsBFo9aRGw0Y9S009Ld0c7SjdqZOy899yi/K5+KBUvIynDQf2oqOIxt+Kn2/tVrGDe1W6bBcXy67skyfLn5a6o1viyN+1mv8+PJW5DusV/86IvJ1Tup77+PiI/Px8w/3atWuLP/74w3CfwQ65UlKSsi+zip2wzbHVQdrcrXZtxzpKP/64svMHBSkbF45/xFfoZTjwBp4UfihWJdCpGMh89pl7u2w70sHc0a7n1UVVgk8ib+GUrudCCIwZMwYBAbKs/JUrVzBhwgQEX2vRXDGfh8jZ1EpQtpXbYU5REfD110Dv3vY9T+nlmEuXbI9pg3RswDA0xl+4iCCMxftYjxH2TcgGIeSlvIkTgX/+sT7OmV22HakY7M1Vht1ZY4qoOrIrQXn06NFo2LAhQkNDERoaiocffhjR0dGG+w0bNsSjjz7qrLkSGdHXurGUyKvRKGvY6OjWdHvbJwDKE5RtGYtV2IvOaIy/8Buaoh1+UD3Q0RPCeqBTkTO7bDuy+81bqwxXJfmaqCaya2Vn9erVzpoHkd3U+s3d0a3pRUX2P+fqVcdeSy8AV/A2pmAcVgEANmEwxmANChFatROrxNldth2pGOyNVYbdWWOKqDpyqIIykafQ/+ZubofQG28o+829lfLyM0Y6d5Y/7dkN07Ur8Ntvts8dHAxcvGh8LAbZ2Ij7cTfSoYMPnsXLeBVzIByrDWq3+vVlSwZzl05c2WXbkYrB3lZl2N01poiqG9f8X5LIieytdWNqzBj7X9PHB5gyRW7Fvv56oHt34KGH5M/rr7fcgNRa/ZqK+vUzvt8NqTiIu3A30nEGYeiL7ViEuS4LdABg0iT5056K0eQcal3CJaopGOyQV9D/5j5ypPxpz5eu0to3Fc2YAXzxhf2tCJQ2x/z6a/2fBKbjdexCTzTAvziIVmiNDOxCL/snXUU33uid+S/VkaPtSohqKrcGOwsXLkTbtm0REhKChg0bYvDgwZUqMI8ZMwYajcbo1r59e6MxxcXFmDJlCurXr4/g4GAMGjQIf9u7vYaqNaVVfc2pU0f5WH0F3YULHWtFsGGDstc5dw4IwkV8gpF4HTOhRRnWYDQ64Tv8ieuVT1hF+/dXfRWN1OOtyddEzuDWYGf37t2YNGkSvv/+e+zcuROlpaXo3bs3LpokK/Tt2xe5ubmG27Zt24wej4+Px6ZNm5CcnIy9e/eiqKgIAwYMYFPSGsLeS0mmOnVSNq57d7klPCHB8d0wSvJ1ANn2YT86YATW4yp8MQlL8RhW4woClZ3ACU6dkj+rsopG6mLwSaSMWxOUt2/fbnR/9erVaNiwITIyMnDPPfcYjgcEBCAyMtLsOQoKCvD+++9j7dq16NmzJwBg3bp1iI2Nxa5du9CnT59KzykuLjaqCVRYWKjG2yE30He1Nl1h+ftveVzJb7jXykbZ1KlTeasAR3fDKGk10Bf/QxIeQj2cRx4iMAwb8B06K3tBJ7JnBawmcXe7Bm9LviZyBo/K2dF3VA8LCzM6npaWhoYNG6JZs2YYN24c8itUZsvIyMDVq1fRu0J1t+joaDRv3hz79u0z+zoLFy401AYKDQ1FrCtaUZPqrBVWA+Rxc5eSTCn9oqg4ztHdMA8/bG20wFwswJfoj3o4j/1oj9bI8IhABwBGjXL3DDxPVVcVicg1PCbYEUJg+vTp6Ny5M5o3b2443q9fP3z88cf45ptv8PrrryM9PR333nuvYWUmLy8P/v7+qFevntH5IiIikGchG3Tu3LkoKCgw3LKzs533xshplFQ+VlJYrVs3oFYt62Nq1TIOdhzdDTNtmvnxwSjCZ3gAC/AMfCDwLp5AN6ThFK4z/wQ38GWhCiP6VUV7EtSJyD085n9fkydPxuHDh7F3716j4w8++KDhz82bN0ebNm3QuHFjfPnllxhq5fqEEAIaC99EAQEBhpYXVH0pjVFtjdPpgJIS62NKSuQ4/eUJRwsaarVA7drGBQlvxO/YjMFojqMogR/ifd/B8tJxit6bKyndSVYTsF0DUfXiESs7U6ZMwdatW5GamoqYmBirY6OiotC4cWMcP34cABAZGYmSkhKcO3fOaFx+fj4iIiKcNmdyvx9+UGfcsmVAWZn1MWVlclxFjuyG2bPHONDpg+1IR1s0x1HkIhLdkOaRgQ6gvGVETcB2DUTVi1uDHSEEJk+ejJSUFHzzzTdo0qSJzeecOXMG2dnZiLqWDNG6dWv4+flh586dhjG5ubk4cuQIOnbs6LS5k/tZytWxd9y1uNkmc+Ps3Q2Tk2OYFWbjVWzDfUb5Ofsh/83Wrm19Ln5+yuaspvBw17+mp2K7BqLqxa2XsSZNmoSkpCRs2bIFISEhhhyb0NBQBAYGoqioCPPmzcP999+PqKgonDx5Ek8//TTq16+PIUOGGMaOHTsWM2bMQHh4OMLCwjBz5ky0aNHCsDuLvFPjxuqMs5R3Y+rnn+XlLNMdVfbshvnnHyAQl/A+xmIkkgEA7+E/mIylKEH5pVVbK02+vlXvs2WvM2dc+3qejO0aiKoXt67sLF++HAUFBejWrRuioqIMt/Xr1wMAtFotMjMzERcXh2bNmmH06NFo1qwZ9u/fj5CQEMN5lixZgsGDB2P48OHo1KkTgoKC8Pnnn0PLi+Ve7Y8/1BnXrp2y83z3HRAUBMyerWy8OdfjJL5DJ4xEMq7CF//FMjyBlUaBDiDr+Vhz+bLjc3BUgwauf01PxXYNRNWLW1d2hI3rC4GBgfjqq69snqdWrVp4++238fbbb6s1NaoGsrLUGWdP5QGdDli8WP45IaH8mKI6K7t34755w+CPf5GPBhiGDdiDe8wM9EymuUk1maMJ6kTkHh6RoEzkiBtuUGec/rd0eyQmyktaKSlAo0bGdVYaNTLZdiyEzG7u2RP+Bf/isN9daI0Mi4GOJ66gcJWiMrZrIKo+GOxQtTVokDrjtFqgdWv7XlunAyZMkF3M9W0U9E6dksdTUiAjovHjZcvw0lLgoYfwcp+9+BuWl5M6dLAdfMXEuC5hWKPhKoUlbNdAVD0w2KFq6+xZdcaVlABbttj/+uvWWX985iOnIbrfC7z3nowYEhJQ8sE6bNxmvb/VF18Aw4dbP3eF8lNOFRvLVQpb2CuMyPN5TFFBqnmq2lPo9Gl1xi1Zovw1K7K2G+pO/IQtl+Kg2ZcNhIbKduz9+mFporKaPu+/b33MRx85b3dUgwbyM7nuOtf3eSIicgYGO+QWKSmyAm3FwmwxMTLpU+kqgtIve1vjbK3Q2GsYPsOHGI0gXEZuSDNE/bAVuPlmAMqLzF1rE2eRMwv8/fOPDHTYXJKIvAUvY5HLqdVTyEfhv96//rLeDNRWqwhz6tatfEyDMszH8/gMwxGEy/gf+mJmlx8MgQ4AVKiY4NFYDI+IvAmDHXIpWz2FAGWdygGgs8Jm4OvWWe9E7cguI9OVl2AUYSPux/N4CQDwGmZgAL7AXffWNRo3cqT9r2WJ0mDPESyGR0TehMEOuZSaPYWOHlX+utZWjZo2VX4evYrBWmOcxD50xBBsRjH8MRprMAuvQWi0mDLF+Hm//qrs/KGh1gvWNWhgO/fHESyGR0TeiMEOuZSaPYX+7/+Uv661VaPfflN+nop8fYFO2It0tEVLZCIPEeiGNHyE0QCA4ODKyb1K+3DpqzqbBjz6+6NGOTZna1gMj4i8FYMdcik1ewpV6P2qiKVVo02b7DuP3iOlH+Ab3IsG+BcH0QptkY7v0cHweFFR5dfKzFR27osXrResi4tzbM7WsBgeEXkr7sYil9JXK87JMZ+3o9HIx5VcRnG0P5TpqlFxsX3P94EOCZiNGUgEAHyGYRiDNbiE4Epjy7ucS6ZNRC3x95dBR1yc+e35Op38nKxdElSqRQvgrbe4zZyIvBdXdsil9D2FrFF6GeXiRcfmYLpqZM8OqToowOcYaAh0XsA8PIj1ZgMdoPIWcaU7v/TjLBWs02rVS3a+5x4WwyMi78Zgh1xu6FBg5szKX65arTyu9DJK7dr2va6l5Ns5c5Q9/wacwH50wH34Hy4hEA/gU7yIFyCs/Gdk2ueqRQtlr2VrnE4n6xSqQd/YlIjIWzHYIZdLSQFee61yorBOJ48rrbNTVKT8Na0l337wge3n34Pd+AHtcBt+RQ6i0QV7sAEP2Hyeac7NTTcpm6+tcbZ2tSkVFwcEWu9eQURU7THYIZeyVmcHkMeV1tmx5/KTteTb8+etP/dxvI9d6In6OIN0tEFbpOMgWtusc2NuFUmtlR21iv41a6bOeYiIPBmDHXIpJSsSSuvsKO36ff311jtRN25s/rgPdFiMmXgf/4EfSrEew9EVu5GLaAByRcRaLRxzq0hqtbhQq+hfYqJjFaSJiKoTBjvkUqa7k6oybsIEZecylx9U0datlY/VxgVswhDMxOsAgHl4ASOQjMsIMoypU0euFsXEGD/XWqfwhg2VzdnWOP2uNkvBllI6HbBsWdXOQUTk6bj1nFxKaQNL/biSEvllfOIEcOONwMSJ5du3lSbofvIJMGmS5ccPHza+3wh/YisG4Q4cxmXUwmNYjfUYUel5AQHWt4c7k35X27BhMuCxdFlQiRMn1JsXEZEnYrBDLqX00lN4ODB7trzMUjF/Z+ZMYPp0ICEBOHdO2blsjfvzz/I/340fsAVxiMRp5CECcdiCH9HO7PN69JA/9dvDlcjPV2/c0KFyBcm0e7y9brzR8ecSEVUHvIxFLqU0Z2X1arkl2tyOrcWLZSCktBGmrXGbN8ufD+BTpKEbInEah3AH7saPFgMdAKhVS9nrV6RmBWlABjwnTwKpqUDPnvbPR6uVq2VERN6MwQ65lGndGUvS0qw/npgItGql7FytW1t/vOC8wLN4CZ/iQQTiCj7HAHTGXmSjUZXOa44+18Yaextx6leWzOUe2TJ9uvKqzkRE1RWDHXIKnU4GLJ98In/qV2hM685YYisHRacDduxQdq6MDCsPFhdj2k+P4iU8DwB4HdMxGJtxEbYrFurPa+m9mqOk8vGIEY7l/AQGAm3bKhur1QKzZsnLgURE3o7BDqkuJUVu9+7eHXjoIfnz+uvlcSUrG8HmOy9UorSnlcXg499/gZ49MbBgHUqhxRN4FzPxOsqgLNIQwvp7tTQXW0UMP/hAWZ0hc+e2VX+ndm3g9deBS5cY6BBRzcFgh1SVkiJ3CJkmzObkyONbtshdRNbq0zxguzAxAODKFWXj8vLMHDx2DGjfHti7F5f8Q9EX2/EenlB2wmsuXbL+Xs0FPGlptvOWzpyxfRnPHCU1jIqKgLvu4qUrIqpZGOyQaqxVR9Yfi4+XW7Wt9cZ6913bl3G0WlnnRolKX+ypqTLQOXECaNIEuj378TXsy+7VaoGdO22/V9MVmm++UXZ+peMqUlpVWa3qy0RE1QWDHVKNrZUFIWR15Fdesd4b64svZOKsNdOny5UVJYy6o69eDfTuLXtEdOgAfP893t93q7ITVTBsmPXCh/r3aloJ+q+/lJ1f6biK1N7pRUTkLRjskGqUrhi8+abt3lgLF8oVIHPi4mS+SVCQ+cdNBQUBKCsDnnkGePxxoLRUZgF/8w3QsCF+/VXZefTatrU8N1Omn0kj6xu87B5XUceOylbEOna0/9xERNUZgx1SjdIVg7NnrT+uX/0xt5Vao5HHU1KUF+gryL8is4cXLJAHnn0W+PhjQ6Gco0eVnUcvPV3mHilh+pnce6+y5ykdV9G+fbYTm3U6OY6IqCZhsEOqUbKyoFRiouV8GP3qjxL18Q++Rg9g/XrA11dexnrpJaNKg4GB9s9vwwYgOtp6orW5ejndutmuIh0errwic0XM2SEiMo/BDqlGycqCUgUF1h/PzrZ9jmY4hu/RHp2wD6hbF/jqK2DMmErjbr7Z/vnpdDL1B6gc8Ojvm+t6rtUCK1daP/fKlY4FjczZISIyj8EOqcbVKwbWdmN1wbfYjw64EX/gT20TGYlZuDa0eLFjrx8YKFd4TAslxsRY7noOyOMbN1auNxQTI49bep4tzqjOTETkDRjskGpcvWJg6fLTSCRhJ3ohDOfwPdrh0abfA7da3nEVGOhYM8zcXOPeVElJ8mdWlu2AxdzzTp50PNABnFudmYioOnNrsLNw4UK0bdsWISEhaNiwIQYPHoxjx44ZjRFCYN68eYiOjkZgYCC6deuGoyYZpcXFxZgyZQrq16+P4OBgDBo0CH9XpQ00OUS/smAtj0VpbRwl9F3Hywk8jVeQhFEIQAk24H50RyqGT25o9TwlJTLQsFfDa6fV96YaOVL+VBpMOPo8S3Q62bLCmuRk9S41EhFVF24Ndnbv3o1Jkybh+++/x86dO1FaWorevXvjYoXCKAkJCUhMTMTSpUuRnp6OyMhI9OrVCxcuXDCMiY+Px6ZNm5CcnIy9e/eiqKgIAwYMgI7/V3cprVZuKwcs57HMmKHe61XcVeSLq1iF/+AVPAsAWIyZGI5PcQWBNgOAZcscCwD8/Ox/jjMpqaBsrvYPEZHXEx4kPz9fABC7d+8WQghRVlYmIiMjxaJFiwxjrly5IkJDQ8WKFSuEEEKcP39e+Pn5ieTkZMOYnJwc4ePjI7Zv367odQsKCgQAUVBQoOK7qbk2bhQiJka/b0reYmPl8QsXjI9X5RYZKX+GoEB8hV5CAKIUPuK/eMdo3G23WZ/vhAmOvf5HH7nm81QqKUnZvJOS3D1TIiJ1KP3+9qicnYJrW3DCwsIAAFlZWcjLy0Nv/bYXAAEBAejatSv2Xfu1PiMjA1evXjUaEx0djebNmxvGmCouLkZhYaHRjdQzdKjsxLBkCTB5svz5+++yEN8jj6j3OkVFwHX4G3vQBb2xExcRhDhswXJMNBpnq9Ky2d5ZCsTGOvY8Z+FuLCIi83zdPQE9IQSmT5+Ozp07o3nz5gCAvGvfQhEREUZjIyIi8OeffxrG+Pv7o169epXG5Fn4Flu4cCHmz5+v9luga1JSZI+sipdUXn5Z/rTVBNMedwf8jA+L+iMGOchFJAbgCxxE60rjateWl6ks5cRERjr2+q1aOfY8Z9HnTOXkmK9RpNHIx7kbi4hqGo9Z2Zk8eTIOHz6MT8wkWGhMEkCEEJWOmbI2Zu7cuSgoKDDcspUUbSFFLHU9P3NG3UCnJ3Zi05kuiEEOfsGtaI/vzQY6AHDkCHD99ea7kAOOJwabKdnjVkpypszV/iEi8nYeEexMmTIFW7duRWpqKmIqFAqJvPYrt+kKTX5+vmG1JzIyEiUlJTh37pzFMaYCAgJQp04doxtVnbWu52oajTXYhvtQBxeQim7ohO/wFxpbfU5OjgzCzAU8bds6No/ff3fsec40dKhjtX+IiLyZW4MdIQQmT56MlJQUfPPNN2jSpInR402aNEFkZCR27txpOFZSUoLdu3ej47Vuhq1bt4afn5/RmNzcXBw5csQwhlxDyW6gqhF4HvOxBo/BD6X4GA+hL7bjPOrZfua1ACw+vvLOK5M4WbHQUMee52yWcqYY6BBRTeXWnJ1JkyYhKSkJW7ZsQUhIiGEFJzQ0FIGBgdBoNIiPj8eCBQvQtGlTNG3aFAsWLEBQUBAeeughw9ixY8dixowZCA8PR1hYGGbOnIkWLVqgZ8+e7nx7NY4zKyj74ipWYALG4gMAwALMxbN4GcKOeF2I8q3XFXtPNWjg2JzGjnXsec5mLmfq9dflJS4GPERUE7k12Fm+fDkAoJtJ18PVq1djzLWEiNmzZ+Py5cuYOHEizp07h3bt2mHHjh0ICQkxjF+yZAl8fX0xfPhwXL58GT169MCaNWugZXKCSzlrl09tXMBneAB98RV08MEkvIN3McHh85kGZaaXfJQyWYj0CPqcKdNLiX//LY/zUhYR1UQaIZydYeH5CgsLERoaioKCAubvVMHly0BQkLrnjEAetuE+3IWfcBFBGIFkfIGBVTpnaqrxyo5OJxOY7bkEp9XKLe3+/lWaiqqUvI/YWNnOgr8HEJE3UPr97REJyuQd3n1X3fM1wzHsRwfchZ+QjwbojlSjQMfXznVJjcZ8I0ytFmhtfiOXRTqdcQVnT8AKykRE5jHYIdWcOKHeuTriO+xDRzTBSRzHTeiA/UjH3UZjGlpveWXE2tbrkhLgiy/sn2NOjv3PcSal8/G0eRMRORuDHVKNI53DzRmMTdiFngjHWXyPduiIffgDlU9uTz8ra1uvHe2N9c8/9j/HmZTOx9PmTUTkbAx2SDXjx1f9HBPxDjbifgTiCrZiIO7FN/gX5rdLXesqYtPAgTJPxVJi7vHjjs3V0V1czqJ0Pp42byIiZ2OwQ6r54YeqPFvgFTyNdzAZPhBYgfEYihRchuWMZ6VJtlqt9bE2inFb5OguLmdROh9PmzcRkbMx2CHVONp1wxdXsQZj8DQWAgCexUuYiOXQWamMoNUCd99t8WEj9etbf7xdO6UzNX59T6tZqe+NZY25BG0iIm/HYIdU48jKTm1cwOcYiNH4CKXQ4nG8j1fwrM3lluuvB44dU/Yav/5q/XFHupd74m4sfW8sjcZ8byyNhr2xiKhmYrBDqikutm98Q5xGKrqjL77CRQRhELZiNR4HYLu/1okTymvc1Kpl/fGOHR0LAJxZMdpR7I1FRFSZWysok3extYJS0Q04ga/QBzfhBP5BffTHl5W2ltty+rSycU2bWn983z7HdmM5q2J0VQ0dCsTFyXo6ublynl26cEWHiGouBjukGj8/ZePuQga24T5EIB9/oAn64Cv8DhsRiRmXLysbZysocWSFxtNzX7Ra4yrRREQ1GS9jkWpOnrQ9pid2Ig3dEIF8/IQ70RH7HAp0AOX1Ylavtv64Iys0I0Z49kpJSYnMz5kyRf4sKXH3jIiI3IfBDqnGVl+skUjCl+iPEBRhF3qgK3bjNCKd9np6V65Yf1y/i8meLejJyY5d+nKF2bPlZzNtGrB0qfwZFCSPExHVRAx2SDX16ll+bCreQBJGwR9X8QlGoD++xAVUremqrS3lera6k+t3MQHKAx5P7TE1ezaweHHlQEynk8cZ8BBRTcRgh1Qzdqy5owIL8RTewDQAwJt4EqPwMUoQUOXX69RJ2bhx42yPsbSLyRpH6wo5S0kJkJhofUxiIi9pEVHNw2CHVGO6guKLq1iNx/AUXgUAPIWFiMcbECr9s1O69dzWyo7e0KEy72jwYGXjq1YxWn1KenzpdHIcEVFNwmCHVFOxgm8gLmEzBmMMPkQptHgMH+BVPAXAwd4MZrRrp37FYK0WiI5WNtZWLSBXU9p1Xs3u9ERE1QGDHVKNPvclDGexCz3RH9twGbUwBJuwBo+p/nqxscDIkdbHOLJrylZdHnvHucr116s7jojIWzDYIVUNvftv/BTSBR2xH+dQFz3wNb7AQLvOcd11gI+Nf5larVzZ+eQT6+Mc2TWltHu7Gl3e1dSihbrjiIi8BYMdUs+xYzh3eyc0uvALchCNLtiD/bC/W2bnzkBZmfUxOh3w7rvA339bH+fIrimluTielrNz5oy644iIvAWDHVLHgQMQnTujXuFfOIZm6Ih9OIrmDp1q505l444fVzbO3grJOTnqjnMVpcURPbXNBRGRszDYoarbtQvo3h2af/9FOtqgM/biLzR2+HRnzyobp7Qmjr1f7korMysd5yq2iiNqNJ7f5oKIyBkY7FDVbNgA9O8PFBXh/2J64F58g3/RwCUv3aqVsnHt2tl33gYKp690nKtYK46ov//GG57d5oKIyBkY7JDj3n0XGD5cVqkbNgwrBnyJIoS47OW3bFE27p137Duv0sKC9hQgdBVLxRFjYuTxoUPdMy8iIndisEP2EwJYsACYMEH+efx4IDkZrdpXvSqyRmO97URFv/6qbNzmzfbNoWK9IEs8+XKQvjhiaiqQlCR/ZmUx0CGimovBDtmnrAy6+BnAM88AAH7o9SxK3lwOaLU4d65qp9ZfaomLUzb+wgVl4woK7JuH/nKQRmP+cpBG4/mXg7RaoFs3WYeoWzfPnisRkbMx2CHlSktxoOXj0L61BIBs7tl+50sICtZg9uyq57DoL7V066ZsfN26ysY5Mi9eDiIi8h6+7p4AVRNXruBoiwfR5vet19o/rMY6PAKgvKP2gw86fvolS4ApU+QKxOTJyp5TVKRsnK0ChZYMHSpXmfbskdvXo6LkpSuukhARVS8Mdsi2wkKUDYrD7b+n4QoC8AA+M1sVecMG2Vfq1Cn7Tq/VAhMnlgcRSntO+Sr81xscbN98KtJfDiIiouqLl7HIun/+Abp3h8/uNBSgDvrgK4vtH3Q6oHdv5fVvKj5v377y+0p7Tilt2Kl0HBEReScGO2RZdjZwzz3AwYO4ENgA3ZGKb9HV6lNq15YrPLZ2M5mqWOV44kTbl558fIBx45Sdu6P9HSuIiMiLMNgh8377TTap+r//A2JjkRK/Bz/hLptPu/FG463Pzz6r7OVOny5v2KnVAkFB1scHBwONGik7d2yssnFEROSdNEIozZDwXoWFhQgNDUVBQQHq1Knj7um436FDQJ8+QH4+0KwZsHMnSiIbISjIegdxrRa4dAnw9y8/ptMB118v+0jZ+pcWEyO3fIeFAd27257mrl3AmDHWm4HGxsoaM0wqJiLyPkq/v7myQ8a++05m5Obny34Me/YAjRrB3x+YPt36U6dPNw50AOstDEzl5ADDhimvjJyfX14Px5zqUA+HiIicz63BzrfffouBAwciOjoaGo0Gm01K3Y4ZMwYajcbo1r59e6MxxcXFmDJlCurXr4/g4GAMGjQIf1v7VZ8s++oroFcvWYWvc2d5HaphQ8PDCQnArFmVgwetVh5PSDB/Wks1a0zpV34+/ljZdKOiys9tmiMUG8t6OEREJLk12Ll48SLuuOMOLF261OKYvn37Ijc313Dbtm2b0ePx8fHYtGkTkpOTsXfvXhQVFWHAgAHQWbveQpVt3AgMHAhcvgz06ycDn9DQSsMSEuSlqiVLZD2cJUvkfUuBjp4+j2fJEuvjhJAbwBo0UN69m+0RiIjIGrfW2enXrx/69etndUxAQAAiIyPNPlZQUID3338fa9euRc+ePQEA69atQ2xsLHbt2oU+ffqoPmevtHo18J//yFYQw4bjnXZrcXyOP268Ue6MMndp6s47gYgIubqi9DKRViufo8SoUeWXqCrm+ljq3s16OEREZInH5+ykpaWhYcOGaNasGcaNG4f8/HzDYxkZGbh69Sp69+5tOBYdHY3mzZtjX8XCLSaKi4tRWFhodKux3noLePxxoKwMP7T8DwJTkjB1lj+WLgWmTZO7ombPLh+ekiITjrt3Bx56SP68/np53BadTu66UiIuzr52DTodkJYGfPKJ/Onowp5a5yEiIs/h0RWU+/XrhwceeACNGzdGVlYWnnvuOdx7773IyMhAQEAA8vLy4O/vj3ombbIjIiKQl5dn8bwLFy7E/PnznT19zyYE8MorwHPPAQB2t5mBbgcWAzC+dqRvBQEA7dvLBGLTXVX6xGJrOTIpKcDUqdZ3TgFy5SYmprwtg5J2DebOrd/ZZc+lLLXOQ0REHkZ4CABi06ZNVsecOnVK+Pn5iY0bNwohhPj444+Fv79/pXE9e/YU48ePt3ieK1euiIKCAsMtOztbABAFBQVVeg/VRlmZEDNnCiHjFnH1hReF1qdMf9fsTasVIjra8uOAEA0aCLFunRCpqUKUlpa/3MaNQmg01p8LyDEajRyvlKVz23sutc5DRESuU1BQoOj72+MvY1UUFRWFxo0b4/jx4wCAyMhIlJSU4Ny5c0bj8vPzEWElOSQgIAB16tQxutUYOh3w3/8Cr70m7y9ZgqV1n4OuzPq+cJ3Ods+rf/4BHn7Y+NKWTidXS5RUc7K3o7i1c+uPxcfbvhRl6zxCKDsPERF5pmoV7Jw5cwbZ2dmIiooCALRu3Rp+fn7YuXOnYUxubi6OHDmCjuwRUNnVq8CjjwLvviuvF61aBcTH48QJ9V9Kf2nrlVdsX7oC5C4te3dQ7dlj/dxCyI4Xe/ZU7TyAsvMQEZFncmvOTlFREX7//XfD/aysLBw6dAhhYWEICwvDvHnzcP/99yMqKgonT57E008/jfr162PIkCEAgNDQUIwdOxYzZsxAeHg4wsLCMHPmTLRo0cKwO4uuuXIFGDFCVuzz9QXWrQMefBCAbPGgNiFkPPXWW8rGR0TYX/yvYj+tqozLyVF2HqXjiIjIs7h1ZefAgQNo1aoVWrVqBQCYPn06WrVqheeffx5arRaZmZmIi4tDs2bNMHr0aDRr1gz79+9HSEiI4RxLlizB4MGDMXz4cHTq1AlBQUH4/PPPoWXZ3HIXLwKDBslAJyAA2LTJEOgAcnu5rY9Lq5Xdw+3paC4EcOaMsrHXFuvsovQ5tsb984+y82zYAJSUKBtLRESeg72x4OW9sQoKgAEDgL17ZffMrVuBe++tNGz27PJdV+bMmiV3Y91/v/1TCAsDzp0znxOj333lSP8qfd+tqvbG+vhjmWukhFYr22LYKqJIRETOx95YJJdVevaUgU5oKLBzp9lAB3C8FYQSU6fKn6arQpYKBCql1QIjR1ofM2KE7XPbamNRkX4rfsXaQ0RE5Nm4sgMvXdnJy5N9ro4cAerXB3bskI09bSgpAZYtA06cgFEFZSWrKKYqrtrMnQskJhrvaKrqKolaKzuOvDdzHd6JiMi1lH5/M9iBFwY7f/8N9OgB/PabTFjZtQu47bYqnTItTW4pV0q/arNhg/xprhihfpyjDTuVzik11XYriZQUy3O0ZMkSuSWdiIjcg5exaqo//pBlhn/7DWjcWO6XrmKgAyjf+aSnr5kTF2e7zo6jNWzU2o0FWO6ebo0ztuwTEZH6GOx4k//7P+Cee2QL8JtuAr79VrV95Up3Pj37rHHXcbVq4VRlTkrH6bunT5qkbLwztuwTEZH6GOx4i8OHga5dZTGY22+XgU6jRqqdvksXuephaeu5RiPzY+bNk5eM9Dkyaq6+ODqnLl2Un1OrlblFSrbiT5yo/LxEROQ+DHa8QUaGTF7Jz5dJyGlpjhWusUKrlQ0xAft2VVV19cVaF3JH52SLv79MnLZm+nQmJxMRVRcMdqq7ffvkdvKzZ2UhnG++kbuvnECf12K6VdtaT6uqrL6kpMhdUt27Aw89ZNxzqypzUqJ9+6o9TkREnoO7sVCNd2OlpcmCgRcvylydL74AKlSXdhadTubY5ObKFZkuXayvnuh3OgHGicoVd2yZBiWWdkdZeo69c7L1/qxtRa9KIUQiIlIPd2N5ux07gH79ZKDTqxfwv/+5JNAB5Bd8t26yoF/F/BxL7F19UaubuaOcmVRNRESu59ZGoOSgL76QfRtKSuTKzmefAbVquXtWVg0dKrehK1l9sSfY6NZNrgJNnWr8nJgYmc/jyGUsZyZVExGR6zHYqW5SUmQTz9JS+U3+yScemSlr6bKSreJ+gH3BhqXLXTk58rgjeTtqb2knIiL34mWs6iQ5GRg+XAY6I0cC69d7ZKCjJLHYmoYNlY0LD3fO5S5nbGknIiL3YbBTXXz4ITBqlPzmHj0aWLsW8PW8hTn9SovpZSj9SovSgEeJzEzn5NY4a0s7ERG5B4Od6mDVKuCxx4CyMmDcOOCDDzzym1atxOL8fGWvd/KksnGO5NY4a0s7ERG5nuctDZCx5cvLS/VOmgS89Rbg45kxqr2JxZYozYVR2q7B0dwae5KqiYjIczHY8WRvvlneVnv6dOC11ywnkngAtXYx6XNmcnIsd0qPiZEx4Ouv2x5XldwapUnVRETkuTxziYCAxYvLA52nnvL4QAdQbxeT0pwZf3/m1hARkW0MdjzRggXA7Nnyz88/L+97eKADqLuLSWnODHNriIjIFraLgIe1i5g/X7YOB4CXXgKefdat07GXI60hrFHaBkLNdhFERFQ9KP3+ZrADDwl2hABeeEEGOACwaBEwZ4575lJF5ioax8bKS0pcaSEiIrUo/f5mgrInEAJ45hlg4UJ5/7XXgBkz3DunKuAuJiIi8iQMdtxNCLmCs3ixvP/GG3JZpJrjLiYiIvIUDHbcSQhg5kwgMVHeX7pU1tIhA+bsEBFRVTHYcRchgGnTyvdOL18OTJjg3jl5GKXdzNXuek5ERN6FW8/dQQj57awPdN59t0YEOjodkJYmG7WnpVlvG6G0x5Yre3EREVH1xN1YcPFuLCGAKVOAd96R+7Hfew8YO9a5r+kB7Fl90elkl3RLrSf0lZF//122jLA1LiuLl7SIiLyR0u9vruy4UlmZzMnRBzqrVtWYQMee1RelPbaWLXNO13MiIvIuDHZcRR/oLF8uA50PPgAef9zds3I6RzqhK+2xdeKEsnGOdD0nIiLvwWDHFcrKZNfKFStkoLN6NTBmjLtn5RL2dELX85Su50RE5B0Y7DibPtB5910Z6KxZA4we7e5ZuYwjndCV9tiaOFG9XlxEROS9GOw4U1kZ8N//lgc6H34IPPqou2flUo50QmfXcyIiUhODHWcRQgY6K1cCPj7ARx8Bjzzi7lm5nKOd0Nn1nIiI1OLWYOfbb7/FwIEDER0dDY1Gg82bNxs9LoTAvHnzEB0djcDAQHTr1g1Hjx41GlNcXIwpU6agfv36CA4OxqBBg/C3tSQRV9FogKZNywOdhx9294zcQukqjbnVl6FDgZMngdRUIClJ/szKqhzAKB1HREQ1k1uDnYsXL+KOO+7A0qVLzT6ekJCAxMRELF26FOnp6YiMjESvXr1w4cIFw5j4+Hhs2rQJycnJ2Lt3L4qKijBgwADorFWsc5WZM4GjR4FRo9w9E7eqyuqLvsfWyJHyp6VLUkrHERFRzeMxRQU1Gg02bdqEwYMHA5CrOtHR0YiPj8ecOXMAyFWciIgIvPrqqxg/fjwKCgrQoEEDrF27Fg8++CAA4NSpU4iNjcW2bdvQp08fRa/t0qKCNRj7VxERkZqqfVHBrKws5OXloXfv3oZjAQEB6Nq1K/bt2wcAyMjIwNWrV43GREdHo3nz5oYx5hQXF6OwsNDoRs7H1RciInIHjw128vLyAAARERFGxyMiIgyP5eXlwd/fH/Xq1bM4xpyFCxciNDTUcIuNjVV59kREROQpPDbY0dOYZLUKISodM2VrzNy5c1FQUGC4ZWdnqzJXIiIi8jweG+xERkYCQKUVmvz8fMNqT2RkJEpKSnDu3DmLY8wJCAhAnTp1jG5ERETknTw22GnSpAkiIyOxc+dOw7GSkhLs3r0bHTt2BAC0bt0afn5+RmNyc3Nx5MgRwxgiIiKq2Xzd+eJFRUX4/fffDfezsrJw6NAhhIWFoVGjRoiPj8eCBQvQtGlTNG3aFAsWLEBQUBAeeughAEBoaCjGjh2LGTNmIDw8HGFhYZg5cyZatGiBnj17uuttERERkQdxa7Bz4MABdO/e3XB/+vTpAIDRo0djzZo1mD17Ni5fvoyJEyfi3LlzaNeuHXbs2IGQkBDDc5YsWQJfX18MHz4cly9fRo8ePbBmzRpoudWHiIiI4EF1dtyJdXaIiIiqn2pfZ4eIiIhIDQx2iIiIyKsx2CEiIiKvxmCHiIiIvBqDHSIiIvJqbt167in0G9LYEJSIiKj60H9v29pYzmAHwIULFwCADUGJiIiqoQsXLiA0NNTi46yzA6CsrAynTp1CSEiIzSaj9igsLERsbCyys7NZv8cF+Hm7Dj9r1+Fn7Tr8rF1Hrc9aCIELFy4gOjoaPj6WM3O4sgPAx8cHMTExTjs/m426Fj9v1+Fn7Tr8rF2Hn7XrqPFZW1vR0WOCMhEREXk1BjtERETk1RjsOFFAQABeeOEFBAQEuHsqNQI/b9fhZ+06/Kxdh5+167j6s2aCMhEREXk1ruwQERGRV2OwQ0RERF6NwQ4RERF5NQY7RERE5NUY7DjRsmXL0KRJE9SqVQutW7fGnj173D0lr7Nw4UK0bdsWISEhaNiwIQYPHoxjx465e1o1wsKFC6HRaBAfH+/uqXilnJwcPPzwwwgPD0dQUBDuvPNOZGRkuHtaXqe0tBTPPvssmjRpgsDAQNxwww148cUXUVZW5u6peYVvv/0WAwcORHR0NDQaDTZv3mz0uBAC8+bNQ3R0NAIDA9GtWzccPXpU9Xkw2HGS9evXIz4+Hs888wx++ukndOnSBf369cNff/3l7ql5ld27d2PSpEn4/vvvsXPnTpSWlqJ37964ePGiu6fm1dLT07Fy5Uq0bNnS3VPxSufOnUOnTp3g5+eH//3vf/jll1/w+uuvo27duu6emtd59dVXsWLFCixduhS//vorEhISsHjxYrz99tvunppXuHjxIu644w4sXbrU7OMJCQlITEzE0qVLkZ6ejsjISPTq1cvQs1I1gpzi7rvvFhMmTDA6dsstt4innnrKTTOqGfLz8wUAsXv3bndPxWtduHBBNG3aVOzcuVN07dpVTJ061d1T8jpz5swRnTt3dvc0aoT+/fuLxx9/3OjY0KFDxcMPP+ymGXkvAGLTpk2G+2VlZSIyMlIsWrTIcOzKlSsiNDRUrFixQtXX5sqOE5SUlCAjIwO9e/c2Ot67d2/s27fPTbOqGQoKCgAAYWFhbp6J95o0aRL69++Pnj17unsqXmvr1q1o06YNHnjgATRs2BCtWrXCe++95+5peaXOnTvj66+/xm+//QYA+Pnnn7F3717cd999bp6Z98vKykJeXp7Rd2VAQAC6du2q+nclG4E6wb///gudToeIiAij4xEREcjLy3PTrLyfEALTp09H586d0bx5c3dPxyslJyfj4MGDSE9Pd/dUvNoff/yB5cuXY/r06Xj66afx448/4sknn0RAQAAeffRRd0/Pq8yZMwcFBQW45ZZboNVqodPp8Morr2DkyJHunprX038fmvuu/PPPP1V9LQY7TqTRaIzuCyEqHSP1TJ48GYcPH8bevXvdPRWvlJ2djalTp2LHjh2oVauWu6fj1crKytCmTRssWLAAANCqVSscPXoUy5cvZ7CjsvXr12PdunVISkrC7bffjkOHDiE+Ph7R0dEYPXq0u6dXI7jiu5LBjhPUr18fWq220ipOfn5+pQiW1DFlyhRs3boV3377LWJiYtw9Ha+UkZGB/Px8tG7d2nBMp9Ph22+/xdKlS1FcXAytVuvGGXqPqKgo3HbbbUbHbr31VmzcuNFNM/Jes2bNwlNPPYURI0YAAFq0aIE///wTCxcuZLDjZJGRkQDkCk9UVJThuDO+K5mz4wT+/v5o3bo1du7caXR8586d6Nixo5tm5Z2EEJg8eTJSUlLwzTffoEmTJu6ektfq0aMHMjMzcejQIcOtTZs2GDVqFA4dOsRAR0WdOnWqVELht99+Q+PGjd00I+916dIl+PgYfxVqtVpuPXeBJk2aIDIy0ui7sqSkBLt371b9u5IrO04yffp0PPLII2jTpg06dOiAlStX4q+//sKECRPcPTWvMmnSJCQlJWHLli0ICQkxrKaFhoYiMDDQzbPzLiEhIZVyoYKDgxEeHs4cKZVNmzYNHTt2xIIFCzB8+HD8+OOPWLlyJVauXOnuqXmdgQMH4pVXXkGjRo1w++2346effkJiYiIef/xxd0/NKxQVFeH333833M/KysKhQ4cQFhaGRo0aIT4+HgsWLEDTpk3RtGlTLFiwAEFBQXjooYfUnYiqe7vIyDvvvCMaN24s/P39xV133cXt0E4AwOxt9erV7p5ajcCt587z+eefi+bNm4uAgABxyy23iJUrV7p7Sl6psLBQTJ06VTRq1EjUqlVL3HDDDeKZZ54RxcXF7p6aV0hNTTX7/+jRo0cLIeT28xdeeEFERkaKgIAAcc8994jMzEzV56ERQgh1wyciIiIiz8GcHSIiIvJqDHaIiIjIqzHYISIiIq/GYIeIiIi8GoMdIiIi8moMdoiIiMirMdghIiIir8Zgh4iIiLwagx0iqnbWrFmDunXrunUO3bp1Q3x8vFvnQETKsIIyEalmzJgx+PDDDysd79OnD7Zv367a61y+fBkXLlxAw4YNVTunvc6ePQs/Pz+EhIS4bQ5EpAwbgRKRqvr27YvVq1cbHQsICFD1NQIDA93e6DUsLMytr09EyvEyFhGpKiAgAJGRkUa3evXqGR7XaDRYtWoVhgwZgqCgIDRt2hRbt241OsfWrVvRtGlTBAYGonv37vjwww+h0Whw/vx5AJUvY82bNw933nkn1q5di+uvvx6hoaEYMWIELly4YBgjhEBCQgJuuOEGBAYG4o477sCGDRusvpdly5ahadOmqFWrFiIiIjBs2DDDYxUvY6WlpUGj0VS6jRkzxjD+888/R+vWrVGrVi3ccMMNmD9/PkpLS+38dInIEQx2iMjl5s+fj+HDh+Pw4cO47777MGrUKJw9exYAcPLkSQwbNgyDBw/GoUOHMH78eDzzzDM2z3nixAls3rwZX3zxBb744gvs3r0bixYtMjz+7LPPYvXq1Vi+fDmOHj2KadOm4eGHH8bu3bvNnu/AgQN48skn8eKLL+LYsWPYvn077rnnHrNjO3bsiNzcXMPtm2++Qa1atQzjv/rqKzz88MN48skn8csvv+Ddd9/FmjVr8Morr9j70RGRI1Tvo05ENdbo0aOFVqsVwcHBRrcXX3zRMAaAePbZZw33i4qKhEajEf/73/+EEELMmTNHNG/e3Oi8zzzzjAAgzp07J4QQYvXq1SI0NNTw+AsvvCCCgoJEYWGh4disWbNEu3btDK9Rq1YtsW/fPqPzjh07VowcOdLse9m4caOoU6eO0Tkr6tq1q5g6dWql4//++6+48cYbxcSJEw3HunTpIhYsWGA0bu3atSIqKsrsuYlIXczZISJVde/eHcuXLzc6Zprf0rJlS8Ofg4ODERISgvz8fADAsWPH0LZtW6Pxd999t83Xvf76642ShaOiogzn/OWXX3DlyhX06tXL6DklJSVo1aqV2fP16tULjRs3xg033IC+ffuib9++hktvlly9ehX3338/GjVqhDfffNNwPCMjA+np6UYrOTqdDleuXMGlS5esnpOIqo7BDhGpKjg4GDfddJPVMX5+fkb3NRoNysrKAMjcGo1GY/S4ULBp1No59T+//PJLXHfddUbjLCVPh4SE4ODBg0hLS8OOHTvw/PPPY968eUhPT7e47f2///0v/vrrL6Snp8PXt/x/r2VlZZg/fz6GDh1a6Tm1atWy+d6IqGoY7BCRR7nllluwbds2o2MHDhyo0jlvu+02BAQE4K+//kLXrl0VP8/X1xc9e/ZEz5498cILL6Bu3br45ptvzAYtiYmJWL9+Pfbv34/w8HCjx+666y4cO3bMZhBIRM7BYIeIVFVcXIy8vDyjY76+vqhfv76i548fPx6JiYmYM2cOxo4di0OHDmHNmjUAUGnFR6mQkBDMnDkT06ZNQ1lZGTp37ozCwkLs27cPtWvXxujRoys954svvsAff/yBe+65B/Xq1cO2bdtQVlaGm2++udLYXbt2Yfbs2XjnnXdQv359w/sPDAxEaGgonn/+eQwYMACxsbF44IEH4OPjg8OHDyMzMxMvv/yyQ++JiJTjbiwiUtX27dsRFRVldOvcubPi5zdp0gQbNmxASkoKWrZsieXLlxt2Y1WlXs9LL72E559/HgsXLsStt96KPn364PPPP0eTJk3Mjq9bty5SUlJw77334tZbb8WKFSvwySef4Pbbb680du/evdDpdJgwYYLR+546dSoAWVTxiy++wM6dO9G2bVu0b98eiYmJaNy4scPvh4iUYwVlIvJ4r7zyClasWIHs7Gx3T4WIqiFexiIij7Ns2TK0bdsW4eHh+O6777B48WJMnjzZ3dMiomqKwQ4ReZzjx4/j5ZdfxtmzZ9GoUSPMmDEDc+fOdfe0iKia4mUsIiIi8mpMUCYiIiKvxmCHiIiIvBqDHSIiIvJqDHaIiIjIqzHYISIiIq/GYIeIiIi8GoMdIiIi8moMdoiIiMir/T/LIF0ns8s1FgAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ "
\n",
+ "\n",
+ "IBM SPSS Modeler is a comprehensive analytics platform that has many machine learning algorithms. It has been designed to bring predictive intelligence to decisions made by individuals, by groups, by systems – by your enterprise as a whole. A free trial is available through this course, available here: SPSS Modeler\n",
+ "\n",
+ "Also, you can use Watson Studio to run these notebooks faster with bigger datasets. Watson Studio is IBM's leading cloud solution for data scientists, built by data scientists. With Jupyter notebooks, RStudio, Apache Spark and popular libraries pre-packaged in the cloud, Watson Studio enables data scientists to collaborate on their projects without having to install anything. Join the fast-growing community of Watson Studio users today with a free account at Watson Studio\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Thank you for completing this lab!\n",
+ "\n",
+ "\n",
+ "## Author\n",
+ "\n",
+ "Saeed Aghabozorgi\n",
+ "\n",
+ "\n",
+ "### Other Contributors\n",
+ "\n",
+ "Joseph Santarcangelo\n",
+ "\n",
+ "\n",
+ "##