\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Sometimes, the trend of data is not really linear, and looks curvy. In this case we can use Polynomial regression methods. In fact, many different regressions exist that can be used to fit whatever the dataset looks like, such as quadratic, cubic, and so on, and it can go on and on to infinite degrees.\n",
+ "\n",
+ "In essence, we can call all of these, polynomial regression, where the relationship between the independent variable x and the dependent variable y is modeled as an nth degree polynomial in x. Lets say you want to have a polynomial regression (let's make 2 degree polynomial):\n",
+ "\n",
+ "\n",
+ "$$y = b + \\theta_1 x + \\theta_2 x^2$$\n",
+ "\n",
+ "\n",
+ "\n",
+ "Now, the question is: how we can fit our data on this equation while we have only x values, such as __Engine Size__? \n",
+ "Well, we can create a few additional features: 1, $x$, and $x^2$.\n",
+ "\n",
+ "\n",
+ "\n",
+ "__PolynomialFeatures()__ function in Scikit-learn library, drives a new feature sets from the original feature set. That is, a matrix will be generated consisting of all polynomial combinations of the features with degree less than or equal to the specified degree. For example, lets say the original feature set has only one feature, _ENGINESIZE_. Now, if we select the degree of the polynomial to be 2, then it generates 3 features, degree=0, degree=1 and degree=2: \n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "tags": []
+ },
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "/home/jupyterlab/conda/envs/python/lib/python3.7/site-packages/sklearn/utils/validation.py:37: DeprecationWarning: distutils Version classes are deprecated. Use packaging.version instead.\n",
+ " LARGE_SPARSE_SUPPORTED = LooseVersion(scipy_version) >= '0.14.0'\n",
+ "/home/jupyterlab/conda/envs/python/lib/python3.7/site-packages/sklearn/linear_model/least_angle.py:35: DeprecationWarning: `np.float` is a deprecated alias for the builtin `float`. To silence this warning, use `float` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.float64` here.\n",
+ "Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations\n",
+ " eps=np.finfo(np.float).eps,\n",
+ "/home/jupyterlab/conda/envs/python/lib/python3.7/site-packages/sklearn/linear_model/least_angle.py:597: DeprecationWarning: `np.float` is a deprecated alias for the builtin `float`. To silence this warning, use `float` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.float64` here.\n",
+ "Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations\n",
+ " eps=np.finfo(np.float).eps, copy_X=True, fit_path=True,\n",
+ "/home/jupyterlab/conda/envs/python/lib/python3.7/site-packages/sklearn/linear_model/least_angle.py:836: DeprecationWarning: `np.float` is a deprecated alias for the builtin `float`. To silence this warning, use `float` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.float64` here.\n",
+ "Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations\n",
+ " eps=np.finfo(np.float).eps, copy_X=True, fit_path=True,\n",
+ "/home/jupyterlab/conda/envs/python/lib/python3.7/site-packages/sklearn/linear_model/least_angle.py:862: DeprecationWarning: `np.float` is a deprecated alias for the builtin `float`. To silence this warning, use `float` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.float64` here.\n",
+ "Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations\n",
+ " eps=np.finfo(np.float).eps, positive=False):\n",
+ "/home/jupyterlab/conda/envs/python/lib/python3.7/site-packages/sklearn/linear_model/least_angle.py:1097: DeprecationWarning: `np.float` is a deprecated alias for the builtin `float`. To silence this warning, use `float` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.float64` here.\n",
+ "Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations\n",
+ " max_n_alphas=1000, n_jobs=None, eps=np.finfo(np.float).eps,\n",
+ "/home/jupyterlab/conda/envs/python/lib/python3.7/site-packages/sklearn/linear_model/least_angle.py:1344: DeprecationWarning: `np.float` is a deprecated alias for the builtin `float`. To silence this warning, use `float` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.float64` here.\n",
+ "Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations\n",
+ " max_n_alphas=1000, n_jobs=None, eps=np.finfo(np.float).eps,\n",
+ "/home/jupyterlab/conda/envs/python/lib/python3.7/site-packages/sklearn/linear_model/least_angle.py:1480: DeprecationWarning: `np.float` is a deprecated alias for the builtin `float`. To silence this warning, use `float` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.float64` here.\n",
+ "Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations\n",
+ " eps=np.finfo(np.float).eps, copy_X=True, positive=False):\n",
+ "/home/jupyterlab/conda/envs/python/lib/python3.7/site-packages/sklearn/linear_model/randomized_l1.py:152: DeprecationWarning: `np.float` is a deprecated alias for the builtin `float`. To silence this warning, use `float` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.float64` here.\n",
+ "Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations\n",
+ " precompute=False, eps=np.finfo(np.float).eps,\n",
+ "/home/jupyterlab/conda/envs/python/lib/python3.7/site-packages/sklearn/linear_model/randomized_l1.py:320: DeprecationWarning: `np.float` is a deprecated alias for the builtin `float`. To silence this warning, use `float` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.float64` here.\n",
+ "Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations\n",
+ " eps=np.finfo(np.float).eps, random_state=None,\n",
+ "/home/jupyterlab/conda/envs/python/lib/python3.7/site-packages/sklearn/linear_model/randomized_l1.py:580: DeprecationWarning: `np.float` is a deprecated alias for the builtin `float`. To silence this warning, use `float` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.float64` here.\n",
+ "Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations\n",
+ " eps=4 * np.finfo(np.float).eps, n_jobs=None,\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ "array([[ 1. , 2. , 4. ],\n",
+ " [ 1. , 2.4 , 5.76],\n",
+ " [ 1. , 3.5 , 12.25],\n",
+ " ...,\n",
+ " [ 1. , 3. , 9. ],\n",
+ " [ 1. , 3.2 , 10.24],\n",
+ " [ 1. , 3.2 , 10.24]])"
+ ]
+ },
+ "execution_count": 7,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "from sklearn.preprocessing import PolynomialFeatures\n",
+ "from sklearn import linear_model\n",
+ "train_x = np.asanyarray(train[['ENGINESIZE']])\n",
+ "train_y = np.asanyarray(train[['CO2EMISSIONS']])\n",
+ "\n",
+ "test_x = np.asanyarray(test[['ENGINESIZE']])\n",
+ "test_y = np.asanyarray(test[['CO2EMISSIONS']])\n",
+ "\n",
+ "\n",
+ "poly = PolynomialFeatures(degree=2)\n",
+ "train_x_poly = poly.fit_transform(train_x)\n",
+ "train_x_poly"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "**fit_transform** takes our x values, and output a list of our data raised from power of 0 to power of 2 (since we set the degree of our polynomial to 2). \n",
+ "\n",
+ "The equation and the sample example is displayed below. \n",
+ "\n",
+ "\n",
+ "$$\n",
+ "\\begin{bmatrix}\n",
+ " v_1\\\\\\\\\\\\\n",
+ " v_2\\\\\\\\\n",
+ " \\vdots\\\\\\\\\n",
+ " v_n\n",
+ "\\end{bmatrix}\\longrightarrow \\begin{bmatrix}\n",
+ " [ 1 & v_1 & v_1^2]\\\\\\\\\n",
+ " [ 1 & v_2 & v_2^2]\\\\\\\\\n",
+ " \\vdots & \\vdots & \\vdots\\\\\\\\\n",
+ " [ 1 & v_n & v_n^2]\n",
+ "\\end{bmatrix}\n",
+ "$$\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "$$\n",
+ "\\begin{bmatrix}\n",
+ " 2.\\\\\\\\\n",
+ " 2.4\\\\\\\\\n",
+ " 1.5\\\\\\\\\n",
+ " \\vdots\n",
+ "\\end{bmatrix} \\longrightarrow \\begin{bmatrix}\n",
+ " [ 1 & 2. & 4.]\\\\\\\\\n",
+ " [ 1 & 2.4 & 5.76]\\\\\\\\\n",
+ " [ 1 & 1.5 & 2.25]\\\\\\\\\n",
+ " \\vdots & \\vdots & \\vdots\\\\\\\\\n",
+ "\\end{bmatrix}\n",
+ "$$\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "It looks like feature sets for multiple linear regression analysis, right? Yes. It Does. \n",
+ "Indeed, Polynomial regression is a special case of linear regression, with the main idea of how do you select your features. Just consider replacing the $x$ with $x_1$, $x_1^2$ with $x_2$, and so on. Then the 2nd degree equation would be turn into:\n",
+ "\n",
+ "$$y = b + \\theta_1 x_1 + \\theta_2 x_2$$\n",
+ "\n",
+ "Now, we can deal with it as a 'linear regression' problem. Therefore, this polynomial regression is considered to be a special case of traditional multiple linear regression. So, you can use the same mechanism as linear regression to solve such problems. \n",
+ "\n",
+ "\n",
+ "\n",
+ "so we can use __LinearRegression()__ function to solve it:\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "tags": []
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Coefficients: [[ 0. 51.97357754 -1.76656756]]\n",
+ "Intercept: [106.2464918]\n"
+ ]
+ }
+ ],
+ "source": [
+ "clf = linear_model.LinearRegression()\n",
+ "train_y_ = clf.fit(train_x_poly, train_y)\n",
+ "# The coefficients\n",
+ "print ('Coefficients: ', clf.coef_)\n",
+ "print ('Intercept: ',clf.intercept_)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "As mentioned before, __Coefficient__ and __Intercept__ , are the parameters of the fit curvy line. \n",
+ "Given that it is a typical multiple linear regression, with 3 parameters, and knowing that the parameters are the intercept and coefficients of hyperplane, sklearn has estimated them from our new set of feature sets. Lets plot it:\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "tags": []
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "Text(0, 0.5, 'Emission')"
+ ]
+ },
+ "execution_count": 9,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAGwCAYAAABPSaTdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAACCKklEQVR4nO3deViUVfsH8O8wAgIiKiqL4JJiVpi5lZrmri0qSqW5lJaZ5pK4ltUvrTfFLLXF1MxS05RKMZfK3NA0KxHzTau3zCgRIcwFRBFkOL8/jjMwwyzPDM8sDN/Pdc01zjNnnufMgM7tWe5bI4QQICIiIvJSPu7uABEREZEzMdghIiIir8Zgh4iIiLwagx0iIiLyagx2iIiIyKsx2CEiIiKvxmCHiIiIvFo1d3fAE5SUlODs2bMIDg6GRqNxd3eIiIhIASEELl++jMjISPj4WB6/YbAD4OzZs4iOjnZ3N4iIiMgBGRkZiIqKsvg8gx0AwcHBAOSHVbNmTTf3hoiIiJTIy8tDdHS04XvcEgY7gGHqqmbNmgx2iIiIKhlbS1DcukB5zpw50Gg0Rrfw8HDD80IIzJkzB5GRkQgICEC3bt3w888/G52jsLAQkyZNQt26dREUFIQBAwbgzJkzrn4rRERE5KHcvhvrtttuQ1ZWluF2/Phxw3MLFizAokWLsGTJEqSmpiI8PBy9e/fG5cuXDW0SEhKwefNmJCUl4eDBg8jPz0e/fv2g0+nc8XaIiIjIw7h9GqtatWpGozl6Qgi8+eabeOGFFxAfHw8AWLNmDcLCwrB+/XqMHTsWubm5+OCDD7B27Vr06tULALBu3TpER0dj9+7d6Nu3r9lrFhYWorCw0PA4Ly/PCe+MiIiIPIHbR3ZOnjyJyMhINGnSBI888gj+/PNPAEB6ejqys7PRp08fQ1t/f3907doVhw4dAgCkpaXh+vXrRm0iIyMRGxtraGNOYmIiQkJCDDfuxCIiIvJebg127rrrLnz00Uf4+uuv8f777yM7OxudOnXC+fPnkZ2dDQAICwszek1YWJjhuezsbPj5+aF27doW25gza9Ys5ObmGm4ZGRkqvzMiIiLyFG6dxrrvvvsMf27ZsiU6duyIpk2bYs2aNejQoQOA8iushRA2V13bauPv7w9/f/8K9JyIiIgqC7dPY5UVFBSEli1b4uTJk4Z1PKYjNDk5OYbRnvDwcBQVFeHixYsW2xAREVHV5lHBTmFhIX799VdERESgSZMmCA8Px65duwzPFxUVYf/+/ejUqRMAoG3btvD19TVqk5WVhRMnThjaEBERUdXm1mms6dOno3///mjYsCFycnLw6quvIi8vDyNHjoRGo0FCQgLmzZuHmJgYxMTEYN68eQgMDMSwYcMAACEhIRg9ejSmTZuG0NBQ1KlTB9OnT0fLli0Nu7OIiIioanNrsHPmzBkMHToU//77L+rVq4cOHTrg+++/R6NGjQAAM2fOREFBAcaPH4+LFy/irrvuws6dO43SQi9evBjVqlXD4MGDUVBQgJ49e2L16tXQarXueltERF5JpwMOHACysoCICKBLF4D/1FJloBFCCHd3wt3y8vIQEhKC3NxclosgIjIjORmYPBkom6A+Kgp46y3gRio0IpdT+v3tUWt2iIjI8yQnAw89ZBzoAEBmpjyenOyefhEpxWCHiIgs0unkiI65OQD9sYQE2Y7IUzHYISIiiw4cKD+iU5YQQEaGbEfkqRjsEBGRRVlZ6rYjcgcGO0REZFFEhLrtiNyBwQ4REVnUpYvcdWWpAo9GA0RHy3ZEnorBDhERWaTVyu3lQPmAR//4zTeZb4c8G4MdIiKyKj4e2LgRaNDA+HhUlDzOPDvk6dyaQZmIiCqH+HggLo4ZlKlyYrBDRESKaLVAt27u7gWR/TiNRURERF6NwQ4RERF5NQY7RERE5NUY7BAREZFXY7BDREREXo3BDhEREXk1BjtERETk1RjsEBERkVdjsENERERejcEOEREReTUGO0REROTVGOwQERGRV2OwQ0RERF6NwQ4RERF5NQY7RERE5NUY7BAREZFXY7BDREREXo3BDhEREXk1BjtERETk1RjsEBERkVdjsENERERejcEOEREReTUGO0REROTVPCbYSUxMhEajQUJCguHYqFGjoNFojG4dOnQwel1hYSEmTZqEunXrIigoCAMGDMCZM2dc3HsiIiLyVB4R7KSmpmLFihW4/fbbyz137733Iisry3D78ssvjZ5PSEjA5s2bkZSUhIMHDyI/Px/9+vWDTqdzVfeJiIjIg1Vzdwfy8/MxfPhwvP/++3j11VfLPe/v74/w8HCzr83NzcUHH3yAtWvXolevXgCAdevWITo6Grt370bfvn3Nvq6wsBCFhYWGx3l5eSq8EyIiIvJEbh/ZmTBhAh544AFDsGJq3759qF+/Ppo3b44xY8YgJyfH8FxaWhquX7+OPn36GI5FRkYiNjYWhw4dsnjNxMREhISEGG7R0dHqvSEiIiLyKG4NdpKSknD06FEkJiaaff6+++7Dxx9/jL1792LhwoVITU1Fjx49DKMy2dnZ8PPzQ+3atY1eFxYWhuzsbIvXnTVrFnJzcw23jIwM9d4UERERSRcvAqtXAw88AJw86bZuuG0aKyMjA5MnT8bOnTtRvXp1s22GDBli+HNsbCzatWuHRo0a4YsvvkB8fLzFcwshoNFoLD7v7+8Pf39/xztPRERE5l24AGzZAnz2GbB7N3D9ujx+993A88+7pUtuC3bS0tKQk5ODtm3bGo7pdDp88803WLJkCQoLC6HVao1eExERgUaNGuHkjegwPDwcRUVFuHjxotHoTk5ODjp16uSaN0JERFTV5eYCn38OfPIJsGsXUFxc+lxsLPDww/LmJm4Ldnr27Injx48bHXv88cfRokULPPvss+UCHQA4f/48MjIyEBERAQBo27YtfH19sWvXLgwePBgAkJWVhRMnTmDBggXOfxNERERVVX4+sG0bkJQE7NgBFBWVPteyZWmA06KF+/p4g9uCneDgYMTGxhodCwoKQmhoKGJjY5Gfn485c+bgwQcfREREBP766y88//zzqFu3LgYNGgQACAkJwejRozFt2jSEhoaiTp06mD59Olq2bGlxwTMRERE56No1Gdhs2CADnYKC0uduvRUYMgQYPNgjApyy3L713BKtVovjx4/jo48+wqVLlxAREYHu3bvjk08+QXBwsKHd4sWLUa1aNQwePBgFBQXo2bMnVq9ebXZkiIiIiOyk0wEpKcD69cCmTUDZdC3NmgGPPCKDHJMBDE+iEUIId3fC3fLy8hASEoLc3FzUrFnT3d0hIiJyLyGAI0eAjz+W63DK7nCOipLBzdChQJs2gJUNQc6m9PvbY0d2iIiIyMX+/FMGOOvWAb//Xnq8Th25/mbYMKBzZ8DH7Wn67MJgh4jIQ+l0wIEDQFYWEBEBdOkCcIaeVHfxIvDpp8DatcC335YeDwgA4uKA4cOBPn0APz/39bGCGOwQEXmg5GRg8mSgbF3jqCjgrbcAK2nGiJQpKgK++koGONu2le6k8vEBevYERowABg0CyqyRrcwY7BAReZjkZOChh+SyibLOnJHHN25kwEMOEAL48UdgzRq52Pjff0ufa9UKePRRuQ4nMtJ9fXQSLlAGFygTkefQ6YDGjY1HdExFRwPp6ZzSIoWys+U6nNWrgRMnSo+Hh8spqkcflcFOJcQFykREldCBA9YDHQDIyJDtunVzSZeoMioqAr74Ali1CvjySxlFA4C/PzBwIDBqFNCrF1CtaoQBVeNdEhFVEkrrErN+MZn188/ABx/I3VTnzpUe79BBBjhDhgC1armrd27DYIeIyIP88IPydo8+6ty+UCVx+bIs2fDBB8a/QOHhwGOPySDnllvc1j1PwGCHiMiDKF1FydWWVZwQwPffA++/L5P+Xb0qj1erBvTvDzzxBHDvvVVmmsoWfgpERB4kJkbdduRlzp+X28VXrpRTVnotWgCjR8vhvrAw9/XPQ3E3Frgbi4g8R1EREBhYup7UHK1W/ke+Eud4I3sIAXzzDbBihcw7oM+JExAg1+A8+STQqZNbyza4C3djERFVQn5+wNSpwOuvW24zdSoDnSrh/HmZE2fFCuC330qPt2kDjBkjc+KEhLivf5UIgx0iIg+zYIG8X7TIeIRHq5WBjv558kJCAN99ByxbBnz2GVBYKI/XqCHrUj31FNC2rXv7WAlxGgucxiIiz1RUBCxdCpw6BTRtCowfr86IDmtueaC8PLldfPly4Pjx0uNt2gBjx8pRHC8p3aAmTmMREVVyfn5AQoK652TNLQ9z/LgcxVm7FsjPl8cCAmRwM24c0L69e/vnJRjsEFGlxlEK5SzV3MrMZM0tlyoqkj+MpUvlL69eixbA00/L3DhVMPGfM3EaC5zGIqqsOEqhnK2aWxqN/OxYc8uJzp4F3ntPLjjOzpbHqlWT1cXHjwe6dq2SO6oqgtNYROTVOEphH1s1t4RgzS2nEAI4eBBYskT+0hYXy+MREXItzpgxXlll3NMw2CGiSkenkyM65salhZD/OU5IAOLiOEqhl5WlbjuyoaAA2LABeOcd4Nix0uNdugATJ8rRHF9ft3WvqmGwQ0SVDkcpSildsxQRoex8StuRBWfOAO++K8s4nD8vjwUEAMOHyyCnVSv39q+KYrBDRJVOVRmlsLX13J41S126yOcyM82PiOnX7HTp4pz34tX0darefBPYtKk0OVKjRsCECbKMQ506bu1iVefj7g4QEdmrKoxSzJwpy0ZMmSKXe0yZIh/PnCmf169ZMh3h0q9ZSk42Pq7VyiAIKL8GVv/4zTc57WeX69eB9euBu+6S5Ro+/VQGOt26yR/AqVPAjBkMdDwAd2OBu7GIKpuCAvnFb8vVq3IGobKZOdN6uYhp02Sha0d2VpkbDYqOloEOF3QrdOGC3FG1ZImMLgHA319OVT3zDKeqXEjp9zeDHTDYIaps3nxTjnTYsnix8qR8zspWbC8lhUB9fICSEtvnSkkxv2aJuYkc9Pvv8pdv9WoZcQNAeLj8ZRk3DqhXz529q5K49ZyIvNapU+q2mzmzfB2q6dPdU4dq6VLrgQ6gLNABLK9Z0mq9f+G2aoSQkeHChcC2baULnu64Q0bcQ4bIUR3yaAx2iEh1zh4ladpUvXaWpox0utLj1gIetUdJlAZoSlTmNUtuV1wskzUtXAgcOVJ6vH9/GeR068YEgJUIp7HAaSwiNZkbJVG7WreSqR6tVq7ZsRZkVfQ8zsjgrHSKLiRE1o60trOK2ZAdcPky8MEH8gfx99/yWPXqwMiR8gdz881u7R4ZU/r9zd1YRKQa/SiJafCgHyXR7ySqKD8/GTxZM3Wq7dEkJVNGOp1sZ8re3VBKjR9vO0DRamXVAYA7q1STlQXMmgU0bCiDmr//lmtwXn4ZOH1aViNnoFNpMdghIlUUFckRHWsWLZLt1LBggdzVa/qFrtXK40pGkRxd+2MrgzMgF0bbCqTMURrIDRkiZ1kaNDB+LiqKpTLs8ttvsmRD48bA/PnApUtA8+Yymvz7b+Cll7jw2AtwzQ4RqcKeURKlO6RsWbAAePVVx9cHObr2x9kZnPWBmq3pwPh4WRKDO6sc8P338oP8/PPSCLVTJzn82L+/3PJGXoPBDhGpQu0dUkr5+TkePI0fL3dd2VqzM3688TFXZHCuaCBHZggBfP21HMHZv7/0+IABMsi5+2739Y2cisEOEalCzR1SrqKfMrKWwM/c2h9XZXC2Fcg5Y4G0V9LvrJo/H/jvf+UxX1+ZBHDmTOCWW9zbP3I67sYCd2MRqUGtHVLuMHAgsGVL+eNxcXKWw5ROJ5d42Koz5czdUPoF0qbX1y9Q5rodAIWFwEcfAa+9VjqkGBQEjB0rFyFHRbm3f1RhlW43VmJiIjQaDRLK/DdGCIE5c+YgMjISAQEB6NatG37++Wej1xUWFmLSpEmoW7cugoKCMGDAAJyxNplORE6h1g4pV0tOBrZuLX9co5HHze2qslVnSgjgySdlqaR9+xxbqGyNMxdIe4X8fJk++6abgKeekoFOaGjpzqqFCxnoVDXCAxw+fFg0btxY3H777WLy5MmG4/PnzxfBwcFi06ZN4vjx42LIkCEiIiJC5OXlGdqMGzdONGjQQOzatUscPXpUdO/eXbRq1UoUFxcrvn5ubq4AIHJzc9V8W0RV0owZQmi1QsivXXnTauVxT1NcLERUlHFfy940GiGio2U7czZtKv/60FB5K3ssKkq2VUtKiuU+l72lpKh3zUrh4kUhXnnF+AfQoIEQixcLkZ/v7t6REyj9/nZ7sHP58mURExMjdu3aJbp27WoIdkpKSkR4eLiYP3++oe21a9dESEiIWL58uRBCiEuXLglfX1+RlJRkaJOZmSl8fHzEjh07LF7z2rVrIjc313DLyMhgsEOkosJC+f0ycaK8Lyx0d4/MszdoKC6Wf16/Xt4XFxsfe/llGSCZC5o0GvUCnvXrlfV7/Xp1rufxcnKEmDVLiJo1S998s2ZCvP++ENeuubt35ERKgx23T2NNmDABDzzwAHr16mV0PD09HdnZ2ejTp4/hmL+/P7p27YpDhw4BANLS0nD9+nWjNpGRkYiNjTW0MScxMREhISGGW3R0tMrviqhq0y+sfecdee9pU1d69uyqSk6W63S6dweGDZP3jRvLtT7dugGDBwPvv++aqSVXLZD2eFlZcm60USMgMVGmlI6NBdavB379Vc4lsm4Vwc1rdpKSknD06FEkJiaWey47OxsAEBYWZnQ8LCzM8Fx2djb8/PxQu3Zti23MmTVrFnJzcw23jIyMir4VIqqElAYDJ0/azpZsT+6diurSRS45sVSaSaMBoqNlO6+UkQFMnAg0aSLX5hQUAO3aydXk//0vMHQoUI2bjamU24KdjIwMTJ48GevWrUP16tUtttOY/G0WQpQ7ZspWG39/f9SsWdPoRkRVj5KgISoKWLHC9ohNZqaya1Yk946erQXSgDrlIgoKZEzRt6+8Lyio2Pkq7K+/5E6qpk2Bd9+Vu606dQJ27AAOH5bb55gMkMxw229FWloacnJy0LZtW1SrVg3VqlXD/v378fbbb6NatWqGER3TEZqcnBzDc+Hh4SgqKsLFixcttiEiskRJ0DBmjPVARj9ic+6csmuqNbUUH+/cchEDB8pUAu++C+zcKe8DA+Vxl0tPlz+ImBgZeV6/LucO9+wBDh6U0RgrkJMVbgt2evbsiePHj+PYsWOGW7t27TB8+HAcO3YMN910E8LDw7Fr1y7Da4qKirB//3506tQJANC2bVv4+voatcnKysKJEycMbYiIrLEVNMTEKDtPvXqun1qKj5eDHSkpcplKSoqMC9QIdMzlHQLkcZcFPH/+CYweLWtVrVwpkwP27CmzH6ekAD16MMghRdw2qRkcHIzY2FijY0FBQQgNDTUcT0hIwLx58xATE4OYmBjMmzcPgYGBGDZsGAAgJCQEo0ePxrRp0xAaGoo6depg+vTpaNmyZbkFz0REllirMbVvn7JzNGggR4keeqg0146eMyuRa7WO1d+ypKDAcqCjt2WLbBcQoN51jaSny1oZa9aUruju00cW5fTwkg5FRSzx4ZFcsjdMobJbz4WQ289nz54twsPDhb+/v7jnnnvE8ePHjV5TUFAgJk6cKOrUqSMCAgJEv379xOnTp+26LvPsEJEl+lw85raUm8vFYy73TnS0unl2nGnCBGXb2idMcMLF//xTiNGjhahWrfRCffsKceiQEy6mvsqUY8pbKP3+ZrkIsFwEEVmnL80AmB+xMV0jo9NV3krkffvKNTq29Okja2qq4vRpYO5c4MMP5VSVviOzZwMdO6p0EeeaOdN6jbUZM0qr1ZN6Kl25CCIiUzqdnEbasME5ZReUsncxsH5qaehQeV9ZAh1A+Rolpe2sysyU27z0C4+Li4HevYFvv5U7rCpJoFNUBCxaZL3NokWyHbkHR3bAkR0iT+SJFb0dHbGpTCM9BQVy15UtV69WYM1OTo6sQL50qdw+Dsio8JVXKmVyoDfflHVFbVm82HoVe7Kf0u9vZl0iIo9jqaK3Pomfuyp6O7IY2BODNmsCAuRibWuLlOPiHAx0LlwA3nhDvvmrV+Wxu+8G/vMfmZK6ktIXVFerHamP01hE5FE8uaK3vdNq+qDNWublinJG4r/PP5cBjTlxcfJ5u1y+LEdtmjSRZR2uXgXat5dTVQcOVOpAB5C7rtRsR+rjNBY4jUXkSfbtU/bdl5Ki7pZrW+wdodHpZO0sSyUk9NmZ09Mdn9KylA/HoYDEjIICubD25Em5rOb11+0c0SkoAJYtkwHOv//KYy1bypGcAQO8JkdOUZGc+rMW/Gq1MsbjNnR1cYEyEVVK9hTndLZz5+RgRPXqwIMPKh+h0elkEdSK1sqyNmrjisR/AQHAkiVy19WSJXYEOtevywXHMTHAtGky0ImJkUNix47JaMxLAh1ABjBTp1pvM3UqAx13YrBDRB7FUyp616oF1K8vMxTr19CaMjetpq+OrmTBKmA5aLNWrsGexH8uVVIiA5pbb5U1rDIzZdroDz4AfvkFeOQRr61dtWCBHAUzHaXTarnt3BNwGgucxiLyJPrpn8xM8+t21Jj+saVWLSA3177XpKTI9bfmFlbbep3pdJy1URtAfj5//WX73BMmyBEZpxMC+Oor4PnnZdVxQNbPePFFGfT4+7ugE56BGZRdi7uxiKhS0hfndHXZBb1z5+wPdAAZnD33nH2BjlYri3aXpWTURkmgAwC//668Lw777jvg2WdL5+Nq1pRDGQkJQI0aLuiAZ/Hz4/ZyT+Sd44lEVKk5u6K3NXfe6djrzp2zvkbHHJ0OOHTI+NiMGY5d35ygIPXOVc6vvwKDBslo7cABOXozfbos3vnii1Uy0CHPxZEdIvJI1opzOtO5c/a110+r1avn2PVM1+ycPOnYecxxSnXyM2eAOXOAVavkGh0fH+Dxx+WxqCgnXJCo4jiyQ0RUhj1BS9lpNdNRKKVMF1qrUobhBlVjj0uX5DxdTIxccFxSIqOpEyeAlSsZ6JBHY7BDRB5Jv6upe3dg2DB537ixOon4rDl8WHnbstNqXbrIx/bsqI6OLl8dwVoxSbcoLJR1Dpo2BV57Dbh2DejcWc6/bd4M3HKLu3tIZBODHSLyOK7IPGxJvXpASIj1NoGBchdVenrp+iH9wmpAecDzyCPlp+X05RqsadtW2flzcpS1M6ukBFi/HmjRQiaJuXBBbinfuhX45ptKU6STCGCwQ0QexhPKRVy6ZDngCQkBrlwxX83c0sJqS5KSzL8PW+Ua3nhD2fkdzkW0b59cqT18uNz6FRkpp6r++1+gf3+vSghIVQODHSLyKAcOVDzzsBouXZIjI40by11NjRvLx5cuWX9dfLyMDxYvtn0Na+/j889leYEJE4A+feT91avyuK0pM43G/BSZTb/+KoOZ7t2BtDQgOBiYO1eumh49GqjGPS1UOfE3l4g8iieVi6hXT05V6RUVycXIthLGabVAWJiya1h7H/pyDebOr2ouon/+QcnsOdC8/z40JTqUaKsBY8fCZ/ZLMo00USXHkR0i8iieUi4CMK5y/sgjcq3OlCkyAJkyRT6eObNi/XP0fViaMmvQwI5cRAUFwLx5uN4kBj7vLYemRIfNGIgWup/RaOsSJB9koEPegSM7RORRunQBQkOB8+cttwkNdWCKxk7mqpyb0ulKd0+Z1j7STzXZKntR0fdhem5FGZz1i49nzQLOnIEvgMNoj2lYiIOQHdLcWAzu7CSORK7AkR0iIhOWdoNZsmiRnOIqy9ruLDXKXuj7mJlpfPzsWRs71g4eBDp0AB59FDhzBme0DTEMH6MDvjcEOoDrFoMTuQKDHSLyKAcOWB/VAeTzzlqgbG03mLXXLF1a/rizyl44tGPtzz+Bhx+WQ0mpqUBwMP4ck4gY3f+wAcMgzHwduGoxOJGzMdghIo/i7gXKtnaDWXLqlPnj+t1ZKSly5sg0P48z+mgUpOTlyUKdt9wiIywfH+Cpp4CTJ/FD9+dwDQE2r+eKxeBEzsQ1O0TkUdy1QFmnk8HBpk2Ovb5pU8vPabUyL49alAQfPtDh0usfQhx5ERp9dsFeveScW8uWADxrMTiRM3Fkh4g8ipKyC/XqybUq+/aps56kbGkKc1u9bdFq5TZ0vbK7uJT2saAAmDgR6NtX3hcUWG5rK/join1IQ1sM/PIpaHJycDmyObBtG7BzpyHQAZyYr4fIwzDYISKPoqTswrlzwIgR6tTLsncxsjlTp5bm23GkptfAgXIb+7vvynjk3XflY0tVy/U71kw1Rjo+w0PYh+64A//FRdTCFCxG3bPHkVzUr9wHqv+sLa1PEqJii6iJPAWDHSLyOPaUXahIvSxHFiOb06GDvHekptfAgcCWLebPu2WL5YCnrCDk4z94Eb/iFjyETdDBB0vxNGJwEm8iAdc1ftxVRVWaRoiK/jWv/PLy8hASEoLc3FzUrFnT3d0hohv062gyM2USv3PnzLfT56xJT7dvFGLfPjnyUhH6a//xh1y3Y2mEyFwfCwrkCI4t48YBN99cmrG5tN8Cw7Aer+FZREHuQd+DHkjAmziBluXOk5JivHZIp5OjTvb0mciTKP3+5sgOEXks/cLeBg0sBzqA41uk1dhlpL/20qX21/SaMUPZNZYvN87YnJUFtMZRHEAXfIwRiEIm/kQTDEIyemG32UAHKP9+PaUOGZGzcTcWEXm8im5HLyqSwYhpTSs1dxlZ2npuas8eueZGq5X1Ne2h0wGrXj+HPje9iCN4Hz4QuIJAzMULWISpKER1q683fb/u3uZP5Coc2SEij1eRLdIzZ1quaaXfjaQGa1vPy3r11dIFyzExys+vRTEmYAl+R3P0+nMFfCDwMYbhZvyGRDxvNdCxtKuKW8+pquCaHXDNDpGn0+mAWrWA/HzLbYKDgYsXjdeWzJxZWrvKnBkzgN9/t7xAWAnTNTuWamGZvgYAPv5Y7tiypQu+wRJMxO04DgD4EXdgcZN3sDa9s6L+AeYzNuvX7Niq38U1O+SpuGaHiCo9fb6a9euBK1est71yxXi3UVGRzJ9nzaJFwNattvtx++3mj5etceXnZ3vLvJ4+sHj2WWDAAMvtIpGJjzEM36ArbsdxnEcdjMMytMMRrPvLdqADWC9N4ez6XUSegsEOEXmksvlqHnvM9mhJSYlxfaqlS21vtdbplG07f/xxmVnZdMrLNJCwZ8u8fvHvlClAXJzxc9VwHdPwBv6HFhiGDSiBBsswDs3xO97DOJRAq6jfEybYLk3hrPpdRJ7ErcHOsmXLcPvtt6NmzZqoWbMmOnbsiK+++srw/KhRo6DRaIxuHfQJLW4oLCzEpEmTULduXQQFBWHAgAE4U5HsYETkdo4m+iu74FfpgmElTp1SXuNK3+7FF5WdOysL+Pxz4OpVGZxMb7MX/0UrvIEZCEY+DqEj2uEIxmMZLsBMJkErhFA2KuOM+l1EnsStu7GioqIwf/58NGvWDACwZs0axMXF4ccff8Rtt90GALj33nuxatUqw2v89GlKb0hISMC2bduQlJSE0NBQTJs2Df369UNaWhq0HHsl8giWdkOZU5FEf2WnYpQuGFZCfy6lNa60WqBnT7kY2Rb94t+AC5lY8u804OgnAIAc1MNMLMBHeKxcRfI77gCOHbN9blvTaaZ9VrN+F5FHER6mdu3aYuXKlUIIIUaOHCni4uIstr106ZLw9fUVSUlJhmOZmZnCx8dH7Nixw+Lrrl27JnJzcw23jIwMAUDk5uaq9j6ISJoxQwitVggZvsibViuPm5OSYtzWnttHH5Wep7Cw/HVNb1qtEBqN7TaFhfKcxcWyf+vXy/viYsvvu7hYiKgoy+fXaISIjhaiuKBIiDfeEKJGDfmEj48QkyaJ/5t00eLn9tFH9n8eRN4oNzdX0fe3x6zZ0el0SEpKwpUrV9CxY0fD8X379qF+/fpo3rw5xowZgxx99V4AaWlpuH79Ovr06WM4FhkZidjYWBw6dMjitRITExESEmK4RUdHO+dNEVVx+t1QpmtndDp5fObM8q+pSE6Xsn+V/fyANm2st2/TBpg+3Xobfd0re2pe6TM/P/SQDDssLf5dN2Y/tO1ay07k5wMdOwJpacDbb+OVt2vh6lVg8WJZGHTxYjnVtWCB8fu0hv+0Ed3gouDLop9++kkEBQUJrVYrQkJCxBdffGF4LikpSWzfvl0cP35cbN26VbRq1Urcdttt4tq1a0IIIT7++GPh5+dX7py9e/cWTz31lMVrcmSHyPmUjqzoR030du92bFQnOtp4pMWe61safXr6aSFiY0sHXcyNzmg0QmzaVHrdTZvkiI7puco+bh2ZLf7q+mjpgbp1hfjgAyF0Oqd+tkTeptKM7Nx88804duwYvv/+ezz99NMYOXIkfvnlFwDAkCFD8MADDyA2Nhb9+/fHV199hd9//x1ffPGF1XMKIaCxMlnt7+9vWBStvxGRupTuhiq7g8oRGo28mW6Rtuf6Cxag3ChK3brAsmXAiROW8/vo1xXpi2xaWlit78eUZ3T4LWEZ0q62QKP9a2XHx44FfvsNeOIJwEfZP8mHDil7b1YGuImqFLeXi/Dz8zMsUG7Xrh1SU1Px1ltv4b333ivXNiIiAo0aNcLJG1suwsPDUVRUhIsXL6J27dqGdjk5OejUqZNr3gARmaV0N5RpuzIz1YpERclAx3TnkNJSDPp2fn4yaAGA8HDgn3+UvV6/hXzfPusLq9vgKB5bPg7Ni1LlgdatZTR1113KLlQGyzwQ2cftIzumhBAoLCw0+9z58+eRkZGBiBvbF9q2bQtfX1/s2rXL0CYrKwsnTpxgsEPkZkp3Q5m2U1qa4MUXrW+RVroTybTdhQvKA52y9u0zv1U+GHl4E5NxGO1xR1EqCvxqonjxO0BqqkOBDsAyD0R2c8mkmgWzZs0S33zzjUhPTxc//fSTeP7554WPj4/YuXOnuHz5spg2bZo4dOiQSE9PFykpKaJjx46iQYMGIi8vz3COcePGiaioKLF7925x9OhR0aNHD9GqVStRbG2bhAmlc35EpJyj60oU72Ky8Vd85Upla31ubP40iI11bM3Qiy+aHisRD+IzcQaRhoPr8YgIx1mru9GU0H9G9qxhIvJGlWLNzj///INHH30UN998M3r27IkffvgBO3bsQO/evaHVanH8+HHExcWhefPmGDlyJJo3b47vvvsOwcHBhnMsXrwYAwcOxODBg3H33XcjMDAQ27ZtY44dIjfz85M7maxp0gRo1w4YNKh0XYySEga9eskppzfflDl8zNm+XVk/TdudPavsdWX7FB1tnKOmMdLxBR7ARjyMBjiLk2iG3tiJYdiAbERY3Y2mhFYL+Ptbb+PnxzIPRHosBAoWAiVyppkzZQ0qWwtqAaB9e+DwYfnn5GS5Bqbs1FBwsKyBVVJSekyrlUHVggXG5+rVC9izx/Y1e/YEdu8ufdyypVyUrETZIptxcUCzRtcxJHMRXsLLCEQBCuGH+XgOiZhltiq5VisXRltKsGhJfr78LGy5fBmoUcO+cxNVJiwESkRuU1QkR10mTQIiI4FLl0p3OlnL/ZKaCtx5p/yzaQmDIUPkl3fZQAewnLNHSTBgrt3+/cpeBxjXj9Ie/g7HtG0xH88hEAVIQTfcjp8wBy+bDXT0fXdkN9qjj6rbjsjbMdghchN9Re8NG+S9kpEPZ1OjTzNnAoGBssDlkiXyvlYtOT2UmCh3LlmTmmo8pdWtG/DggzKosGbRIuMpLWvVxMsybVenDhAWZv01ISFlFkf3zJX1L+6+GyGnj6MwOBQJtdegB/bid9xs8/qO1PCyd6cZUVXHYIfIDezJxluZ+mQrY/Iddyg7j+mIhCM5e3JzlV3LXLvsbBmwmRMYKEequnUV0H6+CbjlFrmFXAhg1Cj4//k/LDz3GCZMULYdzJEaXo7uNCOqqhjsELmYpcRzmZnyuDsCHjX6VFQkR1escTT3jiOvK5N6yypz7WbOlGtpzLl6FZg7LgMYOFB+OFlZQEwMsHcvsGoVULcutFr5WdhaIKzVykEheynNrMEMHEQSgx0iF7JW0ds0G29l65OS0RelTEc7HMnZ88MPyl5j2s5a0OYDHSZgCZ5571Zg61bA1xf4v/8DfvpJDoWVoWQ3mr7ulr1uuUXddkTejsEOkQsdOGA+8ZyePhvvgQOVr0+OrD2xZO1a48fjx9s/SqJ0C7lpO0tB2634GQfRGUswCcHIx9nGnYAffwReeQWobn4B8oIFwIwZ5fuu1crjpjvIlHLk8yCqyhjsELmQJ6b5V6tPSkdfbFXibt++dLu0fsH0pk1yxsga01ESpVkkTNuZBm1+KMQczMaPaI2O+B55CMZ4vIv5DxwAbrvN5vnN1d3SVy93lDNHjYi8kdtrYxFVJZ6Y5l+tPo0fD0yfbn0qS6sF/vgD6NxZ7royZSvPTo0aMlBQkmdn2LDyI0TmDBtm/Lhs0NYJ32IlnsQt+B8A4HPEYSKWIBNRWNzM9rn1ytbdUsuCBTIQtPQ5ViSYIvI2HNkhcqEuXWRuFku7ZPTZeLt08dw+Wdqebs9ow+HDMmfOwIEyid/AgfJx2UDH3ILpK1fktNq99wJ9+gATJsjXmfti9/VV9v5N240fD4T4XMY7mIgD6IJb8D9kIRwPYiMGYTMyEeWyKSJrqQBmzjQf6ADyuKPZmYm8kkuKV3g41sYiV9q0SdZ3Mq39pD+2aZPn9mnTpvI1maKijPs8Y0b5mlj21IJSUvfJ2vX11q9X9vr1601e+MUX4kJwtKHBSjwhauGC0WsqUtdKKWuftaN1x4i8jdLvbwY7gsEOud6mTUI0aKDsS9uVfTL9co2ONg50zBXnNBekFRYKsXixEBMnyntzX7rFxUKkpMhgIyWltGhlSop9BTgtBYlKz5OScuMF584JMXy44Yl/Q24SvX12Oxy0KXmvltj6rB9/XNl7W7zY/r4SVSZKv7+5ZofITTwt4Vt8vKzvdOCAXIwcESGnrrRa29vTNRq5JiUuTra3tUbF3HqcqChZALSw0L5+m7s+UDo9l5lpvt8ajXy+S2cBfPqZXD187hzg4wMkJCD0lVew3TcIS5fKRctNm8qpK3sX/Vp7r/Hx5dsr+aw/+0zZtdXcIUdUmXHNDpGLeWJSQVvU3DJv6/07UuLA3PWVVE9fPjsL2ofjZeGtc+fk7qrvvgMWLgSCggxB2zvvyHtHAh17f9ZKPmt9OQ1bHMnOTOSNHB7ZuXTpEg4fPoycnByUmFTme+yxxyrcMSJvZO8IiSupMdpia3u6kvf//vvWR2TsuX58vKypVe59NRBIHvgR2k1PkLUfqlUDnn9e3vz97buoBY7+rNVMOzB2rHrnIqrMHAp2tm3bhuHDh+PKlSsIDg6Gpsx/mzQaDYMdIgvsGSHp1s1l3TKMQJh+MetHIObMUXYeW9vTlbz/M2eAl1+W19Ro7At4zF0/Ph7o1w+G6ahWoWfwxPdPwWfJV7JB27bAhx8Ct9+u/EIKOPqzVjPtwA8/yHPrdOanJ4mqCoemsaZNm4YnnngCly9fxqVLl3Dx4kXD7cKFC2r3kchreGJSQSXlIlasUHauu+6y/rzS9xUTI3P2+Cj8F8ralv3kZDmdM2WKwLUl7+Phl2+Dz9dfQefrD8yfD3z/veqBDuD4z1pJKoA6dZSdOzPTM4vOErmaQ8FOZmYmnnnmGQRaKgtMRGa5KqmgtfwsppSMQGRmKrvue+9Zf17p+zp5EnjjDWW1tvRBwZtvlh+t0I9Yac6cxtfoi/fxFEKQh+/QAS2v/4jkmGflFJYF584BTZrIZIZNmsjHSjn6s1ay1iguTtm59+wxv2bozBnPXR9G5BSObPUaNGiQ+OSTTxzaJuaJuPWcXEWfQ8bctmL91uLoaNtbk61RkgunLKX5aJTcnn7aet+U5Ifx8Sm/Ld/arez2+HKfdYMS8SRWiFwECwGIq6gupmCh8EGx4bWWPuuQEPPXCwlR9nOo6M/aWiqAdeuUfTZ16tj+7Cryu0bkbk7dev7AAw9gxowZ+OWXX9CyZUv4mqQgHTBggAphGJH30f+v/aGHyq9HsTZCoZSttTcbN5bf7qzmGhFbUzeHDtkerSkpUTaS9OKLQM+eQKdO8rwbNhivRzm88TQ+yHwSfbALAHAQd+NxrMIfiDGcw9L6qFq1gNxc89fNzZXPX7pkvX8V/VlbSwWwb5/1a+vZWlXgjvVhRG7hSCSl0Wgs3nx8fByKztyJIzvkarYS+DnCVuZhSyMJSkYgAgOVjSSMG2e9jx9+qN4o0vr1FkaxGpSItHErRFH10tGcBCwyjOaY3tatM+5jTo6y6+fkKPu5uONnDQhRu7ay9/HRR473g8jdlH5/O7Rmp6SkxOJNp2SSnaiKi48H/voLSEkB1q+X9+np5pPMKaV098877xiPrihZIzJ4sLI+3Hyz9ec/+EDZeZQ4ebL8epQGOIP3M+9Dm+VPwffaZXyLTmiF/+JNTEEJzA+hmK7DufNOZddX2i4+Xu4CK1v1/I8/Kvaz1v/MrC1iVtq/H35wvB9ElQWTChK5iVYrpw+GDpX3Fd0KrHT3z5Qp5Xfj6PPRNGhg3DYqSh5fulTZuW3ldbE0NWSqWjXrX+RRUTIfT+nUkMBIrMYJxOJefI1r8MeLAQtxD77BSTS3eq3gYOPHShchK21XuhsMWLJE3jdtWvHFwfqfWVSU8fHoaHlcaUJB0ylPIm/kcLCzf/9+9O/fH82aNUNMTAwGDBiAA0rSpxKRU9iz9sZcBl9ro01K//dvq12zZsrO06aNvLc00jRmTOmITjiysBUDsBqPoxZy8T3uwh04hrkFUy2O5pS1apXx43r1lPVRSTtnZ8u29jOLibH5cgDK2xFVZhoh7I/r161bh8cffxzx8fG4++67IYTAoUOHsHnzZqxevRrDhg1zRl+dJi8vDyEhIcjNzUXNmjXd3R0ih+h0csRGaeZh/QhJerrtUaUNG2SOFlvWr5cjVZbk55cfSTHn8mVg587ymY+jo+Wi3sJC2Z8hSMJSjEcdXEQh/PASXsFCTIPOjnypsbHA8eOlj8+dA+rXt/26nBwZ8BQVwWz9LP3Pw9LUoj2fvyOKioDAQOsLwrVa4OpV+8tgEHkKxd/fjiwIatGihVi0aFG54wsXLhQtWrRw5JRuxQXK5C0sVcu2dhs40HJlcj17K4hbq/Ldvr31c7RvX9rW0nkOfn5OJGGw4UVpaC1uw3GHFjoPHFj+/Vradq6/6befz5hRfiu9vjK63VXXnWDGDOvXdqSCO5EnUfr97VCw4+fnJ06ePFnu+MmTJ4W/v78jp3QrBjvkTeLiHNvdpP+SNqe4WIjQUOuvDw2V7ZTk+bEU8JQNdCzatk2UhIUJAYjr0IrZmC2qocjoPBqN8lw9ly+bv4ytPDu2Aol+/ZRdf/165T9bR1gLyIgqO6fuxoqOjsaePXvKHd+zZw+io6MdOSURqWDmTGDLFsdeq9MBr78uz+EopWtUDh+WU1UDBwItW8r7y5flcYvy8oAnnwT694fmn3+QF3UrOuAHvKKZg2KU5vrSr+tZtEhZny1N4Vy6JKeqGjcGgoLkfU6OPF5UZPv8X36p7Ppq5jkyZ8ECOVVVdjfY1avyOFFV4dCanWXLliEhIQFPPPEEOnXqBI1Gg4MHD2L16tV46623MLaSldrlmh3yBkrWaChhbh3Hvn2yppItdesC//5r+fnoaAfXqOzfD4wcCfz9t4xmpk0D/vMfJH9Z3eK6ntOn5c4nWxYvltXH7fHmm8rOrcTVq0BAgDrnIqpqlH5/O5RB+emnn0Z4eDgWLlyITz/9FABwyy234JNPPkGc0qItRFWc2pWoly6teKCj79fSpcYBgNJt7dYCHcCBjL3XrgEvvCAjEiFkgarVq4F77gFgPcvwpEnKLnHqlMK+VPA1lowdCzzxBCuREzmTQ8EOAAwaNAiDBg1Ssy9EVUZycvmdRlFRMlGco8nm1PwCNj2Xkt1JSiktKooffwRGjAB++UU+HjMGWLiw3HYufb4iU40aKbuM0nZlKc1ho8TatfJW0Z8/EVnGpIJELuas3CtqfgGreS5TNpPx6XRAYiJw110y0AkLA7ZtA1asULZv3QXGjwd8VP7XU63cO0RUnuK/rnXq1MG/N8aoa9eujTp16li8EZF5Op0c0TG3Uk5/LCHBsemo8ePVmQbRauW5ysrJqfh59awm4/vzT6BrV+D554Hr14FBg2QSnH797L5Oerq67crSauX6KGuCg+0LiCr68yciyxRPYy1evBjBN/5XtXjxYmgs5XInIouU1q9ypBK1nx8wdarcUVURU6eW36Gk5o4h05IUAOQbX7VKRoL6zIPvvAM89pjluhE3WFr7pPSfKGvtLJ37wAHZTWsuXwaGDAE++URZP4CK/fyJyAqXbIS3YOnSpaJly5YiODhYBAcHiw4dOogvv/zS8HxJSYmYPXu2iIiIENWrVxddu3YVJ06cMDrHtWvXxMSJE0VoaKgIDAwU/fv3FxkZGXb1g3l2yFXWr3d+7hV35tmxldvGXNV1ce6czOynb3TPPUKkpyt6r9Zy+nz0kbL3banqt7VzK/05JiQ49rNwdu4dIm/h1Dw7R48exfEy+dW3bNmCgQMH4vnnn0dRUZHi80RFRWH+/Pk4cuQIjhw5gh49eiAuLg4///wzAGDBggVYtGgRlixZgtTUVISHh6N37964fPmy4RwJCQnYvHkzkpKScPDgQeTn56Nfv36svk4eSelCX0cXBCcnA1u3Kmur0QC1askpK33ulcREuc18wwZ5b+9fo8WLrRfwfPNNk6m2r76SiXY+/xzw9QVeew3Yu1cmtYG8vqX+WFr7dOaMPK50wXZkZPljttZV/fabsnOvW6esnSln594hqnIciaTatWsnNm7cKIQQ4tSpU8Lf318MHTpUNGvWTEyePNmRUxrUrl1brFy5UpSUlIjw8HAxf/58w3PXrl0TISEhYvny5UIIIS5duiR8fX1FUlKSoU1mZqbw8fERO3bssHiNa9euidzcXMMtIyODIzvkErt3K/uf/e7d9p+7uLj8SISSm75cgbWRDHtKH5g7T3S0cQZlcfWqEBMmlDa49VYhjh41ej/W+qPkvdar59hnbevcGo0Qdes6NmJj66bRWBj9IiKznDqy8/vvv+OOO+4AAHz22Wfo2rUr1q9fj9WrV2PTpk0OBV06nQ5JSUm4cuUKOnbsiPT0dGRnZ6NPnz6GNv7+/ujatSsOHToEAEhLS8P169eN2kRGRiI2NtbQxpzExESEhIQYbsz6TK6idKGvIwuCba0HsiQry/ZIhtKszFlZ1itxAwCOHQPatQPefVc+njQJOHIEaN3acB5b/Zk71/Z7tbnr6wbTz1rJuipb+YQcoR8RKzf6RUQV5lCeHSEESkpKAAC7d+9Gvxs7JaKjow07tpQ6fvw4OnbsiGvXrqFGjRrYvHkzbr31VkOwEhYWZtQ+LCwMf//9NwAgOzsbfn5+qF27drk22dnZFq85a9YsTJ061fA4Ly+PAQ+5hNLpCX07exIPKk38Z+r4cWDlSvklbkoI+SW8dq2yc+k3Y5rNfVNSImss6HdahYfLBIF9+xo1s7VjTT8dphbTn4mjn2NFRUXJ92Vvnh21k1MSeSOHgp127drh1VdfRa9evbB//34sW7YMAJCenl4uOLHl5ptvxrFjx3Dp0iVs2rQJI0eOxP79+w3Pm+76EkLY3Almq42/vz/8/f3t6ieRGrp0kV9q1kYOoqNlO3sTDzq6ziMx0frzQgDnzys715Yt5WIXKTNT7qzau1c+jotD3sL3cf/Iejg9BmjYEPjiCyAkRNnIysWLyvpTs6bcFWUucNJo5OfZpYvxcVeul6lXT65zatDAsSAlORl45hnjRI0NGgBvv83khERlOTSN9eabb+Lo0aOYOHEiXnjhBTRr1gwAsHHjRnTq1Mmuc/n5+aFZs2Zo164dEhMT0apVK7z11lsIDw8HgHIjNDk5OYaAKjw8HEVFRbho8i9f2TZEnkSrBYYOtd7mkUdk0GBv4sEuXYDq1dXrqyPMLgrevBm4/XYZ6AQGAitWoNnxzQhpVg/ffiu3Wn/7rVws3ayZuiMro0aZD3QAedzclFGXLnKttDVqjZw0bgwMHy5HwRwJdB58sHxG6sxMeZzJCYnKUHOhUEFBgSgqKqrQOXr06CFGjhxpWKD82muvGZ4rLCw0u0D5k08+MbQ5e/aszQXKprj1nFxFyRbuOnVsL5A1t4j16lXnLJq15zZhQpkO5ecLMWZM6ZNt2gjxv/+Jpk2tnyMyUr3+zJ5t/XmjRdM3XL7s2s/s6lXn/B6FhnKhM3k/pd/fDgU7p0+fNspl88MPP4jJkyeL9957z67zzJo1S3zzzTciPT1d/PTTT+L5558XPj4+YufOnUIIIebPny9CQkJEcnKyOH78uBg6dKiIiIgQeXl5hnOMGzdOREVFid27d4ujR4+KHj16iFatWoliO/6WM9ghV1G6G0vJTb+LSm/cOOd8GWs0ygOQy5dvdCYtTYjmzUtPMHOmEIWF4tIlZeeJjJQvs9QfW1/0Zb/wrT1vLmjs39+1wY5RgKjy75Eju/qIKhOn7sYaNmwYUlJSAMhppt69e+Pw4cN4/vnn8corryg+zz///INHH30UN998M3r27IkffvgBO3bsQO/evQEAM2fOREJCAsaPH4927dohMzMTO3fuNGRyBmQ254EDB2Lw4MG4++67ERgYiG3btkHLFXqkgqIiOdUxaZK8tyONlFn79qnQqRtMp3uOHFHv3Hr6pW9jxyprf+RwiSzW2aED8PvvMonN7t0yf46fHx54QNl5atY0vr5pf7p3V3YeW2uN9NmKyzpxQtm51XLypP2vUfp7pObvG1Gl5kgkVatWLfG///1PCCHEW2+9JTp16iSEEOLrr78WTZo0ceSUbsWRHTJnxgyZVbjs/5StZRlW4sUXnTey06uX+qMO+vw469bZbhuGLJHZsk/pgYEDhfj3X6M+Rkfbd11L+XrU/BxNMyi3aeP5IztK3/+LL9p/bqLKxKkjO9evXzfsZtq9ezcGDBgAAGjRogWy3LVvk0hFM2fKGlOmGYR1Onl85kzHzqu03lHdutYzEet3bJVVJptChT3/vHF+HFs5a+7FV/gJtyPy+E4gIABYvlyukA0NNWrXsKGy6zdsaD1fj5p1o374wfjxyy+rd24lHKllpvT9s74WkeRQsHPbbbdh+fLlOHDgAHbt2oV7770XAHD27FmEmvzjRlTZFBXJdDDWLFrk2JRWt27lvv/LCQ0FbmRzsDiNY24XUc+e9vfHkhYtjHcIWeqzHwqxEFPxFe5HfZzDhejb5Xza2LFGndeXfXj8cWXX/+ILea/P1zN0qHF/lHyOSnemCWH8+L77bO/GqlZNbluvaD3kuDgZG9pL6e8Rgx0iyaFg57XXXsN7772Hbt26YejQoWjVqhUAYOvWrbjzzjtV7SCREtZqKNlr6VLbr9fpZDt7abXAihXW26xYIbeXb9xYvkJ4VJQ8bi6HipWk4XYzHe0wt/YlBr/jO3TEVCwGALyNSfh40g/ArbcatUtOllusu3cHnnzS9rWbNpX5dgDLP1cln6OtLf6G9xFj/FirBZKSrL/mk09kviPA8YAnLk6WBHOE0t8jLl0kusHRebLi4mJx4cIFo2Pp6enin3/+cfSUbsM1O5WbtRpKjpg4Udl6iIkTHTu/ra3XTZuWti0ulmtz1q+X99Y2GSqtxK3kNn688bmN1+yUiMewWlxGkBCAOIdQ0Q9bBSDblbVpk+VdVbbeu5Kf66ZN5Sut69sUFpZfc2V602plO3M2bRIiPNy4fURE+eub9jE0VKYPKHssMlKIe+8Vok8fuUbHke3mlvqo5u8+UWXj1K3n3obBTuVl6ctUo5E3R/7RX7xY2Rfz4sX2n1vp1utLl+w/t5rb2k3fm74QaA3kibUYbmi4F91EJM4YXld20bSSgpq+vkLUri1EbKwQ58+Xvtaen6u1gHDGDOvv09ZicyXBZtk2L79s+b06+vtoiz0BMZG3Ufr9rRFCCCUjQG3atMGePXtQu3ZttG7d2mo5hqNHj6oy6uQqeXl5CAkJQW5uLmrq97ySx9Pp5PSIpdIC+nIA6en2DecXFclEv9amsrRa4OpVwM/Pri6jUyfgu+9st+vY0f5pqT17gF697HuNJZculU4lAfKz6B+ZhrdyHkEM/kAxtJiNlzEfz6EE8sONjjb+rPftU75FHCgthREXp+7PdeZMuRv+Rjk/APJ1U6cCCxYo758tzvp9JCLLlH5/K66NFRcXZ9iBNXDgwAp3kKiilNRQ0udRsWehpp+f/CK0tktm6lT7Ax0A+OUXdduV5UildEteeAFYsuTGAyGgfectbP13JqrhOk4jGkOxAYdwt9FrHnnE+Evc3o2Z+lIYc+ao/3M1/S9d2cBHLc76fSSiilMc7MyePdvsn4ncRemXqSPZEPT/41+0yHiEp6IjAtWrA7m5ytrZS80Clv/7340/nD8vC0xt345qADZjIEbjA1xEnXKvSUqSRUX1AY+9/RFCjn7oF/7asmmTvLdWQFOfQsDctfTH1RrdcebvIxFVjEO7scrKz89HXl6e0Y3IFZR+mToaBCxYIKeqFi8GJk6U91evVuzLsU0bdduVpa+oroZ//gFw8CBwxx3A9u0o8fXHBCxBPJLNBjpA+WzE+v7Ys1tJCODCBWVtlyyR02SNG5sveqlGCgF7Mmg7+/eRiCrAkQVBf/75p7j//vtFYGCg8PHxMdw0Go3w8fFx5JRuxQXKlZN+Aay1Gkrmah+509NPK1sg/PTTjp0/Lq7ii5M10ImVTeeWbmVq3lx8Oe9HRa9dv964P/qFxvbsyALkbiZ7XmNu8W9FF5rbm0HbXb+PXKBMVZnS72/F01hlDR8+HADw4YcfIiwszOpiZSJn0WrllMdDD8nRg7LrMqwl31ObTidHNLKy5P/arU2rNG6s7JxK25VVVARs327/68qqj3+wFo+iz6ldAIDioSNQ7b2lCEgLtvFKyXTUIj5e5gWaPNn6ehZTkyfLtTumP1dLhAASEuTiZv1nf+qUsmuZa2dp+kufQRsoP8Lnjt/H5OTyn61+obe5XExEVZYjkVRQUJChNpY34MhO5eaMGlZK2ZvnZMwYZaMNY8bY3xelIxmWbt2xR5yFTCyTj0AxEqsEUCLi4io+aqEffVi3Toi6da2P0OjPY+6ztXUru/Xd0ZEdNfLzWKrppSZnpF0gqmycmmenW7duYteuXQ51zBMx2Km8rCWtc/Y/+I582bRtq+wLuG1b+/ujdIrM9OaDYvES5ggd5Js5jtvELfjZqE1cnOUpKXu/XO05jz5IGj9e2Xspm9TQ0aBFjTxLzp5aUpLDyNOmcImcwamFQFeuXInXXnsNa9asQVpaGn766SejG5Er6HRyCF8Iy20SEipWOsKRa+uPmbu2tb4qbWephII900R6YcjGTvTBy5gDHwisxGjcicP4FcYlH7ZskTWj7C1hoVd2oe/p07LvSs6jr41lWtLBkrIFS/UpBKwxl0KgItNfepZqeqnFnm3uRGTH1vOyzp07h1OnTuHxMlX9NBoNhBDQaDTQOePbhciEO/OaOHrt5s0BJTk3mzc3f9zaGg17l851x16sxzCE4x/kIwjjsBwfY4TF9jNmyB1QcXHK1ygBcv2LuS38U6YADzyg7Dz16il7T6btHEkh0LSpsmspbecM3OZOZB+Hgp0nnngCrVu3xoYNG7hAmdzGnf/gO3rtm25S9jpz7ZKT5eJX01EffTK+Ll2UndsHOryAuZhzYzTnOGLxMD7Db2hh9XUnT8p7/aiFEtYW+r7xhgzQlGzlNx0FsqfdggXAq6/Kwq2nTskgZfx4y0khx48Hpk+3nUF7/HhlfXIGbnMnso9Dwc7ff/+NrVu3olmzZmr3h0gxd/6D7+i1O3dW9jp9O/1Or8xMORJiadpMowFOnLB93nrIwccYjt7YDQBYidF4Bm+jAIE2X6t0KklPaZ6bV1+1nY1an7PH2mhadLTlgM/PT04rKuHnJ/McpaZabtOmjWMZtNWi/zwyM83/TuhLUygNgIm8nUNrdnr06IH//ve/aveFyC5KkuhZ+wJU49qWBjU1GvPXtqdcRHKy3ILevTswYoTxehRTQthOxtcZB3AMd6A3duMKAvEY1mAMVioKdADr5TPMWbrU9nopnU62s0WrBdq2td6mTRt11sYUFdmeajx61HqCQWfTb3MHyv8OujLtAlFl4dDITv/+/TFlyhQcP34cLVu2hK+vr9HzAwYMUKVzRNZotXIBqLUvYdN6TWpe25GcKn/9pez8u3cDX3+tfEGzNRqUYAZex1y8gGrQ4RfcgoewsdwiZGvi4oCAAPuu+9tv6rUrKgK2bbPeZts22a6iIy72BGlKR4ucwVIOo6go+bvHPDtEpRwKdsaNGwcAeOWVV8o9xwXK5Co6ndzVY41pvSY1OfJl06iRsnMfOqROoFMbF7AGI9EfMtvgWozAOCzHVQQpPkdcHPD55/ZfOztbvXbvvGO7eGdJiWw3bVr55+xJ/KjGbixXiY+3f8E4UVXkULBT4oySwUR2srUjCnB+lWlnfdmoUWKuHVLxGR5GY/yNa/DHJLyDlXgSgO0NBUFBsv7n66/bP6Kjp+aaqoMHlZ3r4MHywY69WYYrw26ssuxZME5UVdm1Zuf+++9HbpmSzXPnzsWlS5cMj8+fP49bb1U+NE5UEZ6y/daenCp//+3cvkgC47AMB9EZjfE3TuEmdMIhrMQYKAl0ALmrackSxwMdwPL2eUfa1aih7Fym7fQ72EyDYv0ONnMFRMePtx2suns3FhHZx65g5+uvv0ZhYaHh8WuvvYYLZVZFFhcX4zelE/VEFVS/vrrtXEHpNJajAnEFa/EolmE8/FGEzRiItkjDj7CvjPrdd1e8L2oGDcOGKbtm2XaOJn50NBkhEXkuu4IdYfKvhuljosrONDtxUZH5bMWeqKXv/3AYd2IEPkYxtJiGNxCPZOSilt3nqmZlgttSBmdTagYNSgOLsu0qkmV4wQKZRNE0WNNq5XEluYGIyHM4tGaHyBOouQAWML+2w3SnVWSkXATr6E6X9HTHXmfLw/gUH1wfjWDk4ywiMASf4CAc33P/3XcykDFdf2Tv+hdHMhib48jPuqLTnPYmI3QXexZfE1VVdgU7Go2mXLZkZk8md7GWd8bedpayE5s+PnsWePBBYNMmxwIetf+6VMN1vI4ZSIBMupKCbhiKDfgH4RU674kTMr9P2UDGVgZnS/Wx1AgaHPlZq7FA2p5khO5gb/BJVFXZFewIITBq1Cj4+/sDAK5du4Zx48YhKEhuYy27nofI2Rytl2RKSUFRUyNHyl1Y9v4P2lZiPD3TESVzInAWn2IwOuNbAMB8PIsX8Sp0Kg7Y6gOZTz+1ncE5IcHyZ1LRoMGRn7W3Zxl2NPgkqorsWrMzcuRI1K9fHyEhIQgJCcGIESMQGRlpeFy/fn089thjzuorkZGK1EsqS8kWdlP5+cCePfa9BgC+/15ZO1uBTlfsw49ojc74FrmoiTh8jlmYr2qgU7Yf48e7t8q2Iz9rb84y7Ojia6Kqyq5/GVetWuWsfhDZraL1kvQc3Zq+di3Qp499rzl0yLFrlRKYhoWYj+dQDTr8hJZ4EJvwB+wsXGXPFYXyaSRnbfN39GftrVmG7Vl8zRw8RA7WxiLyBPr/uWs05v/nrtEo+5+7o4VC8/Ptf01F6inVwGV8isF4AzNQDTqsxQh0wPdODXTs5awq2xX5WcfHyzIdKSnA+vXyPj298gY6gOfkmCKqLBjsUKWm/5+76TRHVJTyNQutWzt2baUVzMtydH3IzZDbyh/GRhTBF+PxLh7DR4qLeKqhbl37C5+qqSI/a3sSP1YGamanJqoKuPWcKr2KlmwYNcr+a/r4AJMmyT/bs/VXaVZhP7/SUaB4bMJqjEIw8pGJSDyEjfgeHe3vdAVNmAC88op9hU/VxlpQkrcvviZSG4Md8goVqQ/kSEHHadNkQGLv1l+lVc81GsAHOszFC3gOrwGQ28ofQRJyEGZ/h1UQE+MZ619YC6p0Wu+hh9wbfBJVFm6dxkpMTET79u0RHByM+vXrY+DAgeXKTYwaNcqQ30d/69Chg1GbwsJCTJo0CXXr1kVQUBAGDBiAM/Zur6FKTWlWX3PsKehYNoOuI3WXlK6hqFH4L3bgXkOgsxBT0Ru73BboAHKRsjeuf6ms1JjCJaoyhBv17dtXrFq1Spw4cUIcO3ZMPPDAA6Jhw4YiPz/f0GbkyJHi3nvvFVlZWYbb+fPnjc4zbtw40aBBA7Fr1y5x9OhR0b17d9GqVStRXFysqB+5ubkCgMjNzVX1/ZFrbNokRFSUEPL/t/IWFSWPK3HpkvFrLd3mzROisFC+pri4/DXL3jQaIaKjZbuyxoyxfZ02OCL+QkMhAJGPQDEYSYr65+zbRx+p+3MjdRQXC5GSIsT69fJe4T97RF5B6fe3W6exduzYYfR41apVqF+/PtLS0nDPPfcYjvv7+yM83HxG2NzcXHzwwQdYu3YtevXqBQBYt24doqOjsXv3bvTt27fcawoLC40SIObl5anxdsgNLCVWO3NGeWK1H39Udq2OHUuz/jq69dfWFu7HsAbvYSyqoxAn0QyDsBk/I1ZZB53s/Hl398AzubtcA6f1iGzzqN1Yubm5AIA6deoYHd+3bx/q16+P5s2bY8yYMcjJyTE8l5aWhuvXr6NPmYQnkZGRiI2NxSELSU0SExMNiRBDQkIQHR3thHdDzmYr87EQyhKrObKN19Gtv5Z2x1TDdbyNSViDUaiOQmxDP7RHqscEOgAQGuruHnie5GSgcWNZWmPYMHnfuLH5KUwich+PCXaEEJg6dSo6d+6M2NjSf+Dvu+8+fPzxx9i7dy8WLlyI1NRU9OjRwzAyk52dDT8/P9SuXdvofGFhYci2UD1w1qxZyM3NNdwyMjKc98bIaZRkPlaS1deRbbyObv01txsrDNnYg56YhCUAgNmYgzhscahauTNxZMeYI2u2iMg9PGY31sSJE/HTTz/h4MGDRseHDBli+HNsbCzatWuHRo0a4YsvvkC8lfkJIYTFIqX+/v6G+l5UeSmNUW21cyQ7r6Nbfx9/XNaY0rsTP2ATHkQUMpGLmngUa7ENA2y/KTfgyE4pW+UabNUKIyLX8oiRnUmTJmHr1q1ISUlBVFSU1bYRERFo1KgRTp48CQAIDw9HUVERLl68aNQuJycHYWHu27lCzvfDD+q002ptF+hs08b4S8vRuksvvFD65yfwAb7BPYhCJn5FC9yJwx4b6AAc2SnLnjVbROR+bg12hBCYOHEikpOTsXfvXjRp0sTma86fP4+MjAxE3JgfaNu2LXx9fbFr1y5Dm6ysLJw4cQKdOnVyWt/J/ZRWKbfVrqgI2L7depvt28uXenBk6+/vvwO+KMISTMAHeBL+KMJmDMRd+AG/42ZDO19f6/1xB6WVx6sClmsgqlzcOo01YcIErF+/Hlu2bEFwcLBhjU1ISAgCAgKQn5+POXPm4MEHH0RERAT++usvPP/886hbty4GDRpkaDt69GhMmzYNoaGhqFOnDqZPn46WLVsadmeRd2rYUJ12S5faXsSs0wFTp8rRnLKjNfZm9I3U/oPdeBj3QP6X///wCubiBQg7/99RrRpQXGzXSypMaeXxqoDlGogqGVfsg7cEgNnbqlWrhBBCXL16VfTp00fUq1dP+Pr6ioYNG4qRI0eK06dPG52noKBATJw4UdSpU0cEBASIfv36lWtjDfPsVE5PPaUsP8xTT1k/z8SJynPN2JO/p5zUVJFfRybnuYSaoh+2uj13jtKbuZxBVZk+z5JGY1+eJSJSV6XIsyNszC8EBATg66+/tnme6tWr45133sE777yjVteoElBaesFWO3syKOt32pSdplKUZ2XtWmDMGAQVFuJ/uBlx2GI0beWpWHrAPJZrIKpcPGKBMpEjbrpJnXbjxyv/UtJ/qenz99jMs1JcLAtpPfYYUFgI0a8/4iN/sBroeNLaGJYesIzlGogqDwY7VGkNULhxyVY7Pz+520op/U6buXPN51nRZ2/etuYCcP/9wKJF8okXX4Rmy+eo0SDE6vkbNZJfmBYyJ0CjAWrWVN5few0ZwrpXSrFWGFHl4DF5dojs9e+/6rQrKgKOHrX/+m+9ZXmn1y3iZ7R8Mg4oPgUEBgKrVwMPP4yCAiA11fp5jxyRX5zDhpl/XghZukLBDK/d4uKApCT1z+vNWK6ByPNxZIfcpiKVygH18uwo2Y1lzoUL5o8PwBZ8jw5oXHwKBeGNgUOHgIcfBiArpivx0UfWn7c06lMRGg2wdSsz/xKR92GwQ26hRk2ha9fUaXcjP6VdatUyd1TgeczFFgxEMPKRgm7Y9n+pQKtWhha//67s/Ckplp/TaIDDh+3prTKm65GIiLwFgx1yObVqCikd2dmzx/qXtyOjJI0bGz8OxBUk4RHMxYsAgHcwEX2wE9/8UteoXVCQsvPfKP1mlhCWR5Uqipl/icgbMdghl7JVUwhQPrJQUqLsmn/9ZX3UqH17Zecp648/Sv8cjdM4iM4Ygk9RBF+MwQo8g3dQDN9y7/P+++2/ljsw8y8ReRMGO+RSatYU8rHjt9faqJFJWTVF8vPlfUccQiraozWOIQf10AN7sRJjDO1iYoxf9+WX9l/LHZj5l4i8CYMdcik1awq1a6f8utZGjZROLZkaidVIQXeEIQfH0ArtcATforNRm7FjjV9z+bKyc/v7W996XqOGAx1WQKMpX+GdiKiyY7BDLqVmTSF7FxZbGjV6+237zuMDHd7ANKzG4/BHETbiQdyNb5GB8kW4TNcVKV1Ura+Ja6mi+o3NXapi5l8i8lYMdsilunSRCfOsUTqyUM3BLFGmo0b2LPatiVxsRz9Mg0wUOAezMRif4irMDw9lZBg/vllhhYhOnaxn512+XP2AhJl/ichbMdghl9JqgaFDrbd55BFlX+TnzzvWB9NRIz8/Za+7CafwHTriPuzAVQTgYXyKlzHHasVy05EdpYHVhQvWs/Pam/XZmrvvZuZfIvJuDHbIpXQ6mUTQmqQkZbuxQqxXXSjH0nqUnj1tv7Yr9uEw7sSt+BVn0ACdcRAbYXsuyXQ3lr3TePrsvEOHynt9EOho1mdzXnrJ+NxERN6GwQ65lK3dWIDy3Vhpacqva209iq0RojFYgV3ojVBcwA+4E+2Rih+hbFjFdDeWWsVLHc36bKpGDWXBHhFRZcZgh1wqM1O9dkrz7ADW16OEh5t/jRbFWIwErMBY+KIYH2MYumEfsqFseEarlRXVneHUKXXO07MnR3SIyPuxECi51Llz6rULCpLTObbUqCHXo1j6Uje3aLgmcpGER3AfdgAAXsCrmIfnAZRujwoMBK5etXzdqVPLrwf6+2/b/VXSrmlTZeexZft2+RkqXbdERFQZcWSHXCo0VL12//d/ys71yivWRy9Mc+GYLkR+EBsxDy+gbKADyPpYM2aUP7dWK48vWFD+Wvot5bbYajd+vDojMjqdnBIjIvJmDHbIpZTuoFLSbtMmZeey1a7sjqnOOIAfcBduxa/IRCQ64yCS8aDZ1/n5yYDm6lVg8WJg4kR5f/Wq+UAHAFq2VNZnW+38/OTIkRrUmhIjIvJUnMYil6pXT712ubnKzmWrnT7vzmNYg/cxBn64jiNoiwHYiixEWnxdr17y3s9PZmZW4t9/1WunD6gWLarYYmW1psSIiDwVR3bIpUyT5FWknVo7m2rVLME8zMIajIIfruMzPIR78I3VQAcAWrRQdv2y1MwgDRiPLJlWYlfCmYuoiYg8BYMdcqlOnWyvNdFqZTtbRoxQdk2r7a5cQb0JD2MW5gMAXsULGIJPUIBAm+dt3lzZ9ctSM4O0nn5k6fhx+/tjbhE1EZG3YbBDTqHTAfv2yQSC+/aVTrMcOmR7ykWnk+1smT9fWV8stjt7FujaFe3+TkYh/PAoPsL/4VWrGZHLeucdeV9UJPP3TJok763tEFMzg7SpGjWA9u2VtbW2iJqIyNtwzQ6pLjkZmDzZOHlgVBTw1ltAQYGycyjJs1Ohxc7//S/Qrx9w5gz+RV0MxOZyFcttuXgRmDmz/JqZ6dPliIm5QEKnAz780Pp5P/wQSEx0LOA5fBi4804gNbX8c9HRQFycXKMzfjxHdIio6mCwQ6pKTgYeeqh8mYTMTHl85Ehl51GSZ0dpBfFy7bZvl8MnV64ALVpgbPUv8O0xhQuAyrh+HXj99fLHdbrS46YBz759toO08+dlO0czGx8+DOTnA48+KndaNW0KrF0rR36IiKoiTmORanQ6OaJjGugApce2bFF2LiW7sYKDlZ3L0E4IObwUFycDnZ49ge++w/Kd9gc6APDTT9afX7So/JTW3r3Kzq20nSU1agCbN8s+bt7MQIeIqjYGO6QaW3WvhJBTP0rod2NZWvsD2DmNVVwsF9UkJMg6E08+CXz1FVCrFj7+WNl5yoqNNR/UlWUuYd/p08rOr7QdERHZxmCHVKPPV2OLRmP9ef1urORkuZ26e3dg2DB537ixPA4oX3NSu9plYMAA4N135cUXLABWrAB8fQEAv/6q7Dx6YWGySrgSpgn7GjZU9jql7YiIyDYGO6QapblhlIyIzJ8v1/iYjhTp1/4kJwP//GP7WlHIQPK5znIUJyBAplOeMcMo4vr5Z2X91vvnHznKpIRpwr4ePZS9Tmk7IiKyTSOEra8e75eXl4eQkBDk5uaiZs2a7u5OpaXTyZGXzEzzAY1GI9fP5OXZPldIiPXMx9HRQEaG9XO0xlFsRz9EIksOx2zbZnZvdu/ewO7dtvtkSqOxHrhptTLhX9kRKJ1OdsXaFFxoqAyoWI2ciMg6pd/fHNkh1Wi1cv0vUH6qSv9Y6eiPrRIPtgKdftiGA+iCSGThOGJlASwLSWjMVT1XolUr68+bS9in1coZNGtWrGCgQ0SkJgY7pKr4eGDjxvLlHqKi5PEby2RUERJi/vgELMHnGIggXMVO9MaD9Q8CjRpZPI+57eNK1K1rf9VzQH5GmzaVz6QcFSWPx8c71p+yrC3sJiKqajiNBU5jOUNRkdyJpM/zok9i17kz8O236lwjLMx43Y4PdHgD0zEFbwIAVmAMJuBdtIj1tVlKYeBA5dvi9e6+Gzh40PJ7tUWnkzvYsrLkiFeXLuqM6FhL6qhGIEVE5CmUfn8zqSCpztyX7cKF8st29Gj1gp377wdWrZJ/DsBVfIzhGITPAQDPYj4WYCYAjaKK5I7UuWrZUt7bU/W8LK1W+a4upWwlddy4kQEPEVU9bp3GSkxMRPv27REcHIz69etj4MCB+O2334zaCCEwZ84cREZGIiAgAN26dcPPJttnCgsLMWnSJNStWxdBQUEYMGAAzlhL+EJOo/+ytbSLytZaG3vExMj7+vgH+9ANg/A5rsEfQ5CEBXgWgFwoZGudUFGRY1NZzZrZ/xpnUpLUMSGBU1pEVPW4NdjZv38/JkyYgO+//x67du1CcXEx+vTpgytXrhjaLFiwAIsWLcKSJUuQmpqK8PBw9O7dG5cvXza0SUhIwObNm5GUlISDBw8iPz8f/fr1g47/qruUki/b5cvVu96mTcDN+B++Q0fciVT8i1D0xB58iiFG7d5+2/p5Fi927Pr6kR1PoSSpY0aGbEdEVKUID5KTkyMAiP379wshhCgpKRHh4eFi/vz5hjbXrl0TISEhYvny5UIIIS5duiR8fX1FUlKSoU1mZqbw8fERO3bsMHuda9euidzcXMMtIyNDABC5ublOfHfeLyVFCPmV6ppbV81+cR61hQDESTQVzfC72XYBAdb7HRvr2PXXr3fJx6rY+vWVs99ERI7Kzc1V9P3tUbuxcm/sN65Tpw4AID09HdnZ2ejTp4+hjb+/P7p27YpDhw4BANLS0nD9+nWjNpGRkYiNjTW0MZWYmIiQkBDDLTo62llvqUpRmkFZDY9gA74WvVEHF/EdOqAjvsMfiDHb1tYAX2GhY30IDXXsdc6idFu/0nZERN7CY4IdIQSmTp2Kzp07IzY2FgCQnZ0NAAgLCzNqGxYWZnguOzsbfn5+qF27tsU2pmbNmoXc3FzDLUPNhSRVmGu+RAVm4jVswDD4owibEI8e2It/YblyqL+/9YCnRQvHemJrh5erdekid11ZKseh0chkjF26uLZfRETu5jHBzsSJE/HTTz9hw4YN5Z7TmPzrLYQod8yUtTb+/v6oWbOm0Y0qrlMn5ybD06IY72ICXsNzAIDl1RMwGJ/iGgKsvu7yZeOaWqYGDXKsP3/+6djrnEVJUsc332TCQiKqejwi2Jk0aRK2bt2KlJQURJXJtBYeHg4A5UZocnJyDKM94eHhKCoqwkWTctpl25BrHDrkvJ0+gbiCZMRjPJahBBpMxpuYULQYJVD2zV22ppYpW9maLbFV0NQWZyT+0yd1jIw0Pt6gAbedE1HV5dZgRwiBiRMnIjk5GXv37kWTJk2Mnm/SpAnCw8Oxa9cuw7GioiLs378fnTp1AgC0bdsWvr6+Rm2ysrJw4sQJQxtyDWet2amHHKSgOwZgGwpQHQ/jM7yNyTYLipZlbet1PcszYFbddZdjrwNsV3SvqIoGYkREXsUFi6Utevrpp0VISIjYt2+fyMrKMtyuXr1qaDN//nwREhIikpOTxfHjx8XQoUNFRESEyMvLM7QZN26ciIqKErt37xZHjx4VPXr0EK1atRLFxcWK+qF0NTdZt3u3+juuYvCb+AM3CQGIcwgVHfGt4bmgIMfOmZJi3G9Hd5GZnkepTZuE0GjKn0+jkbdNmxz/GVg6t/78FTk3EZGnUfr97dZgB4DZ26pVqwxtSkpKxOzZs0V4eLjw9/cX99xzjzh+/LjReQoKCsTEiRNFnTp1REBAgOjXr584ffq04n4w2FHHjh3qBjp34TtxDqFCAOIUmogY/Gb0fK1a6mwZLy4WIirKvnNotUIUFtr/Gdm6lkYjRHS0bKf2uQHHz01E5ImUfn+zNhZYG0stjz0GrF2rzrkGYAuS8AgCcA2paId+2I4cGK/B8vOT2Y/tlZJSvkzDzJn2Z1E2dx5b9u2TU1aV7dxERJ5I6fe3RyxQJu9QJql1hYzDMiQjHgG4hi9wP7phX7lAB5Bbyu1haeu1TicXCdvLkTVKSl/jyLmVZlBgpgUiqmoY7JBqKp6/RWAunscyjIcWJXgfTyIOW3AVQWZb16ql/MzWtl7bKrNgiSN5hZyZ+O+HH9RtR0TkLRjskGomTnR8F1A1XMdqjMLzSAQAvISX8RRWQIdqFl9jzwRsVJTlrdeOjKKEhjoW3Dkz8Z/Sz4MT10RU1TDYIdVotUA1y7GJRTVwGdvRDyPxEYqhxWisxH/wEvRVyy0xzSVjyRNPAOnplnPMuLJ8gjMT/8WYr5bhcDsiIm/BYIdUs3cvcP26fa+pj3+wD93QFztxBYEYgK34EKMVvTY4WNk1zp61HjzYGm0x5/x5x6uH6xP/NWhgfNza6JMS48fbDpK0WtmOiKgqYbBDqrF3J1YznMQhdEJbHMU51EV3pOAr3K/49RbqvJbz7bfWn7c22mJNRZIoxscDf/0ld0atXy/vrY0+KeHnB0ydar3N1KmyHRFRVeLApAORefaUXWiHVHyBB1Af53AKN+Fe7LBYtdySkhI7O2iFfrRl8mTli5UrOv2l1aq/BXzBAnm/aJFxpmitVgY6+ueJiKoSjuyQy/XFDqSgO+rjHNLQBp1wyO5ABwDq11fWrnNnZe30oy27dwN16lhu5+nVwxcsAK5eBRYvlovGFy+WjxnoEFFVxZEdUo3pGhRzRmAtPsQT8EUxdqI3HsQm5EPh4hsTffsCK1fabvfpp8rPqdUCPXsC778vC4cCxruXKkv1cD8/WQeMiIg4skMqsj6tIzAdr2MtHoMvirEOw9EP2x0OdADgppscfqlN8fHA9Onlj2s08rinVw8vKpIB2aRJ8t6RTNNERN6CwQ6pJinJ/HENSvAGpuN1zAQAvIFpeAwf4TocXynr4wN8952yto8+av/5k5Nl+QjTnDQlJfK4WtXJnWHmTCAwEJgyBViyRN4HBsrjRERVEYMdUk12dvljvijCR3gM07AIADAdr2MG3oCo4K+evz9w6pSytidP2ndunQ4YOdJ6m5EjjRcAewp9jS/Tvul08jgDHiKqihjskGpMk/wFIR/b0B8j8DGuoxoexUdYCDNzQw4oKJCLbpWwN6vznj1Afr71Nvn5sp0nKSqSu7CsWbSIU1pEVPUw2CHV7N9f+ue6OIe96GFIFtgf27AODswnWaG0NlanTvadV2m+ILUqvKtl6VLbo006nWxHRFSVcDcWqSYkRK6liSr5GzvRBzfjd/yLUDyAL3AYd6l+vbp1lbW75Rb7zmtrVMfedq6idFpPaTsiIm/BkR1SzYEDQIuSn3EInXAzfsdpRKMzDjol0AFkkjxnlEdQmpdHaTtXadpU3XZERN6CwQ6p5vr+QziALmiAs/gZt6ITDuE3tHDoXLamqEJDgT59nFMeYdIk2+t8NBrZzpOwNhYRkXkMdkgdX36JHom9UAcXcQgd0QUHkIkoh07VtCnwwQfW26xYIb+4FywAZsyQ02dl+fjI445kDdZqgaAg622CgjwvqSBrYxERmcdghypu3TpgwABoCwvwtfZ+9MJuXISVegs22Bug/P57+TpZJSXyuCMOHFC2G8vRqufOpA/+TAMxrdbx4I+IqLJjsEMV89ZbMmufTgfdsBEYUPI5ChDo8Ok0GlmMc/Jk620SEuTOooEDgS1bzLfbskU+b6+MDHXbuRprYxERGeNuLHKMEMBLLwGvviofT56MdxouQtH6isXPQtiuOi6EDDR277Yc6Oht2SJz8gQEKO/DDz8ob+dIdmZXYG0sIqJSHNkh++l0cpWrPtB59VVg8WKcSnftr9PrrytrZ2sdiynTEhEVbUdERO7FkR2yT1GRHM749FM5n7RsGTB2LADXb2lWuiYnJcW+88bEqNuOiIjciyM7pNyVK0D//sCnn0Kn9cUHfT/BmwVjDeUHlGx9ViIqSt6siY4GatZUdj5fX/uuzy3cRETehcEOKXPhAtCrF7BTln+4T7cdT+542KiitpKtz0oMHQq0bWu9TZs2ystAdOxo3/W5hZuIyLtwGotsO3sW6NsXOHECF1Ab9+NL/IAOhqf1FbWB0h0/ixYZ12ny8ZFBkZISC+vXA1lZ1tts2wYsXw68/77t89kb7ACW34dWKwMd7mwiIqo8NEJwmWVeXh5CQkKQm5uLmkrnRqqKP/+UIzrp6chEJPpgJ37BbWabarVyi7Ofn1zas3SprMPUtGnp1NA77wBTpqjTtQ4dgO+/t91u3Di5tMgR5t4HR3SIiDyD0u9vjuyQZSdOyJoMWVm4VLcpOv+7C3+hicXm+oraCQmWtz6HhanXvb/+UtbO1iiRNdzCTURU+XHNDpn3ww/APffISKFlS7ze/4DVQEfPVkXtiAiV+gegenVl7YKD1bsmERFVPgx2qLw9e4CePYGLF+WCl/37Ue92ZVGKre3nXbrInVaWCm1qNEDdusq6+dRTytp5auI/IiJyDQY7ZESX/DlK7rsfuHIFF9r1hm7HLqB2bdW2Y2u1ssIEUD7g0T9euhSoUcP6eYKDgWnTbLerUUPGbUREVHUx2CGD1GfWQjz4EHyuF2ET4hFxZBsa3xaE5GR1t2PHxwMbNwINGhgfj4qSxx9+GFizxvo5Vq+W17LVbs0az6tOTkRErsXdWOBuLAA4NuZd3LFyIgBgFUZhDN6HDtUMoy0bN8ogZeZM9bZj63SycnhWllzL06WLcWCSnAw88wyQmVl6LCpKjgzFxxu3mzRJ7pDXa9AAePtt43ZERORdlH5/uzXY+eabb/D6668jLS0NWVlZ2Lx5MwaWKVM9atQorDH5r/tdd92F78vsNy4sLMT06dOxYcMGFBQUoGfPnli6dCmibKXgLaNKBztCoGRuInz+7wUAwFt4BlOwGKLMoJ9GI4OM9HQZjLhyO7atgMjedkRE5D0qxdbzK1euoFWrVnj88cfx4IMPmm1z7733YtWqVYbHfibfqgkJCdi2bRuSkpIQGhqKadOmoV+/fkhLS4OW33bWCQE89xx8bgzJvIyXMAdzAGjKNcvIkMFEt26u3Y6t1cprqtWOiIiqHrcGO/fddx/uu+8+q238/f0RHh5u9rnc3Fx88MEHWLt2LXr16gUAWLduHaKjo7F792707dvX7OsKCwtRWFhoeJyXl+fgO6jESkqACRNkGmIA0/AGFmGa1ZdUJF8NERGRu3j8AuV9+/ahfv36aN68OcaMGYOcnBzDc2lpabh+/Tr69OljOBYZGYnY2FgcOnTI4jkTExMREhJiuEVHRzv1PXic4mJg5EgZ6Gg0+G3aCpuBDlDxHDk6HbBvH7Bhg7wvu+6nopx5biIiqtw8Oti577778PHHH2Pv3r1YuHAhUlNT0aNHD8OoTHZ2Nvz8/FC7dm2j14WFhSE7O9vieWfNmoXc3FzDLSMjw6nvw6MUFsrtTuvWAdWqAR9/jIb/GaPopXfd5fhlk5OBxo2B7t2BYcPkfePG8nhFOfPcRERU+Xl0uYghQ4YY/hwbG4t27dqhUaNG+OKLLxBvZZuNEAIaS1nrIKfG/P39Ve1rpXDlityetHMn4O8PfPYZ0L8/3ntT2cvfe8/yWh1rC4STk4GHHpJrf8rKzJTH9Tu9HKH2ubnQmYjI+3j0yI6piIgINGrUCCdPngQAhIeHo6ioCBcvXjRql5OTgzA1izB5g9xc4N57ZaATFAR88QXQvz8A2yUe9Cy1szayotMBkyeXD0aA0mMJCY5NO6l9bo4QERF5p0oV7Jw/fx4ZGRmIuLF4pG3btvD19cWuXbsMbbKysnDixAl06tTJXd30POfPy8rlBw8CISHArl1GaYVtlXiw1k4/snLmjPFx/cjK3Lnlnyur7E4vex04oN65bb0PBjxERJWXW4Od/Px8HDt2DMeOHQMApKen49ixYzh9+jTy8/Mxffp0fPfdd/jrr7+wb98+9O/fH3Xr1sWgQYMAACEhIRg9ejSmTZuGPXv24Mcff8SIESPQsmVLw+6sKi87W+7JPnJEFp1KSZH1rspwtBSEkpGVt99W1k1HdnopfY2tds4cfSIiIvdza7Bz5MgRtG7dGq1btwYATJ06Fa1bt8ZLL70ErVaL48ePIy4uDs2bN8fIkSPRvHlzfPfddwguU8Z68eLFGDhwIAYPHoy7774bgYGB2LZtG3PsAHJY4557gBMn5AKU/fuBG591WfaWgtDvfJozx/bIyvnzyrrqyE4vpa+x1U7pCNHkyTKhIhERVS4sFwEvzaB86pScqvr7b6BRI1nJ3MZ8lZJSEMnJ8kvfWnBgqk4dWUDd3G+aaXZme+h0ck2Ntb5ER9s+94YNco2OEo6WxiAiIvUp/f6uVGt2SKH//U+O6Pz9NxATI4cuFCzMWbAAuHoVWLwYmDhR3l+9ahzomFvXYsvkyfLeUpXzN990bMeTVgsMHWq9zSOP2D63PaNKOh3w+usyMCQiosqBIzvwspGdn36Si5HPnQNuuw3YvRuwkIHaHkpGUUyVHbXZsqX8iFB0tAx0HN12rtbIjv48mZnmR5/M0WplIOismmBERGQbR3aqotRUuRj53DmgTRu5sEaFQAewva7FlOmoTXw88Ndfcn30+vXyPj29YlXJlfRJyW4srVZWUi/bb1t0OlkMlYiIPJ9HJxUkO3z7LXD//UBeHtChA/DVV0CtWqqd3t7dUlFR5Udt1C7WqdZuLED2c+NG+9YjKc1PRERE7sWRHW+QkgL07SsDna5dZeJAFQMdQPm6lhdfVGfURs0+KW2nH32aMEFZe6X5iYiIyL24ZgeVfM3Ojh3AoEHAtWtAnz7A5s1AYKDql7G1rqUiu6o8rU9FRfIjtJZXh2t2iIjcj2t2qoKtW4G4OBno9O8vVwE7IdABrK9rqeiuKmusVTN3Vp/8/IB+/ay36dePgQ4RUWXBYKey2rgRePBBOQzx4IPycfXqTr2kfl1LgwbGx6OiKlbM0xIltaqc0SedDkhLs97m6FFmVCYiqiw4jYVKOI318cfAY48BJSXA8OHA6tVANdetNXdFZXBL1cz1IzamgYyafdq3TwZWtqSkqLvgmoiI7KP0+5u7sSqbVauA0aNlFPD448D777tukcwNau+qMmWrVpVGI2tVxcU5562rucuLiIjcj9NYlcl77wFPPCG/8ceNA1audHmg4wr2VjNXMt1lD7V3eRERkXsx2Kks3nlHBjgA8MwzMqOdj3f++OwZWbFUwiIzUx53JODp0kWu+bGUYFCjkZmZu3Sx/9xEROR63vlt6W0WLZIBDgDMmCG3GClN9VsJKR0xqV/f+nQXIKe77F1I7K6dZ0RE5BwMdjzd/PnAtGnyzy+8ALz2mlcHOoDykRXAvukue7h65xkRETkPFyh7sv/8B3jpJfnnl18u/bOX04+sPPSQDGzKjtyUHVnJyVF2PkcXEsfHy0XQzt55RkREzsWRHU8kBDB7dmlwM3dulQl09JSMrLhiIbF+59nQofKegQ4RUeXDPDvwsDw7QsgCU/PmyccLFsh1OlWUtfw5nljCgoiIXId5diojIYDnnpMBDiAXJk+Z4t4+uZm1nD5Kp7sY6BARVW2cxvIUQsgRHH2g8/bbVT7QUYILiYmIyBaO7HgCIWRgo9/vvHQp8PTT7u1TJcKFxEREZA2DHXcTQubQWbJEPn7vPeCpp9zbp0rI2SUsiIio8mKw404lJcCkSXIkR6ORda5Gj3Z3r4iIiLwKgx13KSkBJkwAli+Xgc6HHwKjRrm7V0RERF6HwY47lJQA48fLKSuNRlYyHznS3b3ySNa2njvSjoiIqh4GO65WUiILer7/vgx01qwBHn3U3b3ySMnJsvZV2ZIQUVFyHXfZXVZK2xERUdXEreeuVFICjB0rAx0fH+CjjxjoWKC0mrkzqp4TEZF3YQZluCiDsj7QWbmyNNAZPtw516rk9JmRLRX51GdG/uMPoGlT2+2YQZmIyDsp/f7myI4rMNCxy4EDyqqZL13qvKrnRETkPRjsOBsDHbsprVJ+6pS65yMiIu/EYMeZ9IuRGejYRWmV8qZN1T0fERF5JwY7ziJE6a4rBjp26dJFrrXRF/M0pdEA0dFy976Sdl26OK+vRETk+RjsOItGA9x8MwMdB+irmQPlA5my1cz9/JS14+JkIqKqjcGOM02bBvz8MwMdByitZs6q50REZItbg51vvvkG/fv3R2RkJDQaDT7//HOj54UQmDNnDiIjIxEQEIBu3brh559/NmpTWFiISZMmoW7duggKCsKAAQNwxtoWHVdr0cLdPai04uOBv/4CUlKA9evlfXp6+QBGaTsiIqqa3BrsXLlyBa1atcISfcVvEwsWLMCiRYuwZMkSpKamIjw8HL1798bly5cNbRISErB582YkJSXh4MGDyM/PR79+/aDT6Vz1NsiJ9NXMhw6V95ampJS2IyKiqsdjkgpqNBps3rwZAwcOBCBHdSIjI5GQkIBnn30WgBzFCQsLw2uvvYaxY8ciNzcX9erVw9q1azFkyBAAwNmzZxEdHY0vv/wSffv2NXutwsJCFBYWGh7n5eUhOjrauUkFiYiISFWVPqlgeno6srOz0adPH8Mxf39/dO3aFYcOHQIApKWl4fr160ZtIiMjERsba2hjTmJiIkJCQgy36Oho570RIiIiciuPDXays7MBAGFhYUbHw8LCDM9lZ2fDz88PtWvXttjGnFmzZiE3N9dwy8jIULn3RERE5Ck8vuq5xmRPsRCi3DFTttr4+/vD399flf4RERGRZ/PYkZ3w8HAAKDdCk5OTYxjtCQ8PR1FRES5evGixDREREVVtHhvsNGnSBOHh4di1a5fhWFFREfbv349OnToBANq2bQtfX1+jNllZWThx4oShDREREVVtbp3Gys/Pxx9//GF4nJ6ejmPHjqFOnTpo2LAhEhISMG/ePMTExCAmJgbz5s1DYGAghg0bBgAICQnB6NGjMW3aNISGhqJOnTqYPn06WrZsiV69ernrbREREZEHcWuwc+TIEXTv3t3weOrUqQCAkSNHYvXq1Zg5cyYKCgowfvx4XLx4EXfddRd27tyJ4OBgw2sWL16MatWqYfDgwSgoKEDPnj2xevVqaJlohYiIiOBBeXbcSek+fSIiIvIclT7PDhEREZEaGOwQERGRV2OwQ0RERF7N45MKuoJ+2VJeXp6be0JERERK6b+3bS0/ZrADGKqos0YWERFR5XP58mWEhIRYfJ67sQCUlJTg7NmzCA4OtlmKwh76auoZGRnc5eUC/Lxdh5+16/Czdh1+1q6j1mcthMDly5cRGRkJHx/LK3M4sgPAx8cHUVFRTjt/zZo1+RfHhfh5uw4/a9fhZ+06/KxdR43P2tqIjh4XKBMREZFXY7BDREREXo3BjhP5+/tj9uzZ8Pf3d3dXqgR+3q7Dz9p1+Fm7Dj9r13H1Z80FykREROTVOLJDREREXo3BDhEREXk1BjtERETk1RjsEBERkVdjsONES5cuRZMmTVC9enW0bdsWBw4ccHeXvE5iYiLat2+P4OBg1K9fHwMHDsRvv/3m7m5VCYmJidBoNEhISHB3V7xSZmYmRowYgdDQUAQGBuKOO+5AWlqau7vldYqLi/Hiiy+iSZMmCAgIwE033YRXXnkFJSUl7u6aV/jmm2/Qv39/REZGQqPR4PPPPzd6XgiBOXPmIDIyEgEBAejWrRt+/vln1fvBYMdJPvnkEyQkJOCFF17Ajz/+iC5duuC+++7D6dOn3d01r7J//35MmDAB33//PXbt2oXi4mL06dMHV65ccXfXvFpqaipWrFiB22+/3d1d8UoXL17E3XffDV9fX3z11Vf45ZdfsHDhQtSqVcvdXfM6r732GpYvX44lS5bg119/xYIFC/D666/jnXfecXfXvMKVK1fQqlUrLFmyxOzzCxYswKJFi7BkyRKkpqYiPDwcvXv3NtSsVI0gp7jzzjvFuHHjjI61aNFCPPfcc27qUdWQk5MjAIj9+/e7uyte6/LlyyImJkbs2rVLdO3aVUyePNndXfI6zz77rOjcubO7u1ElPPDAA+KJJ54wOhYfHy9GjBjhph55LwBi8+bNhsclJSUiPDxczJ8/33Ds2rVrIiQkRCxfvlzVa3NkxwmKioqQlpaGPn36GB3v06cPDh065KZeVQ25ubkAgDp16ri5J95rwoQJeOCBB9CrVy93d8Vrbd26Fe3atcPDDz+M+vXro3Xr1nj//ffd3S2v1LlzZ+zZswe///47AOC///0vDh48iPvvv9/NPfN+6enpyM7ONvqu9Pf3R9euXVX/rmQhUCf4999/odPpEBYWZnQ8LCwM2dnZbuqV9xNCYOrUqejcuTNiY2Pd3R2vlJSUhKNHjyI1NdXdXfFqf/75J5YtW4apU6fi+eefx+HDh/HMM8/A398fjz32mLu751WeffZZ5ObmokWLFtBqtdDpdJg7dy6GDh3q7q55Pf33obnvyr///lvVazHYcSKNRmP0WAhR7hipZ+LEifjpp59w8OBBd3fFK2VkZGDy5MnYuXMnqlev7u7ueLWSkhK0a9cO8+bNAwC0bt0aP//8M5YtW8ZgR2WffPIJ1q1bh/Xr1+O2227DsWPHkJCQgMjISIwcOdLd3asSXPFdyWDHCerWrQutVltuFCcnJ6dcBEvqmDRpErZu3YpvvvkGUVFR7u6OV0pLS0NOTg7atm1rOKbT6fDNN99gyZIlKCwshFardWMPvUdERARuvfVWo2O33HILNm3a5KYeea8ZM2bgueeewyOPPAIAaNmyJf7++28kJiYy2HGy8PBwAHKEJyIiwnDcGd+VXLPjBH5+fmjbti127dpldHzXrl3o1KmTm3rlnYQQmDhxIpKTk7F37140adLE3V3yWj179sTx48dx7Ngxw61du3YYPnw4jh07xkBHRXfffXe5FAq///47GjVq5KYeea+rV6/Cx8f4q1Cr1XLruQs0adIE4eHhRt+VRUVF2L9/v+rflRzZcZKpU6fi0UcfRbt27dCxY0esWLECp0+fxrhx49zdNa8yYcIErF+/Hlu2bEFwcLBhNC0kJAQBAQFu7p13CQ4OLrcWKigoCKGhoVwjpbIpU6agU6dOmDdvHgYPHozDhw9jxYoVWLFihbu75nX69++PuXPnomHDhrjtttvw448/YtGiRXjiiSfc3TWvkJ+fjz/++MPwOD09HceOHUOdOnXQsGFDJCQkYN68eYiJiUFMTAzmzZuHwMBADBs2TN2OqLq3i4y8++67olGjRsLPz0+0adOG26GdAIDZ26pVq9zdtSqBW8+dZ9u2bSI2Nlb4+/uLFi1aiBUrVri7S14pLy9PTJ48WTRs2FBUr15d3HTTTeKFF14QhYWF7u6aV0hJSTH7b/TIkSOFEHL7+ezZs0V4eLjw9/cX99xzjzh+/Ljq/dAIIYS64RMRERGR5+CaHSIiIvJqDHaIiIjIqzHYISIiIq/GYIeIiIi8GoMdIiIi8moMdoiIiMirMdghIiIir8Zgh4iIiLwagx0iqnRWr16NWrVqubUP3bp1Q0JCglv7QETKMIMyEalm1KhRWLNmTbnjffv2xY4dO1S7TkFBAS5fvoz69eurdk57XbhwAb6+vggODnZbH4hIGRYCJSJV3XvvvVi1apXRMX9/f1WvERAQ4PZCr3Xq1HHr9YlIOU5jEZGq/P39ER4ebnSrXbu24XmNRoOVK1di0KBBCAwMRExMDLZu3Wp0jq1btyImJgYBAQHo3r071qxZA41Gg0uXLgEoP401Z84c3HHHHVi7di0aN26MkJAQPPLII7h8+bKhjRACCxYswE033YSAgAC0atUKGzdutPpeli5dipiYGFSvXh1hYWF46KGHDM+Vncbat28fNBpNuduoUaMM7bdt24a2bduievXquOmmm/Dyyy+juLjYzk+XiBzBYIeIXO7ll1/G4MGD8dNPP+H+++/H8OHDceHCBQDAX3/9hYceeggDBw7EsWPHMHbsWLzwwgs2z3nq1Cl8/vnn2L59O7Zv3479+/dj/vz5hudffPFFrFq1CsuWLcPPP/+MKVOmYMSIEdi/f7/Z8x05cgTPPPMMXnnlFfz222/YsWMH7rnnHrNtO3XqhKysLMNt7969qF69uqH9119/jREjRuCZZ57BL7/8gvfeew+rV6/G3Llz7f3oiMgRqtdRJ6Iqa+TIkUKr1YqgoCCj2yuvvGJoA0C8+OKLhsf5+flCo9GIr776SgghxLPPPitiY2ONzvvCCy8IAOLixYtCCCFWrVolQkJCDM/Pnj1bBAYGiry8PMOxGTNmiLvuustwjerVq4tDhw4ZnXf06NFi6NChZt/Lpk2bRM2aNY3OWVbXrl3F5MmTyx3/999/RdOmTcX48eMNx7p06SLmzZtn1G7t2rUiIiLC7LmJSF1cs0NEqurevTuWLVtmdMx0fcvtt99u+HNQUBCCg4ORk5MDAPjtt9/Qvn17o/Z33nmnzes2btzYaLFwRESE4Zy//PILrl27ht69exu9pqioCK1btzZ7vt69e6NRo0a46aabcO+99+Lee+81TL1Zcv36dTz44INo2LAh3nrrLcPxtLQ0pKamGo3k6HQ6XLt2DVevXrV6TiKqOAY7RKSqoKAgNGvWzGobX19fo8cajQYlJSUA5NoajUZj9LxQsGnU2jn191988QUaNGhg1M7S4ung4GAcPXoU+/btw86dO/HSSy9hzpw5SE1Ntbjt/emnn8bp06eRmpqKatVK/3ktKSnByy+/jPj4+HKvqV69us33RkQVw2CHiDxKixYt8OWXXxodO3LkSIXOeeutt8Lf3x+nT59G165dFb+uWrVq6NWrF3r16oXZs2ejVq1a2Lt3r9mgZdGiRfjkk0/w3XffITQ01Oi5Nm3a4LfffrMZBBKRczDYISJVFRYWIjs72+hYtWrVULduXUWvHzt2LBYtWoRnn30Wo0ePxrFjx7B69WoAKDfio1RwcDCmT5+OKVOmoKSkBJ07d0ZeXh4OHTqEGjVqYOTIkeVes337dvz555+45557ULt2bXz55ZcoKSnBzTffXK7t7t27MXPmTLz77ruoW7eu4f0HBAQgJCQEL730Evr164fo6Gg8/PDD8PHxwU8//YTjx4/j1Vdfdeg9EZFy3I1FRKrasWMHIiIijG6dO3dW/PomTZpg48aNSE5Oxu23345ly5YZdmNVJF/Pf/7zH7z00ktITEzELbfcgr59+2Lbtm1o0qSJ2fa1atVCcnIyevTogVtuuQXLly/Hhg0bcNttt5Vre/DgQeh0OowbN87ofU+ePBmATKq4fft27Nq1C+3bt0eHDh2waNEiNGrUyOH3Q0TKMYMyEXm8uXPnYvny5cjIyHB3V4ioEuI0FhF5nKVLl6J9+/YIDQ3Ft99+i9dffx0TJ050d7eIqJJisENEHufkyZN49dVXceHCBTRs2BDTpk3DrFmz3N0tIqqkOI1FREREXo0LlImIiMirMdghIiIir8Zgh4iIiLwagx0iIiLyagx2iIiIyKsx2CEiIiKvxmCHiIiIvBqDHSIiIvJq/w8mC5aTc4qEZgAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "plt.scatter(train.ENGINESIZE, train.CO2EMISSIONS, color='blue')\n",
+ "XX = np.arange(0.0, 10.0, 0.1)\n",
+ "yy = clf.intercept_[0]+ clf.coef_[0][1]*XX+ clf.coef_[0][2]*np.power(XX, 2)\n",
+ "plt.plot(XX, yy, '-r' )\n",
+ "plt.xlabel(\"Engine size\")\n",
+ "plt.ylabel(\"Emission\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "
\n",
+ "\n",
+ "IBM SPSS Modeler is a comprehensive analytics platform that has many machine learning algorithms. It has been designed to bring predictive intelligence to decisions made by individuals, by groups, by systems – by your enterprise as a whole. A free trial is available through this course, available here: SPSS Modeler\n",
+ "\n",
+ "Also, you can use Watson Studio to run these notebooks faster with bigger datasets. Watson Studio is IBM's leading cloud solution for data scientists, built by data scientists. With Jupyter notebooks, RStudio, Apache Spark and popular libraries pre-packaged in the cloud, Watson Studio enables data scientists to collaborate on their projects without having to install anything. Join the fast-growing community of Watson Studio users today with a free account at Watson Studio\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Thank you for completing this lab!\n",
+ "\n",
+ "\n",
+ "## Author\n",
+ "\n",
+ "Saeed Aghabozorgi\n",
+ "\n",
+ "\n",
+ "### Other Contributors\n",
+ "\n",
+ "Joseph Santarcangelo\n",
+ "\n",
+ "\n",
+ "##