tambahan repo ML

This commit is contained in:
Arif Dwiyanto 2025-11-18 04:24:26 +00:00
parent 6669ae958f
commit 789cae7ff1
4 changed files with 2633 additions and 0 deletions

View File

@ -0,0 +1,184 @@
!pip install scikit-learn
!pip install matplotlib
!pip install pandas
!pip install numpy
%matplotlib inline
import pandas as pd
import pylab as pl
import numpy as np
import scipy.optimize as opt
from sklearn import preprocessing
from sklearn.model_selection import train_test_split
%matplotlib inline
import matplotlib.pyplot as plt
#Click here and press Shift+Enter
!wget -O cell_samples.csv https://cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud/IBMDeveloperSkillsNetwork-ML0101EN-SkillsNetwork/labs/Module%203/data/cell_samples.csv
cell_df = pd.read_csv("cell_samples.csv")
cell_df.head()
ax = cell_df[cell_df['Class'] == 4][0:50].plot(kind='scatter', x='Clump', y='UnifSize', color='DarkBlue', label='malignant');
cell_df[cell_df['Class'] == 2][0:50].plot(kind='scatter', x='Clump', y='UnifSize', color='Yellow', label='benign', ax=ax);
plt.show()
cell_df.dtypes
cell_df = cell_df[pd.to_numeric(cell_df['BareNuc'], errors='coerce').notnull()]
cell_df['BareNuc'] = cell_df['BareNuc'].astype('int')
cell_df.dtypes
feature_df = cell_df[['Clump', 'UnifSize', 'UnifShape', 'MargAdh', 'SingEpiSize', 'BareNuc', 'BlandChrom', 'NormNucl', 'Mit']]
X = np.asarray(feature_df)
X[0:5]
y = np.asarray(cell_df['Class'])
y [0:5]
X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.2, random_state=4)
print ('Train set:', X_train.shape, y_train.shape)
print ('Test set:', X_test.shape, y_test.shape)
from sklearn import svm
clf = svm.SVC(kernel='rbf')
clf.fit(X_train, y_train)
yhat = clf.predict(X_test)
yhat [0:5]
from sklearn.metrics import classification_report, confusion_matrix
import itertools
def plot_confusion_matrix(cm, classes,
normalize=False,
title='Confusion matrix',
cmap=plt.cm.Blues):
"""
This function prints and plots the confusion matrix.
Normalization can be applied by setting `normalize=True`.
"""
if normalize:
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
print("Normalized confusion matrix")
else:
print('Confusion matrix, without normalization')
print(cm)
plt.imshow(cm, interpolation='nearest', cmap=cmap)
plt.title(title)
plt.colorbar()
tick_marks = np.arange(len(classes))
plt.xticks(tick_marks, classes, rotation=45)
plt.yticks(tick_marks, classes)
fmt = '.2f' if normalize else 'd'
thresh = cm.max() / 2.
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
plt.text(j, i, format(cm[i, j], fmt),
horizontalalignment="center",
color="white" if cm[i, j] > thresh else "black")
plt.tight_layout()
plt.ylabel('True label')
plt.xlabel('Predicted label')
# Compute confusion matrix
cnf_matrix = confusion_matrix(y_test, yhat, labels=[2,4])
np.set_printoptions(precision=2)
print (classification_report(y_test, yhat))
# Plot non-normalized confusion matrix
plt.figure()
plot_confusion_matrix(cnf_matrix, classes=['Benign(2)','Malignant(4)'],normalize= False, title='Confusion matrix')
from sklearn.metrics import f1_score
f1_score(y_test, yhat, average='weighted')
from sklearn.metrics import jaccard_score
jaccard_score(y_test, yhat,pos_label=2)
# write your code here

View File

@ -0,0 +1,503 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<p style=\"text-align:center\">\n",
" <a href=\"https://skills.network\" target=\"_blank\">\n",
" <img src=\"https://cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud/assets/logos/SN_web_lightmode.png\" width=\"200\" alt=\"Skills Network Logo\">\n",
" </a>\n",
"</p>\n",
"\n",
"\n",
"# SVM (Support Vector Machines)\n",
"\n",
"\n",
"Estimated time needed: **15** minutes\n",
" \n",
"\n",
"## Objectives\n",
"\n",
"After completing this lab you will be able to:\n",
"\n",
"* Use scikit-learn to Support Vector Machine to classify\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"In this notebook, you will use SVM (Support Vector Machines) to build and train a model using human cell records, and classify cells to whether the samples are benign or malignant.\n",
"\n",
"SVM works by mapping data to a high-dimensional feature space so that data points can be categorized, even when the data are not otherwise linearly separable. A separator between the categories is found, then the data is transformed in such a way that the separator could be drawn as a hyperplane. Following this, characteristics of new data can be used to predict the group to which a new record should belong.\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<h1>Table of contents</h1>\n",
"\n",
"<div class=\"alert alert-block alert-info\" style=\"margin-top: 20px\">\n",
" <ol>\n",
" <li><a href=\"#load_dataset\">Load the Cancer data</a></li>\n",
" <li><a href=\"#modeling\">Modeling</a></li>\n",
" <li><a href=\"#evaluation\">Evaluation</a></li>\n",
" <li><a href=\"#practice\">Practice</a></li>\n",
" </ol>\n",
"</div>\n",
"<br>\n",
"<hr>\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"!pip install scikit-learn\n",
"!pip install matplotlib\n",
"!pip install pandas \n",
"!pip install numpy \n",
"%matplotlib inline"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"import pylab as pl\n",
"import numpy as np\n",
"import scipy.optimize as opt\n",
"from sklearn import preprocessing\n",
"from sklearn.model_selection import train_test_split\n",
"%matplotlib inline \n",
"import matplotlib.pyplot as plt"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<h2 id=\"load_dataset\">Load the Cancer data</h2>\n",
"The example is based on a dataset that is publicly available from the UCI Machine Learning Repository (Asuncion and Newman, 2007)[http://mlearn.ics.uci.edu/MLRepository.html]. The dataset consists of several hundred human cell sample records, each of which contains the values of a set of cell characteristics. The fields in each record are:\n",
"\n",
"|Field name|Description|\n",
"|--- |--- |\n",
"|ID|Clump thickness|\n",
"|Clump|Clump thickness|\n",
"|UnifSize|Uniformity of cell size|\n",
"|UnifShape|Uniformity of cell shape|\n",
"|MargAdh|Marginal adhesion|\n",
"|SingEpiSize|Single epithelial cell size|\n",
"|BareNuc|Bare nuclei|\n",
"|BlandChrom|Bland chromatin|\n",
"|NormNucl|Normal nucleoli|\n",
"|Mit|Mitoses|\n",
"|Class|Benign or malignant|\n",
"\n",
"<br>\n",
"<br>\n",
"\n",
"For the purposes of this example, we're using a dataset that has a relatively small number of predictors in each record. To download the data, we will use `!wget` to download it from IBM Object Storage. \n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#Click here and press Shift+Enter\n",
"!wget -O cell_samples.csv https://cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud/IBMDeveloperSkillsNetwork-ML0101EN-SkillsNetwork/labs/Module%203/data/cell_samples.csv"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Load Data From CSV File \n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"cell_df = pd.read_csv(\"cell_samples.csv\")\n",
"cell_df.head()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The ID field contains the patient identifiers. The characteristics of the cell samples from each patient are contained in fields Clump to Mit. The values are graded from 1 to 10, with 1 being the closest to benign.\n",
"\n",
"The Class field contains the diagnosis, as confirmed by separate medical procedures, as to whether the samples are benign (value = 2) or malignant (value = 4).\n",
"\n",
"Let's look at the distribution of the classes based on Clump thickness and Uniformity of cell size:\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ax = cell_df[cell_df['Class'] == 4][0:50].plot(kind='scatter', x='Clump', y='UnifSize', color='DarkBlue', label='malignant');\n",
"cell_df[cell_df['Class'] == 2][0:50].plot(kind='scatter', x='Clump', y='UnifSize', color='Yellow', label='benign', ax=ax);\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Data pre-processing and selection\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's first look at columns data types:\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"cell_df.dtypes"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"It looks like the __BareNuc__ column includes some values that are not numerical. We can drop those rows:\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"cell_df = cell_df[pd.to_numeric(cell_df['BareNuc'], errors='coerce').notnull()]\n",
"cell_df['BareNuc'] = cell_df['BareNuc'].astype('int')\n",
"cell_df.dtypes"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"feature_df = cell_df[['Clump', 'UnifSize', 'UnifShape', 'MargAdh', 'SingEpiSize', 'BareNuc', 'BlandChrom', 'NormNucl', 'Mit']]\n",
"X = np.asarray(feature_df)\n",
"X[0:5]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We want the model to predict the value of Class (that is, benign (=2) or malignant (=4)).\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"y = np.asarray(cell_df['Class'])\n",
"y [0:5]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Train/Test dataset\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We split our dataset into train and test set:\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.2, random_state=4)\n",
"print ('Train set:', X_train.shape, y_train.shape)\n",
"print ('Test set:', X_test.shape, y_test.shape)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<h2 id=\"modeling\">Modeling (SVM with Scikit-learn)</h2>\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The SVM algorithm offers a choice of kernel functions for performing its processing. Basically, mapping data into a higher dimensional space is called kernelling. The mathematical function used for the transformation is known as the kernel function, and can be of different types, such as:\n",
"\n",
" 1.Linear\n",
" 2.Polynomial\n",
" 3.Radial basis function (RBF)\n",
" 4.Sigmoid\n",
"Each of these functions has its characteristics, its pros and cons, and its equation, but as there's no easy way of knowing which function performs best with any given dataset. We usually choose different functions in turn and compare the results. Let's just use the default, RBF (Radial Basis Function) for this lab.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from sklearn import svm\n",
"clf = svm.SVC(kernel='rbf')\n",
"clf.fit(X_train, y_train) "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"After being fitted, the model can then be used to predict new values:\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"yhat = clf.predict(X_test)\n",
"yhat [0:5]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<h2 id=\"evaluation\">Evaluation</h2>\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from sklearn.metrics import classification_report, confusion_matrix\n",
"import itertools"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def plot_confusion_matrix(cm, classes,\n",
" normalize=False,\n",
" title='Confusion matrix',\n",
" cmap=plt.cm.Blues):\n",
" \"\"\"\n",
" This function prints and plots the confusion matrix.\n",
" Normalization can be applied by setting `normalize=True`.\n",
" \"\"\"\n",
" if normalize:\n",
" cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]\n",
" print(\"Normalized confusion matrix\")\n",
" else:\n",
" print('Confusion matrix, without normalization')\n",
"\n",
" print(cm)\n",
"\n",
" plt.imshow(cm, interpolation='nearest', cmap=cmap)\n",
" plt.title(title)\n",
" plt.colorbar()\n",
" tick_marks = np.arange(len(classes))\n",
" plt.xticks(tick_marks, classes, rotation=45)\n",
" plt.yticks(tick_marks, classes)\n",
"\n",
" fmt = '.2f' if normalize else 'd'\n",
" thresh = cm.max() / 2.\n",
" for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):\n",
" plt.text(j, i, format(cm[i, j], fmt),\n",
" horizontalalignment=\"center\",\n",
" color=\"white\" if cm[i, j] > thresh else \"black\")\n",
"\n",
" plt.tight_layout()\n",
" plt.ylabel('True label')\n",
" plt.xlabel('Predicted label')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Compute confusion matrix\n",
"cnf_matrix = confusion_matrix(y_test, yhat, labels=[2,4])\n",
"np.set_printoptions(precision=2)\n",
"\n",
"print (classification_report(y_test, yhat))\n",
"\n",
"# Plot non-normalized confusion matrix\n",
"plt.figure()\n",
"plot_confusion_matrix(cnf_matrix, classes=['Benign(2)','Malignant(4)'],normalize= False, title='Confusion matrix')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"You can also easily use the __f1_score__ from sklearn library:\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from sklearn.metrics import f1_score\n",
"f1_score(y_test, yhat, average='weighted') "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's try the jaccard index for accuracy:\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from sklearn.metrics import jaccard_score\n",
"jaccard_score(y_test, yhat,pos_label=2)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<h2 id=\"practice\">Practice</h2>\n",
"Can you rebuild the model, but this time with a __linear__ kernel? You can use __kernel='linear'__ option, when you define the svm. How the accuracy changes with the new kernel function?\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# write your code here\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<details><summary>Click here for the solution</summary>\n",
"\n",
"```python\n",
"clf2 = svm.SVC(kernel='linear')\n",
"clf2.fit(X_train, y_train) \n",
"yhat2 = clf2.predict(X_test)\n",
"print(\"Avg F1-score: %.4f\" % f1_score(y_test, yhat2, average='weighted'))\n",
"print(\"Jaccard score: %.4f\" % jaccard_score(y_test, yhat2,pos_label=2))\n",
"\n",
"```\n",
"\n",
"</details>\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Thank you for completing this lab!\n",
"\n",
"\n",
"## Author\n",
"\n",
"Saeed Aghabozorgi\n",
"\n",
"\n",
"### Other Contributors\n",
"\n",
"<a href=\"https://www.linkedin.com/in/joseph-s-50398b136/\" target=\"_blank\">Joseph Santarcangelo</a>\n",
"\n",
"## <h3 align=\"center\"> © IBM Corporation 2020. All rights reserved. <h3/>\n",
"\n",
"<!--\n",
"## Change Log\n",
"\n",
"\n",
"| Date (YYYY-MM-DD) | Version | Changed By | Change Description |\n",
"|---|---|---|---|\n",
"| 2021-01-21 | 2.2 | Lakshmi | Updated sklearn library |\n",
"| 2020-11-03 | 2.1 | Lakshmi | Updated URL of csv |\n",
"| 2020-08-27 | 2.0 | Lavanya | Moved lab to course repo in GitLab |\n",
"| | | | |\n",
"| | | | |\n",
"--!>\n",
"\n",
"\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.8"
},
"prev_pub_hash": "33c7dcfb268d8bbcaef711e72c89e89dc7bc1929452f1913b971040b140900c5"
},
"nbformat": 4,
"nbformat_minor": 4
}

File diff suppressed because one or more lines are too long

View File

@ -0,0 +1,700 @@
ID,Clump,UnifSize,UnifShape,MargAdh,SingEpiSize,BareNuc,BlandChrom,NormNucl,Mit,Class
1000025,5,1,1,1,2,1,3,1,1,2
1002945,5,4,4,5,7,10,3,2,1,2
1015425,3,1,1,1,2,2,3,1,1,2
1016277,6,8,8,1,3,4,3,7,1,2
1017023,4,1,1,3,2,1,3,1,1,2
1017122,8,10,10,8,7,10,9,7,1,4
1018099,1,1,1,1,2,10,3,1,1,2
1018561,2,1,2,1,2,1,3,1,1,2
1033078,2,1,1,1,2,1,1,1,5,2
1033078,4,2,1,1,2,1,2,1,1,2
1035283,1,1,1,1,1,1,3,1,1,2
1036172,2,1,1,1,2,1,2,1,1,2
1041801,5,3,3,3,2,3,4,4,1,4
1043999,1,1,1,1,2,3,3,1,1,2
1044572,8,7,5,10,7,9,5,5,4,4
1047630,7,4,6,4,6,1,4,3,1,4
1048672,4,1,1,1,2,1,2,1,1,2
1049815,4,1,1,1,2,1,3,1,1,2
1050670,10,7,7,6,4,10,4,1,2,4
1050718,6,1,1,1,2,1,3,1,1,2
1054590,7,3,2,10,5,10,5,4,4,4
1054593,10,5,5,3,6,7,7,10,1,4
1056784,3,1,1,1,2,1,2,1,1,2
1057013,8,4,5,1,2,?,7,3,1,4
1059552,1,1,1,1,2,1,3,1,1,2
1065726,5,2,3,4,2,7,3,6,1,4
1066373,3,2,1,1,1,1,2,1,1,2
1066979,5,1,1,1,2,1,2,1,1,2
1067444,2,1,1,1,2,1,2,1,1,2
1070935,1,1,3,1,2,1,1,1,1,2
1070935,3,1,1,1,1,1,2,1,1,2
1071760,2,1,1,1,2,1,3,1,1,2
1072179,10,7,7,3,8,5,7,4,3,4
1074610,2,1,1,2,2,1,3,1,1,2
1075123,3,1,2,1,2,1,2,1,1,2
1079304,2,1,1,1,2,1,2,1,1,2
1080185,10,10,10,8,6,1,8,9,1,4
1081791,6,2,1,1,1,1,7,1,1,2
1084584,5,4,4,9,2,10,5,6,1,4
1091262,2,5,3,3,6,7,7,5,1,4
1096800,6,6,6,9,6,?,7,8,1,2
1099510,10,4,3,1,3,3,6,5,2,4
1100524,6,10,10,2,8,10,7,3,3,4
1102573,5,6,5,6,10,1,3,1,1,4
1103608,10,10,10,4,8,1,8,10,1,4
1103722,1,1,1,1,2,1,2,1,2,2
1105257,3,7,7,4,4,9,4,8,1,4
1105524,1,1,1,1,2,1,2,1,1,2
1106095,4,1,1,3,2,1,3,1,1,2
1106829,7,8,7,2,4,8,3,8,2,4
1108370,9,5,8,1,2,3,2,1,5,4
1108449,5,3,3,4,2,4,3,4,1,4
1110102,10,3,6,2,3,5,4,10,2,4
1110503,5,5,5,8,10,8,7,3,7,4
1110524,10,5,5,6,8,8,7,1,1,4
1111249,10,6,6,3,4,5,3,6,1,4
1112209,8,10,10,1,3,6,3,9,1,4
1113038,8,2,4,1,5,1,5,4,4,4
1113483,5,2,3,1,6,10,5,1,1,4
1113906,9,5,5,2,2,2,5,1,1,4
1115282,5,3,5,5,3,3,4,10,1,4
1115293,1,1,1,1,2,2,2,1,1,2
1116116,9,10,10,1,10,8,3,3,1,4
1116132,6,3,4,1,5,2,3,9,1,4
1116192,1,1,1,1,2,1,2,1,1,2
1116998,10,4,2,1,3,2,4,3,10,4
1117152,4,1,1,1,2,1,3,1,1,2
1118039,5,3,4,1,8,10,4,9,1,4
1120559,8,3,8,3,4,9,8,9,8,4
1121732,1,1,1,1,2,1,3,2,1,2
1121919,5,1,3,1,2,1,2,1,1,2
1123061,6,10,2,8,10,2,7,8,10,4
1124651,1,3,3,2,2,1,7,2,1,2
1125035,9,4,5,10,6,10,4,8,1,4
1126417,10,6,4,1,3,4,3,2,3,4
1131294,1,1,2,1,2,2,4,2,1,2
1132347,1,1,4,1,2,1,2,1,1,2
1133041,5,3,1,2,2,1,2,1,1,2
1133136,3,1,1,1,2,3,3,1,1,2
1136142,2,1,1,1,3,1,2,1,1,2
1137156,2,2,2,1,1,1,7,1,1,2
1143978,4,1,1,2,2,1,2,1,1,2
1143978,5,2,1,1,2,1,3,1,1,2
1147044,3,1,1,1,2,2,7,1,1,2
1147699,3,5,7,8,8,9,7,10,7,4
1147748,5,10,6,1,10,4,4,10,10,4
1148278,3,3,6,4,5,8,4,4,1,4
1148873,3,6,6,6,5,10,6,8,3,4
1152331,4,1,1,1,2,1,3,1,1,2
1155546,2,1,1,2,3,1,2,1,1,2
1156272,1,1,1,1,2,1,3,1,1,2
1156948,3,1,1,2,2,1,1,1,1,2
1157734,4,1,1,1,2,1,3,1,1,2
1158247,1,1,1,1,2,1,2,1,1,2
1160476,2,1,1,1,2,1,3,1,1,2
1164066,1,1,1,1,2,1,3,1,1,2
1165297,2,1,1,2,2,1,1,1,1,2
1165790,5,1,1,1,2,1,3,1,1,2
1165926,9,6,9,2,10,6,2,9,10,4
1166630,7,5,6,10,5,10,7,9,4,4
1166654,10,3,5,1,10,5,3,10,2,4
1167439,2,3,4,4,2,5,2,5,1,4
1167471,4,1,2,1,2,1,3,1,1,2
1168359,8,2,3,1,6,3,7,1,1,4
1168736,10,10,10,10,10,1,8,8,8,4
1169049,7,3,4,4,3,3,3,2,7,4
1170419,10,10,10,8,2,10,4,1,1,4
1170420,1,6,8,10,8,10,5,7,1,4
1171710,1,1,1,1,2,1,2,3,1,2
1171710,6,5,4,4,3,9,7,8,3,4
1171795,1,3,1,2,2,2,5,3,2,2
1171845,8,6,4,3,5,9,3,1,1,4
1172152,10,3,3,10,2,10,7,3,3,4
1173216,10,10,10,3,10,8,8,1,1,4
1173235,3,3,2,1,2,3,3,1,1,2
1173347,1,1,1,1,2,5,1,1,1,2
1173347,8,3,3,1,2,2,3,2,1,2
1173509,4,5,5,10,4,10,7,5,8,4
1173514,1,1,1,1,4,3,1,1,1,2
1173681,3,2,1,1,2,2,3,1,1,2
1174057,1,1,2,2,2,1,3,1,1,2
1174057,4,2,1,1,2,2,3,1,1,2
1174131,10,10,10,2,10,10,5,3,3,4
1174428,5,3,5,1,8,10,5,3,1,4
1175937,5,4,6,7,9,7,8,10,1,4
1176406,1,1,1,1,2,1,2,1,1,2
1176881,7,5,3,7,4,10,7,5,5,4
1177027,3,1,1,1,2,1,3,1,1,2
1177399,8,3,5,4,5,10,1,6,2,4
1177512,1,1,1,1,10,1,1,1,1,2
1178580,5,1,3,1,2,1,2,1,1,2
1179818,2,1,1,1,2,1,3,1,1,2
1180194,5,10,8,10,8,10,3,6,3,4
1180523,3,1,1,1,2,1,2,2,1,2
1180831,3,1,1,1,3,1,2,1,1,2
1181356,5,1,1,1,2,2,3,3,1,2
1182404,4,1,1,1,2,1,2,1,1,2
1182410,3,1,1,1,2,1,1,1,1,2
1183240,4,1,2,1,2,1,2,1,1,2
1183246,1,1,1,1,1,?,2,1,1,2
1183516,3,1,1,1,2,1,1,1,1,2
1183911,2,1,1,1,2,1,1,1,1,2
1183983,9,5,5,4,4,5,4,3,3,4
1184184,1,1,1,1,2,5,1,1,1,2
1184241,2,1,1,1,2,1,2,1,1,2
1184840,1,1,3,1,2,?,2,1,1,2
1185609,3,4,5,2,6,8,4,1,1,4
1185610,1,1,1,1,3,2,2,1,1,2
1187457,3,1,1,3,8,1,5,8,1,2
1187805,8,8,7,4,10,10,7,8,7,4
1188472,1,1,1,1,1,1,3,1,1,2
1189266,7,2,4,1,6,10,5,4,3,4
1189286,10,10,8,6,4,5,8,10,1,4
1190394,4,1,1,1,2,3,1,1,1,2
1190485,1,1,1,1,2,1,1,1,1,2
1192325,5,5,5,6,3,10,3,1,1,4
1193091,1,2,2,1,2,1,2,1,1,2
1193210,2,1,1,1,2,1,3,1,1,2
1193683,1,1,2,1,3,?,1,1,1,2
1196295,9,9,10,3,6,10,7,10,6,4
1196915,10,7,7,4,5,10,5,7,2,4
1197080,4,1,1,1,2,1,3,2,1,2
1197270,3,1,1,1,2,1,3,1,1,2
1197440,1,1,1,2,1,3,1,1,7,2
1197510,5,1,1,1,2,?,3,1,1,2
1197979,4,1,1,1,2,2,3,2,1,2
1197993,5,6,7,8,8,10,3,10,3,4
1198128,10,8,10,10,6,1,3,1,10,4
1198641,3,1,1,1,2,1,3,1,1,2
1199219,1,1,1,2,1,1,1,1,1,2
1199731,3,1,1,1,2,1,1,1,1,2
1199983,1,1,1,1,2,1,3,1,1,2
1200772,1,1,1,1,2,1,2,1,1,2
1200847,6,10,10,10,8,10,10,10,7,4
1200892,8,6,5,4,3,10,6,1,1,4
1200952,5,8,7,7,10,10,5,7,1,4
1201834,2,1,1,1,2,1,3,1,1,2
1201936,5,10,10,3,8,1,5,10,3,4
1202125,4,1,1,1,2,1,3,1,1,2
1202812,5,3,3,3,6,10,3,1,1,4
1203096,1,1,1,1,1,1,3,1,1,2
1204242,1,1,1,1,2,1,1,1,1,2
1204898,6,1,1,1,2,1,3,1,1,2
1205138,5,8,8,8,5,10,7,8,1,4
1205579,8,7,6,4,4,10,5,1,1,4
1206089,2,1,1,1,1,1,3,1,1,2
1206695,1,5,8,6,5,8,7,10,1,4
1206841,10,5,6,10,6,10,7,7,10,4
1207986,5,8,4,10,5,8,9,10,1,4
1208301,1,2,3,1,2,1,3,1,1,2
1210963,10,10,10,8,6,8,7,10,1,4
1211202,7,5,10,10,10,10,4,10,3,4
1212232,5,1,1,1,2,1,2,1,1,2
1212251,1,1,1,1,2,1,3,1,1,2
1212422,3,1,1,1,2,1,3,1,1,2
1212422,4,1,1,1,2,1,3,1,1,2
1213375,8,4,4,5,4,7,7,8,2,2
1213383,5,1,1,4,2,1,3,1,1,2
1214092,1,1,1,1,2,1,1,1,1,2
1214556,3,1,1,1,2,1,2,1,1,2
1214966,9,7,7,5,5,10,7,8,3,4
1216694,10,8,8,4,10,10,8,1,1,4
1216947,1,1,1,1,2,1,3,1,1,2
1217051,5,1,1,1,2,1,3,1,1,2
1217264,1,1,1,1,2,1,3,1,1,2
1218105,5,10,10,9,6,10,7,10,5,4
1218741,10,10,9,3,7,5,3,5,1,4
1218860,1,1,1,1,1,1,3,1,1,2
1218860,1,1,1,1,1,1,3,1,1,2
1219406,5,1,1,1,1,1,3,1,1,2
1219525,8,10,10,10,5,10,8,10,6,4
1219859,8,10,8,8,4,8,7,7,1,4
1220330,1,1,1,1,2,1,3,1,1,2
1221863,10,10,10,10,7,10,7,10,4,4
1222047,10,10,10,10,3,10,10,6,1,4
1222936,8,7,8,7,5,5,5,10,2,4
1223282,1,1,1,1,2,1,2,1,1,2
1223426,1,1,1,1,2,1,3,1,1,2
1223793,6,10,7,7,6,4,8,10,2,4
1223967,6,1,3,1,2,1,3,1,1,2
1224329,1,1,1,2,2,1,3,1,1,2
1225799,10,6,4,3,10,10,9,10,1,4
1226012,4,1,1,3,1,5,2,1,1,4
1226612,7,5,6,3,3,8,7,4,1,4
1227210,10,5,5,6,3,10,7,9,2,4
1227244,1,1,1,1,2,1,2,1,1,2
1227481,10,5,7,4,4,10,8,9,1,4
1228152,8,9,9,5,3,5,7,7,1,4
1228311,1,1,1,1,1,1,3,1,1,2
1230175,10,10,10,3,10,10,9,10,1,4
1230688,7,4,7,4,3,7,7,6,1,4
1231387,6,8,7,5,6,8,8,9,2,4
1231706,8,4,6,3,3,1,4,3,1,2
1232225,10,4,5,5,5,10,4,1,1,4
1236043,3,3,2,1,3,1,3,6,1,2
1241232,3,1,4,1,2,?,3,1,1,2
1241559,10,8,8,2,8,10,4,8,10,4
1241679,9,8,8,5,6,2,4,10,4,4
1242364,8,10,10,8,6,9,3,10,10,4
1243256,10,4,3,2,3,10,5,3,2,4
1270479,5,1,3,3,2,2,2,3,1,2
1276091,3,1,1,3,1,1,3,1,1,2
1277018,2,1,1,1,2,1,3,1,1,2
128059,1,1,1,1,2,5,5,1,1,2
1285531,1,1,1,1,2,1,3,1,1,2
1287775,5,1,1,2,2,2,3,1,1,2
144888,8,10,10,8,5,10,7,8,1,4
145447,8,4,4,1,2,9,3,3,1,4
167528,4,1,1,1,2,1,3,6,1,2
169356,3,1,1,1,2,?,3,1,1,2
183913,1,2,2,1,2,1,1,1,1,2
191250,10,4,4,10,2,10,5,3,3,4
1017023,6,3,3,5,3,10,3,5,3,2
1100524,6,10,10,2,8,10,7,3,3,4
1116116,9,10,10,1,10,8,3,3,1,4
1168736,5,6,6,2,4,10,3,6,1,4
1182404,3,1,1,1,2,1,1,1,1,2
1182404,3,1,1,1,2,1,2,1,1,2
1198641,3,1,1,1,2,1,3,1,1,2
242970,5,7,7,1,5,8,3,4,1,2
255644,10,5,8,10,3,10,5,1,3,4
263538,5,10,10,6,10,10,10,6,5,4
274137,8,8,9,4,5,10,7,8,1,4
303213,10,4,4,10,6,10,5,5,1,4
314428,7,9,4,10,10,3,5,3,3,4
1182404,5,1,4,1,2,1,3,2,1,2
1198641,10,10,6,3,3,10,4,3,2,4
320675,3,3,5,2,3,10,7,1,1,4
324427,10,8,8,2,3,4,8,7,8,4
385103,1,1,1,1,2,1,3,1,1,2
390840,8,4,7,1,3,10,3,9,2,4
411453,5,1,1,1,2,1,3,1,1,2
320675,3,3,5,2,3,10,7,1,1,4
428903,7,2,4,1,3,4,3,3,1,4
431495,3,1,1,1,2,1,3,2,1,2
432809,3,1,3,1,2,?,2,1,1,2
434518,3,1,1,1,2,1,2,1,1,2
452264,1,1,1,1,2,1,2,1,1,2
456282,1,1,1,1,2,1,3,1,1,2
476903,10,5,7,3,3,7,3,3,8,4
486283,3,1,1,1,2,1,3,1,1,2
486662,2,1,1,2,2,1,3,1,1,2
488173,1,4,3,10,4,10,5,6,1,4
492268,10,4,6,1,2,10,5,3,1,4
508234,7,4,5,10,2,10,3,8,2,4
527363,8,10,10,10,8,10,10,7,3,4
529329,10,10,10,10,10,10,4,10,10,4
535331,3,1,1,1,3,1,2,1,1,2
543558,6,1,3,1,4,5,5,10,1,4
555977,5,6,6,8,6,10,4,10,4,4
560680,1,1,1,1,2,1,1,1,1,2
561477,1,1,1,1,2,1,3,1,1,2
563649,8,8,8,1,2,?,6,10,1,4
601265,10,4,4,6,2,10,2,3,1,4
606140,1,1,1,1,2,?,2,1,1,2
606722,5,5,7,8,6,10,7,4,1,4
616240,5,3,4,3,4,5,4,7,1,2
61634,5,4,3,1,2,?,2,3,1,2
625201,8,2,1,1,5,1,1,1,1,2
63375,9,1,2,6,4,10,7,7,2,4
635844,8,4,10,5,4,4,7,10,1,4
636130,1,1,1,1,2,1,3,1,1,2
640744,10,10,10,7,9,10,7,10,10,4
646904,1,1,1,1,2,1,3,1,1,2
653777,8,3,4,9,3,10,3,3,1,4
659642,10,8,4,4,4,10,3,10,4,4
666090,1,1,1,1,2,1,3,1,1,2
666942,1,1,1,1,2,1,3,1,1,2
667204,7,8,7,6,4,3,8,8,4,4
673637,3,1,1,1,2,5,5,1,1,2
684955,2,1,1,1,3,1,2,1,1,2
688033,1,1,1,1,2,1,1,1,1,2
691628,8,6,4,10,10,1,3,5,1,4
693702,1,1,1,1,2,1,1,1,1,2
704097,1,1,1,1,1,1,2,1,1,2
704168,4,6,5,6,7,?,4,9,1,2
706426,5,5,5,2,5,10,4,3,1,4
709287,6,8,7,8,6,8,8,9,1,4
718641,1,1,1,1,5,1,3,1,1,2
721482,4,4,4,4,6,5,7,3,1,2
730881,7,6,3,2,5,10,7,4,6,4
733639,3,1,1,1,2,?,3,1,1,2
733639,3,1,1,1,2,1,3,1,1,2
733823,5,4,6,10,2,10,4,1,1,4
740492,1,1,1,1,2,1,3,1,1,2
743348,3,2,2,1,2,1,2,3,1,2
752904,10,1,1,1,2,10,5,4,1,4
756136,1,1,1,1,2,1,2,1,1,2
760001,8,10,3,2,6,4,3,10,1,4
760239,10,4,6,4,5,10,7,1,1,4
76389,10,4,7,2,2,8,6,1,1,4
764974,5,1,1,1,2,1,3,1,2,2
770066,5,2,2,2,2,1,2,2,1,2
785208,5,4,6,6,4,10,4,3,1,4
785615,8,6,7,3,3,10,3,4,2,4
792744,1,1,1,1,2,1,1,1,1,2
797327,6,5,5,8,4,10,3,4,1,4
798429,1,1,1,1,2,1,3,1,1,2
704097,1,1,1,1,1,1,2,1,1,2
806423,8,5,5,5,2,10,4,3,1,4
809912,10,3,3,1,2,10,7,6,1,4
810104,1,1,1,1,2,1,3,1,1,2
814265,2,1,1,1,2,1,1,1,1,2
814911,1,1,1,1,2,1,1,1,1,2
822829,7,6,4,8,10,10,9,5,3,4
826923,1,1,1,1,2,1,1,1,1,2
830690,5,2,2,2,3,1,1,3,1,2
831268,1,1,1,1,1,1,1,3,1,2
832226,3,4,4,10,5,1,3,3,1,4
832567,4,2,3,5,3,8,7,6,1,4
836433,5,1,1,3,2,1,1,1,1,2
837082,2,1,1,1,2,1,3,1,1,2
846832,3,4,5,3,7,3,4,6,1,2
850831,2,7,10,10,7,10,4,9,4,4
855524,1,1,1,1,2,1,2,1,1,2
857774,4,1,1,1,3,1,2,2,1,2
859164,5,3,3,1,3,3,3,3,3,4
859350,8,10,10,7,10,10,7,3,8,4
866325,8,10,5,3,8,4,4,10,3,4
873549,10,3,5,4,3,7,3,5,3,4
877291,6,10,10,10,10,10,8,10,10,4
877943,3,10,3,10,6,10,5,1,4,4
888169,3,2,2,1,4,3,2,1,1,2
888523,4,4,4,2,2,3,2,1,1,2
896404,2,1,1,1,2,1,3,1,1,2
897172,2,1,1,1,2,1,2,1,1,2
95719,6,10,10,10,8,10,7,10,7,4
160296,5,8,8,10,5,10,8,10,3,4
342245,1,1,3,1,2,1,1,1,1,2
428598,1,1,3,1,1,1,2,1,1,2
492561,4,3,2,1,3,1,2,1,1,2
493452,1,1,3,1,2,1,1,1,1,2
493452,4,1,2,1,2,1,2,1,1,2
521441,5,1,1,2,2,1,2,1,1,2
560680,3,1,2,1,2,1,2,1,1,2
636437,1,1,1,1,2,1,1,1,1,2
640712,1,1,1,1,2,1,2,1,1,2
654244,1,1,1,1,1,1,2,1,1,2
657753,3,1,1,4,3,1,2,2,1,2
685977,5,3,4,1,4,1,3,1,1,2
805448,1,1,1,1,2,1,1,1,1,2
846423,10,6,3,6,4,10,7,8,4,4
1002504,3,2,2,2,2,1,3,2,1,2
1022257,2,1,1,1,2,1,1,1,1,2
1026122,2,1,1,1,2,1,1,1,1,2
1071084,3,3,2,2,3,1,1,2,3,2
1080233,7,6,6,3,2,10,7,1,1,4
1114570,5,3,3,2,3,1,3,1,1,2
1114570,2,1,1,1,2,1,2,2,1,2
1116715,5,1,1,1,3,2,2,2,1,2
1131411,1,1,1,2,2,1,2,1,1,2
1151734,10,8,7,4,3,10,7,9,1,4
1156017,3,1,1,1,2,1,2,1,1,2
1158247,1,1,1,1,1,1,1,1,1,2
1158405,1,2,3,1,2,1,2,1,1,2
1168278,3,1,1,1,2,1,2,1,1,2
1176187,3,1,1,1,2,1,3,1,1,2
1196263,4,1,1,1,2,1,1,1,1,2
1196475,3,2,1,1,2,1,2,2,1,2
1206314,1,2,3,1,2,1,1,1,1,2
1211265,3,10,8,7,6,9,9,3,8,4
1213784,3,1,1,1,2,1,1,1,1,2
1223003,5,3,3,1,2,1,2,1,1,2
1223306,3,1,1,1,2,4,1,1,1,2
1223543,1,2,1,3,2,1,1,2,1,2
1229929,1,1,1,1,2,1,2,1,1,2
1231853,4,2,2,1,2,1,2,1,1,2
1234554,1,1,1,1,2,1,2,1,1,2
1236837,2,3,2,2,2,2,3,1,1,2
1237674,3,1,2,1,2,1,2,1,1,2
1238021,1,1,1,1,2,1,2,1,1,2
1238464,1,1,1,1,1,?,2,1,1,2
1238633,10,10,10,6,8,4,8,5,1,4
1238915,5,1,2,1,2,1,3,1,1,2
1238948,8,5,6,2,3,10,6,6,1,4
1239232,3,3,2,6,3,3,3,5,1,2
1239347,8,7,8,5,10,10,7,2,1,4
1239967,1,1,1,1,2,1,2,1,1,2
1240337,5,2,2,2,2,2,3,2,2,2
1253505,2,3,1,1,5,1,1,1,1,2
1255384,3,2,2,3,2,3,3,1,1,2
1257200,10,10,10,7,10,10,8,2,1,4
1257648,4,3,3,1,2,1,3,3,1,2
1257815,5,1,3,1,2,1,2,1,1,2
1257938,3,1,1,1,2,1,1,1,1,2
1258549,9,10,10,10,10,10,10,10,1,4
1258556,5,3,6,1,2,1,1,1,1,2
1266154,8,7,8,2,4,2,5,10,1,4
1272039,1,1,1,1,2,1,2,1,1,2
1276091,2,1,1,1,2,1,2,1,1,2
1276091,1,3,1,1,2,1,2,2,1,2
1276091,5,1,1,3,4,1,3,2,1,2
1277629,5,1,1,1,2,1,2,2,1,2
1293439,3,2,2,3,2,1,1,1,1,2
1293439,6,9,7,5,5,8,4,2,1,2
1294562,10,8,10,1,3,10,5,1,1,4
1295186,10,10,10,1,6,1,2,8,1,4
527337,4,1,1,1,2,1,1,1,1,2
558538,4,1,3,3,2,1,1,1,1,2
566509,5,1,1,1,2,1,1,1,1,2
608157,10,4,3,10,4,10,10,1,1,4
677910,5,2,2,4,2,4,1,1,1,2
734111,1,1,1,3,2,3,1,1,1,2
734111,1,1,1,1,2,2,1,1,1,2
780555,5,1,1,6,3,1,2,1,1,2
827627,2,1,1,1,2,1,1,1,1,2
1049837,1,1,1,1,2,1,1,1,1,2
1058849,5,1,1,1,2,1,1,1,1,2
1182404,1,1,1,1,1,1,1,1,1,2
1193544,5,7,9,8,6,10,8,10,1,4
1201870,4,1,1,3,1,1,2,1,1,2
1202253,5,1,1,1,2,1,1,1,1,2
1227081,3,1,1,3,2,1,1,1,1,2
1230994,4,5,5,8,6,10,10,7,1,4
1238410,2,3,1,1,3,1,1,1,1,2
1246562,10,2,2,1,2,6,1,1,2,4
1257470,10,6,5,8,5,10,8,6,1,4
1259008,8,8,9,6,6,3,10,10,1,4
1266124,5,1,2,1,2,1,1,1,1,2
1267898,5,1,3,1,2,1,1,1,1,2
1268313,5,1,1,3,2,1,1,1,1,2
1268804,3,1,1,1,2,5,1,1,1,2
1276091,6,1,1,3,2,1,1,1,1,2
1280258,4,1,1,1,2,1,1,2,1,2
1293966,4,1,1,1,2,1,1,1,1,2
1296572,10,9,8,7,6,4,7,10,3,4
1298416,10,6,6,2,4,10,9,7,1,4
1299596,6,6,6,5,4,10,7,6,2,4
1105524,4,1,1,1,2,1,1,1,1,2
1181685,1,1,2,1,2,1,2,1,1,2
1211594,3,1,1,1,1,1,2,1,1,2
1238777,6,1,1,3,2,1,1,1,1,2
1257608,6,1,1,1,1,1,1,1,1,2
1269574,4,1,1,1,2,1,1,1,1,2
1277145,5,1,1,1,2,1,1,1,1,2
1287282,3,1,1,1,2,1,1,1,1,2
1296025,4,1,2,1,2,1,1,1,1,2
1296263,4,1,1,1,2,1,1,1,1,2
1296593,5,2,1,1,2,1,1,1,1,2
1299161,4,8,7,10,4,10,7,5,1,4
1301945,5,1,1,1,1,1,1,1,1,2
1302428,5,3,2,4,2,1,1,1,1,2
1318169,9,10,10,10,10,5,10,10,10,4
474162,8,7,8,5,5,10,9,10,1,4
787451,5,1,2,1,2,1,1,1,1,2
1002025,1,1,1,3,1,3,1,1,1,2
1070522,3,1,1,1,1,1,2,1,1,2
1073960,10,10,10,10,6,10,8,1,5,4
1076352,3,6,4,10,3,3,3,4,1,4
1084139,6,3,2,1,3,4,4,1,1,4
1115293,1,1,1,1,2,1,1,1,1,2
1119189,5,8,9,4,3,10,7,1,1,4
1133991,4,1,1,1,1,1,2,1,1,2
1142706,5,10,10,10,6,10,6,5,2,4
1155967,5,1,2,10,4,5,2,1,1,2
1170945,3,1,1,1,1,1,2,1,1,2
1181567,1,1,1,1,1,1,1,1,1,2
1182404,4,2,1,1,2,1,1,1,1,2
1204558,4,1,1,1,2,1,2,1,1,2
1217952,4,1,1,1,2,1,2,1,1,2
1224565,6,1,1,1,2,1,3,1,1,2
1238186,4,1,1,1,2,1,2,1,1,2
1253917,4,1,1,2,2,1,2,1,1,2
1265899,4,1,1,1,2,1,3,1,1,2
1268766,1,1,1,1,2,1,1,1,1,2
1277268,3,3,1,1,2,1,1,1,1,2
1286943,8,10,10,10,7,5,4,8,7,4
1295508,1,1,1,1,2,4,1,1,1,2
1297327,5,1,1,1,2,1,1,1,1,2
1297522,2,1,1,1,2,1,1,1,1,2
1298360,1,1,1,1,2,1,1,1,1,2
1299924,5,1,1,1,2,1,2,1,1,2
1299994,5,1,1,1,2,1,1,1,1,2
1304595,3,1,1,1,1,1,2,1,1,2
1306282,6,6,7,10,3,10,8,10,2,4
1313325,4,10,4,7,3,10,9,10,1,4
1320077,1,1,1,1,1,1,1,1,1,2
1320077,1,1,1,1,1,1,2,1,1,2
1320304,3,1,2,2,2,1,1,1,1,2
1330439,4,7,8,3,4,10,9,1,1,4
333093,1,1,1,1,3,1,1,1,1,2
369565,4,1,1,1,3,1,1,1,1,2
412300,10,4,5,4,3,5,7,3,1,4
672113,7,5,6,10,4,10,5,3,1,4
749653,3,1,1,1,2,1,2,1,1,2
769612,3,1,1,2,2,1,1,1,1,2
769612,4,1,1,1,2,1,1,1,1,2
798429,4,1,1,1,2,1,3,1,1,2
807657,6,1,3,2,2,1,1,1,1,2
8233704,4,1,1,1,1,1,2,1,1,2
837480,7,4,4,3,4,10,6,9,1,4
867392,4,2,2,1,2,1,2,1,1,2
869828,1,1,1,1,1,1,3,1,1,2
1043068,3,1,1,1,2,1,2,1,1,2
1056171,2,1,1,1,2,1,2,1,1,2
1061990,1,1,3,2,2,1,3,1,1,2
1113061,5,1,1,1,2,1,3,1,1,2
1116192,5,1,2,1,2,1,3,1,1,2
1135090,4,1,1,1,2,1,2,1,1,2
1145420,6,1,1,1,2,1,2,1,1,2
1158157,5,1,1,1,2,2,2,1,1,2
1171578,3,1,1,1,2,1,1,1,1,2
1174841,5,3,1,1,2,1,1,1,1,2
1184586,4,1,1,1,2,1,2,1,1,2
1186936,2,1,3,2,2,1,2,1,1,2
1197527,5,1,1,1,2,1,2,1,1,2
1222464,6,10,10,10,4,10,7,10,1,4
1240603,2,1,1,1,1,1,1,1,1,2
1240603,3,1,1,1,1,1,1,1,1,2
1241035,7,8,3,7,4,5,7,8,2,4
1287971,3,1,1,1,2,1,2,1,1,2
1289391,1,1,1,1,2,1,3,1,1,2
1299924,3,2,2,2,2,1,4,2,1,2
1306339,4,4,2,1,2,5,2,1,2,2
1313658,3,1,1,1,2,1,1,1,1,2
1313982,4,3,1,1,2,1,4,8,1,2
1321264,5,2,2,2,1,1,2,1,1,2
1321321,5,1,1,3,2,1,1,1,1,2
1321348,2,1,1,1,2,1,2,1,1,2
1321931,5,1,1,1,2,1,2,1,1,2
1321942,5,1,1,1,2,1,3,1,1,2
1321942,5,1,1,1,2,1,3,1,1,2
1328331,1,1,1,1,2,1,3,1,1,2
1328755,3,1,1,1,2,1,2,1,1,2
1331405,4,1,1,1,2,1,3,2,1,2
1331412,5,7,10,10,5,10,10,10,1,4
1333104,3,1,2,1,2,1,3,1,1,2
1334071,4,1,1,1,2,3,2,1,1,2
1343068,8,4,4,1,6,10,2,5,2,4
1343374,10,10,8,10,6,5,10,3,1,4
1344121,8,10,4,4,8,10,8,2,1,4
142932,7,6,10,5,3,10,9,10,2,4
183936,3,1,1,1,2,1,2,1,1,2
324382,1,1,1,1,2,1,2,1,1,2
378275,10,9,7,3,4,2,7,7,1,4
385103,5,1,2,1,2,1,3,1,1,2
690557,5,1,1,1,2,1,2,1,1,2
695091,1,1,1,1,2,1,2,1,1,2
695219,1,1,1,1,2,1,2,1,1,2
824249,1,1,1,1,2,1,3,1,1,2
871549,5,1,2,1,2,1,2,1,1,2
878358,5,7,10,6,5,10,7,5,1,4
1107684,6,10,5,5,4,10,6,10,1,4
1115762,3,1,1,1,2,1,1,1,1,2
1217717,5,1,1,6,3,1,1,1,1,2
1239420,1,1,1,1,2,1,1,1,1,2
1254538,8,10,10,10,6,10,10,10,1,4
1261751,5,1,1,1,2,1,2,2,1,2
1268275,9,8,8,9,6,3,4,1,1,4
1272166,5,1,1,1,2,1,1,1,1,2
1294261,4,10,8,5,4,1,10,1,1,4
1295529,2,5,7,6,4,10,7,6,1,4
1298484,10,3,4,5,3,10,4,1,1,4
1311875,5,1,2,1,2,1,1,1,1,2
1315506,4,8,6,3,4,10,7,1,1,4
1320141,5,1,1,1,2,1,2,1,1,2
1325309,4,1,2,1,2,1,2,1,1,2
1333063,5,1,3,1,2,1,3,1,1,2
1333495,3,1,1,1,2,1,2,1,1,2
1334659,5,2,4,1,1,1,1,1,1,2
1336798,3,1,1,1,2,1,2,1,1,2
1344449,1,1,1,1,1,1,2,1,1,2
1350568,4,1,1,1,2,1,2,1,1,2
1352663,5,4,6,8,4,1,8,10,1,4
188336,5,3,2,8,5,10,8,1,2,4
352431,10,5,10,3,5,8,7,8,3,4
353098,4,1,1,2,2,1,1,1,1,2
411453,1,1,1,1,2,1,1,1,1,2
557583,5,10,10,10,10,10,10,1,1,4
636375,5,1,1,1,2,1,1,1,1,2
736150,10,4,3,10,3,10,7,1,2,4
803531,5,10,10,10,5,2,8,5,1,4
822829,8,10,10,10,6,10,10,10,10,4
1016634,2,3,1,1,2,1,2,1,1,2
1031608,2,1,1,1,1,1,2,1,1,2
1041043,4,1,3,1,2,1,2,1,1,2
1042252,3,1,1,1,2,1,2,1,1,2
1057067,1,1,1,1,1,?,1,1,1,2
1061990,4,1,1,1,2,1,2,1,1,2
1073836,5,1,1,1,2,1,2,1,1,2
1083817,3,1,1,1,2,1,2,1,1,2
1096352,6,3,3,3,3,2,6,1,1,2
1140597,7,1,2,3,2,1,2,1,1,2
1149548,1,1,1,1,2,1,1,1,1,2
1174009,5,1,1,2,1,1,2,1,1,2
1183596,3,1,3,1,3,4,1,1,1,2
1190386,4,6,6,5,7,6,7,7,3,4
1190546,2,1,1,1,2,5,1,1,1,2
1213273,2,1,1,1,2,1,1,1,1,2
1218982,4,1,1,1,2,1,1,1,1,2
1225382,6,2,3,1,2,1,1,1,1,2
1235807,5,1,1,1,2,1,2,1,1,2
1238777,1,1,1,1,2,1,1,1,1,2
1253955,8,7,4,4,5,3,5,10,1,4
1257366,3,1,1,1,2,1,1,1,1,2
1260659,3,1,4,1,2,1,1,1,1,2
1268952,10,10,7,8,7,1,10,10,3,4
1275807,4,2,4,3,2,2,2,1,1,2
1277792,4,1,1,1,2,1,1,1,1,2
1277792,5,1,1,3,2,1,1,1,1,2
1285722,4,1,1,3,2,1,1,1,1,2
1288608,3,1,1,1,2,1,2,1,1,2
1290203,3,1,1,1,2,1,2,1,1,2
1294413,1,1,1,1,2,1,1,1,1,2
1299596,2,1,1,1,2,1,1,1,1,2
1303489,3,1,1,1,2,1,2,1,1,2
1311033,1,2,2,1,2,1,1,1,1,2
1311108,1,1,1,3,2,1,1,1,1,2
1315807,5,10,10,10,10,2,10,10,10,4
1318671,3,1,1,1,2,1,2,1,1,2
1319609,3,1,1,2,3,4,1,1,1,2
1323477,1,2,1,3,2,1,2,1,1,2
1324572,5,1,1,1,2,1,2,2,1,2
1324681,4,1,1,1,2,1,2,1,1,2
1325159,3,1,1,1,2,1,3,1,1,2
1326892,3,1,1,1,2,1,2,1,1,2
1330361,5,1,1,1,2,1,2,1,1,2
1333877,5,4,5,1,8,1,3,6,1,2
1334015,7,8,8,7,3,10,7,2,3,4
1334667,1,1,1,1,2,1,1,1,1,2
1339781,1,1,1,1,2,1,2,1,1,2
1339781,4,1,1,1,2,1,3,1,1,2
13454352,1,1,3,1,2,1,2,1,1,2
1345452,1,1,3,1,2,1,2,1,1,2
1345593,3,1,1,3,2,1,2,1,1,2
1347749,1,1,1,1,2,1,1,1,1,2
1347943,5,2,2,2,2,1,1,1,2,2
1348851,3,1,1,1,2,1,3,1,1,2
1350319,5,7,4,1,6,1,7,10,3,4
1350423,5,10,10,8,5,5,7,10,1,4
1352848,3,10,7,8,5,8,7,4,1,4
1353092,3,2,1,2,2,1,3,1,1,2
1354840,2,1,1,1,2,1,3,1,1,2
1354840,5,3,2,1,3,1,1,1,1,2
1355260,1,1,1,1,2,1,2,1,1,2
1365075,4,1,4,1,2,1,1,1,1,2
1365328,1,1,2,1,2,1,2,1,1,2
1368267,5,1,1,1,2,1,1,1,1,2
1368273,1,1,1,1,2,1,1,1,1,2
1368882,2,1,1,1,2,1,1,1,1,2
1369821,10,10,10,10,5,10,10,10,7,4
1371026,5,10,10,10,4,10,5,6,3,4
1371920,5,1,1,1,2,1,3,2,1,2
466906,1,1,1,1,2,1,1,1,1,2
466906,1,1,1,1,2,1,1,1,1,2
534555,1,1,1,1,2,1,1,1,1,2
536708,1,1,1,1,2,1,1,1,1,2
566346,3,1,1,1,2,1,2,3,1,2
603148,4,1,1,1,2,1,1,1,1,2
654546,1,1,1,1,2,1,1,1,8,2
654546,1,1,1,3,2,1,1,1,1,2
695091,5,10,10,5,4,5,4,4,1,4
714039,3,1,1,1,2,1,1,1,1,2
763235,3,1,1,1,2,1,2,1,2,2
776715,3,1,1,1,3,2,1,1,1,2
841769,2,1,1,1,2,1,1,1,1,2
888820,5,10,10,3,7,3,8,10,2,4
897471,4,8,6,4,3,4,10,6,1,4
897471,4,8,8,5,4,5,10,4,1,4
1 ID Clump UnifSize UnifShape MargAdh SingEpiSize BareNuc BlandChrom NormNucl Mit Class
2 1000025 5 1 1 1 2 1 3 1 1 2
3 1002945 5 4 4 5 7 10 3 2 1 2
4 1015425 3 1 1 1 2 2 3 1 1 2
5 1016277 6 8 8 1 3 4 3 7 1 2
6 1017023 4 1 1 3 2 1 3 1 1 2
7 1017122 8 10 10 8 7 10 9 7 1 4
8 1018099 1 1 1 1 2 10 3 1 1 2
9 1018561 2 1 2 1 2 1 3 1 1 2
10 1033078 2 1 1 1 2 1 1 1 5 2
11 1033078 4 2 1 1 2 1 2 1 1 2
12 1035283 1 1 1 1 1 1 3 1 1 2
13 1036172 2 1 1 1 2 1 2 1 1 2
14 1041801 5 3 3 3 2 3 4 4 1 4
15 1043999 1 1 1 1 2 3 3 1 1 2
16 1044572 8 7 5 10 7 9 5 5 4 4
17 1047630 7 4 6 4 6 1 4 3 1 4
18 1048672 4 1 1 1 2 1 2 1 1 2
19 1049815 4 1 1 1 2 1 3 1 1 2
20 1050670 10 7 7 6 4 10 4 1 2 4
21 1050718 6 1 1 1 2 1 3 1 1 2
22 1054590 7 3 2 10 5 10 5 4 4 4
23 1054593 10 5 5 3 6 7 7 10 1 4
24 1056784 3 1 1 1 2 1 2 1 1 2
25 1057013 8 4 5 1 2 ? 7 3 1 4
26 1059552 1 1 1 1 2 1 3 1 1 2
27 1065726 5 2 3 4 2 7 3 6 1 4
28 1066373 3 2 1 1 1 1 2 1 1 2
29 1066979 5 1 1 1 2 1 2 1 1 2
30 1067444 2 1 1 1 2 1 2 1 1 2
31 1070935 1 1 3 1 2 1 1 1 1 2
32 1070935 3 1 1 1 1 1 2 1 1 2
33 1071760 2 1 1 1 2 1 3 1 1 2
34 1072179 10 7 7 3 8 5 7 4 3 4
35 1074610 2 1 1 2 2 1 3 1 1 2
36 1075123 3 1 2 1 2 1 2 1 1 2
37 1079304 2 1 1 1 2 1 2 1 1 2
38 1080185 10 10 10 8 6 1 8 9 1 4
39 1081791 6 2 1 1 1 1 7 1 1 2
40 1084584 5 4 4 9 2 10 5 6 1 4
41 1091262 2 5 3 3 6 7 7 5 1 4
42 1096800 6 6 6 9 6 ? 7 8 1 2
43 1099510 10 4 3 1 3 3 6 5 2 4
44 1100524 6 10 10 2 8 10 7 3 3 4
45 1102573 5 6 5 6 10 1 3 1 1 4
46 1103608 10 10 10 4 8 1 8 10 1 4
47 1103722 1 1 1 1 2 1 2 1 2 2
48 1105257 3 7 7 4 4 9 4 8 1 4
49 1105524 1 1 1 1 2 1 2 1 1 2
50 1106095 4 1 1 3 2 1 3 1 1 2
51 1106829 7 8 7 2 4 8 3 8 2 4
52 1108370 9 5 8 1 2 3 2 1 5 4
53 1108449 5 3 3 4 2 4 3 4 1 4
54 1110102 10 3 6 2 3 5 4 10 2 4
55 1110503 5 5 5 8 10 8 7 3 7 4
56 1110524 10 5 5 6 8 8 7 1 1 4
57 1111249 10 6 6 3 4 5 3 6 1 4
58 1112209 8 10 10 1 3 6 3 9 1 4
59 1113038 8 2 4 1 5 1 5 4 4 4
60 1113483 5 2 3 1 6 10 5 1 1 4
61 1113906 9 5 5 2 2 2 5 1 1 4
62 1115282 5 3 5 5 3 3 4 10 1 4
63 1115293 1 1 1 1 2 2 2 1 1 2
64 1116116 9 10 10 1 10 8 3 3 1 4
65 1116132 6 3 4 1 5 2 3 9 1 4
66 1116192 1 1 1 1 2 1 2 1 1 2
67 1116998 10 4 2 1 3 2 4 3 10 4
68 1117152 4 1 1 1 2 1 3 1 1 2
69 1118039 5 3 4 1 8 10 4 9 1 4
70 1120559 8 3 8 3 4 9 8 9 8 4
71 1121732 1 1 1 1 2 1 3 2 1 2
72 1121919 5 1 3 1 2 1 2 1 1 2
73 1123061 6 10 2 8 10 2 7 8 10 4
74 1124651 1 3 3 2 2 1 7 2 1 2
75 1125035 9 4 5 10 6 10 4 8 1 4
76 1126417 10 6 4 1 3 4 3 2 3 4
77 1131294 1 1 2 1 2 2 4 2 1 2
78 1132347 1 1 4 1 2 1 2 1 1 2
79 1133041 5 3 1 2 2 1 2 1 1 2
80 1133136 3 1 1 1 2 3 3 1 1 2
81 1136142 2 1 1 1 3 1 2 1 1 2
82 1137156 2 2 2 1 1 1 7 1 1 2
83 1143978 4 1 1 2 2 1 2 1 1 2
84 1143978 5 2 1 1 2 1 3 1 1 2
85 1147044 3 1 1 1 2 2 7 1 1 2
86 1147699 3 5 7 8 8 9 7 10 7 4
87 1147748 5 10 6 1 10 4 4 10 10 4
88 1148278 3 3 6 4 5 8 4 4 1 4
89 1148873 3 6 6 6 5 10 6 8 3 4
90 1152331 4 1 1 1 2 1 3 1 1 2
91 1155546 2 1 1 2 3 1 2 1 1 2
92 1156272 1 1 1 1 2 1 3 1 1 2
93 1156948 3 1 1 2 2 1 1 1 1 2
94 1157734 4 1 1 1 2 1 3 1 1 2
95 1158247 1 1 1 1 2 1 2 1 1 2
96 1160476 2 1 1 1 2 1 3 1 1 2
97 1164066 1 1 1 1 2 1 3 1 1 2
98 1165297 2 1 1 2 2 1 1 1 1 2
99 1165790 5 1 1 1 2 1 3 1 1 2
100 1165926 9 6 9 2 10 6 2 9 10 4
101 1166630 7 5 6 10 5 10 7 9 4 4
102 1166654 10 3 5 1 10 5 3 10 2 4
103 1167439 2 3 4 4 2 5 2 5 1 4
104 1167471 4 1 2 1 2 1 3 1 1 2
105 1168359 8 2 3 1 6 3 7 1 1 4
106 1168736 10 10 10 10 10 1 8 8 8 4
107 1169049 7 3 4 4 3 3 3 2 7 4
108 1170419 10 10 10 8 2 10 4 1 1 4
109 1170420 1 6 8 10 8 10 5 7 1 4
110 1171710 1 1 1 1 2 1 2 3 1 2
111 1171710 6 5 4 4 3 9 7 8 3 4
112 1171795 1 3 1 2 2 2 5 3 2 2
113 1171845 8 6 4 3 5 9 3 1 1 4
114 1172152 10 3 3 10 2 10 7 3 3 4
115 1173216 10 10 10 3 10 8 8 1 1 4
116 1173235 3 3 2 1 2 3 3 1 1 2
117 1173347 1 1 1 1 2 5 1 1 1 2
118 1173347 8 3 3 1 2 2 3 2 1 2
119 1173509 4 5 5 10 4 10 7 5 8 4
120 1173514 1 1 1 1 4 3 1 1 1 2
121 1173681 3 2 1 1 2 2 3 1 1 2
122 1174057 1 1 2 2 2 1 3 1 1 2
123 1174057 4 2 1 1 2 2 3 1 1 2
124 1174131 10 10 10 2 10 10 5 3 3 4
125 1174428 5 3 5 1 8 10 5 3 1 4
126 1175937 5 4 6 7 9 7 8 10 1 4
127 1176406 1 1 1 1 2 1 2 1 1 2
128 1176881 7 5 3 7 4 10 7 5 5 4
129 1177027 3 1 1 1 2 1 3 1 1 2
130 1177399 8 3 5 4 5 10 1 6 2 4
131 1177512 1 1 1 1 10 1 1 1 1 2
132 1178580 5 1 3 1 2 1 2 1 1 2
133 1179818 2 1 1 1 2 1 3 1 1 2
134 1180194 5 10 8 10 8 10 3 6 3 4
135 1180523 3 1 1 1 2 1 2 2 1 2
136 1180831 3 1 1 1 3 1 2 1 1 2
137 1181356 5 1 1 1 2 2 3 3 1 2
138 1182404 4 1 1 1 2 1 2 1 1 2
139 1182410 3 1 1 1 2 1 1 1 1 2
140 1183240 4 1 2 1 2 1 2 1 1 2
141 1183246 1 1 1 1 1 ? 2 1 1 2
142 1183516 3 1 1 1 2 1 1 1 1 2
143 1183911 2 1 1 1 2 1 1 1 1 2
144 1183983 9 5 5 4 4 5 4 3 3 4
145 1184184 1 1 1 1 2 5 1 1 1 2
146 1184241 2 1 1 1 2 1 2 1 1 2
147 1184840 1 1 3 1 2 ? 2 1 1 2
148 1185609 3 4 5 2 6 8 4 1 1 4
149 1185610 1 1 1 1 3 2 2 1 1 2
150 1187457 3 1 1 3 8 1 5 8 1 2
151 1187805 8 8 7 4 10 10 7 8 7 4
152 1188472 1 1 1 1 1 1 3 1 1 2
153 1189266 7 2 4 1 6 10 5 4 3 4
154 1189286 10 10 8 6 4 5 8 10 1 4
155 1190394 4 1 1 1 2 3 1 1 1 2
156 1190485 1 1 1 1 2 1 1 1 1 2
157 1192325 5 5 5 6 3 10 3 1 1 4
158 1193091 1 2 2 1 2 1 2 1 1 2
159 1193210 2 1 1 1 2 1 3 1 1 2
160 1193683 1 1 2 1 3 ? 1 1 1 2
161 1196295 9 9 10 3 6 10 7 10 6 4
162 1196915 10 7 7 4 5 10 5 7 2 4
163 1197080 4 1 1 1 2 1 3 2 1 2
164 1197270 3 1 1 1 2 1 3 1 1 2
165 1197440 1 1 1 2 1 3 1 1 7 2
166 1197510 5 1 1 1 2 ? 3 1 1 2
167 1197979 4 1 1 1 2 2 3 2 1 2
168 1197993 5 6 7 8 8 10 3 10 3 4
169 1198128 10 8 10 10 6 1 3 1 10 4
170 1198641 3 1 1 1 2 1 3 1 1 2
171 1199219 1 1 1 2 1 1 1 1 1 2
172 1199731 3 1 1 1 2 1 1 1 1 2
173 1199983 1 1 1 1 2 1 3 1 1 2
174 1200772 1 1 1 1 2 1 2 1 1 2
175 1200847 6 10 10 10 8 10 10 10 7 4
176 1200892 8 6 5 4 3 10 6 1 1 4
177 1200952 5 8 7 7 10 10 5 7 1 4
178 1201834 2 1 1 1 2 1 3 1 1 2
179 1201936 5 10 10 3 8 1 5 10 3 4
180 1202125 4 1 1 1 2 1 3 1 1 2
181 1202812 5 3 3 3 6 10 3 1 1 4
182 1203096 1 1 1 1 1 1 3 1 1 2
183 1204242 1 1 1 1 2 1 1 1 1 2
184 1204898 6 1 1 1 2 1 3 1 1 2
185 1205138 5 8 8 8 5 10 7 8 1 4
186 1205579 8 7 6 4 4 10 5 1 1 4
187 1206089 2 1 1 1 1 1 3 1 1 2
188 1206695 1 5 8 6 5 8 7 10 1 4
189 1206841 10 5 6 10 6 10 7 7 10 4
190 1207986 5 8 4 10 5 8 9 10 1 4
191 1208301 1 2 3 1 2 1 3 1 1 2
192 1210963 10 10 10 8 6 8 7 10 1 4
193 1211202 7 5 10 10 10 10 4 10 3 4
194 1212232 5 1 1 1 2 1 2 1 1 2
195 1212251 1 1 1 1 2 1 3 1 1 2
196 1212422 3 1 1 1 2 1 3 1 1 2
197 1212422 4 1 1 1 2 1 3 1 1 2
198 1213375 8 4 4 5 4 7 7 8 2 2
199 1213383 5 1 1 4 2 1 3 1 1 2
200 1214092 1 1 1 1 2 1 1 1 1 2
201 1214556 3 1 1 1 2 1 2 1 1 2
202 1214966 9 7 7 5 5 10 7 8 3 4
203 1216694 10 8 8 4 10 10 8 1 1 4
204 1216947 1 1 1 1 2 1 3 1 1 2
205 1217051 5 1 1 1 2 1 3 1 1 2
206 1217264 1 1 1 1 2 1 3 1 1 2
207 1218105 5 10 10 9 6 10 7 10 5 4
208 1218741 10 10 9 3 7 5 3 5 1 4
209 1218860 1 1 1 1 1 1 3 1 1 2
210 1218860 1 1 1 1 1 1 3 1 1 2
211 1219406 5 1 1 1 1 1 3 1 1 2
212 1219525 8 10 10 10 5 10 8 10 6 4
213 1219859 8 10 8 8 4 8 7 7 1 4
214 1220330 1 1 1 1 2 1 3 1 1 2
215 1221863 10 10 10 10 7 10 7 10 4 4
216 1222047 10 10 10 10 3 10 10 6 1 4
217 1222936 8 7 8 7 5 5 5 10 2 4
218 1223282 1 1 1 1 2 1 2 1 1 2
219 1223426 1 1 1 1 2 1 3 1 1 2
220 1223793 6 10 7 7 6 4 8 10 2 4
221 1223967 6 1 3 1 2 1 3 1 1 2
222 1224329 1 1 1 2 2 1 3 1 1 2
223 1225799 10 6 4 3 10 10 9 10 1 4
224 1226012 4 1 1 3 1 5 2 1 1 4
225 1226612 7 5 6 3 3 8 7 4 1 4
226 1227210 10 5 5 6 3 10 7 9 2 4
227 1227244 1 1 1 1 2 1 2 1 1 2
228 1227481 10 5 7 4 4 10 8 9 1 4
229 1228152 8 9 9 5 3 5 7 7 1 4
230 1228311 1 1 1 1 1 1 3 1 1 2
231 1230175 10 10 10 3 10 10 9 10 1 4
232 1230688 7 4 7 4 3 7 7 6 1 4
233 1231387 6 8 7 5 6 8 8 9 2 4
234 1231706 8 4 6 3 3 1 4 3 1 2
235 1232225 10 4 5 5 5 10 4 1 1 4
236 1236043 3 3 2 1 3 1 3 6 1 2
237 1241232 3 1 4 1 2 ? 3 1 1 2
238 1241559 10 8 8 2 8 10 4 8 10 4
239 1241679 9 8 8 5 6 2 4 10 4 4
240 1242364 8 10 10 8 6 9 3 10 10 4
241 1243256 10 4 3 2 3 10 5 3 2 4
242 1270479 5 1 3 3 2 2 2 3 1 2
243 1276091 3 1 1 3 1 1 3 1 1 2
244 1277018 2 1 1 1 2 1 3 1 1 2
245 128059 1 1 1 1 2 5 5 1 1 2
246 1285531 1 1 1 1 2 1 3 1 1 2
247 1287775 5 1 1 2 2 2 3 1 1 2
248 144888 8 10 10 8 5 10 7 8 1 4
249 145447 8 4 4 1 2 9 3 3 1 4
250 167528 4 1 1 1 2 1 3 6 1 2
251 169356 3 1 1 1 2 ? 3 1 1 2
252 183913 1 2 2 1 2 1 1 1 1 2
253 191250 10 4 4 10 2 10 5 3 3 4
254 1017023 6 3 3 5 3 10 3 5 3 2
255 1100524 6 10 10 2 8 10 7 3 3 4
256 1116116 9 10 10 1 10 8 3 3 1 4
257 1168736 5 6 6 2 4 10 3 6 1 4
258 1182404 3 1 1 1 2 1 1 1 1 2
259 1182404 3 1 1 1 2 1 2 1 1 2
260 1198641 3 1 1 1 2 1 3 1 1 2
261 242970 5 7 7 1 5 8 3 4 1 2
262 255644 10 5 8 10 3 10 5 1 3 4
263 263538 5 10 10 6 10 10 10 6 5 4
264 274137 8 8 9 4 5 10 7 8 1 4
265 303213 10 4 4 10 6 10 5 5 1 4
266 314428 7 9 4 10 10 3 5 3 3 4
267 1182404 5 1 4 1 2 1 3 2 1 2
268 1198641 10 10 6 3 3 10 4 3 2 4
269 320675 3 3 5 2 3 10 7 1 1 4
270 324427 10 8 8 2 3 4 8 7 8 4
271 385103 1 1 1 1 2 1 3 1 1 2
272 390840 8 4 7 1 3 10 3 9 2 4
273 411453 5 1 1 1 2 1 3 1 1 2
274 320675 3 3 5 2 3 10 7 1 1 4
275 428903 7 2 4 1 3 4 3 3 1 4
276 431495 3 1 1 1 2 1 3 2 1 2
277 432809 3 1 3 1 2 ? 2 1 1 2
278 434518 3 1 1 1 2 1 2 1 1 2
279 452264 1 1 1 1 2 1 2 1 1 2
280 456282 1 1 1 1 2 1 3 1 1 2
281 476903 10 5 7 3 3 7 3 3 8 4
282 486283 3 1 1 1 2 1 3 1 1 2
283 486662 2 1 1 2 2 1 3 1 1 2
284 488173 1 4 3 10 4 10 5 6 1 4
285 492268 10 4 6 1 2 10 5 3 1 4
286 508234 7 4 5 10 2 10 3 8 2 4
287 527363 8 10 10 10 8 10 10 7 3 4
288 529329 10 10 10 10 10 10 4 10 10 4
289 535331 3 1 1 1 3 1 2 1 1 2
290 543558 6 1 3 1 4 5 5 10 1 4
291 555977 5 6 6 8 6 10 4 10 4 4
292 560680 1 1 1 1 2 1 1 1 1 2
293 561477 1 1 1 1 2 1 3 1 1 2
294 563649 8 8 8 1 2 ? 6 10 1 4
295 601265 10 4 4 6 2 10 2 3 1 4
296 606140 1 1 1 1 2 ? 2 1 1 2
297 606722 5 5 7 8 6 10 7 4 1 4
298 616240 5 3 4 3 4 5 4 7 1 2
299 61634 5 4 3 1 2 ? 2 3 1 2
300 625201 8 2 1 1 5 1 1 1 1 2
301 63375 9 1 2 6 4 10 7 7 2 4
302 635844 8 4 10 5 4 4 7 10 1 4
303 636130 1 1 1 1 2 1 3 1 1 2
304 640744 10 10 10 7 9 10 7 10 10 4
305 646904 1 1 1 1 2 1 3 1 1 2
306 653777 8 3 4 9 3 10 3 3 1 4
307 659642 10 8 4 4 4 10 3 10 4 4
308 666090 1 1 1 1 2 1 3 1 1 2
309 666942 1 1 1 1 2 1 3 1 1 2
310 667204 7 8 7 6 4 3 8 8 4 4
311 673637 3 1 1 1 2 5 5 1 1 2
312 684955 2 1 1 1 3 1 2 1 1 2
313 688033 1 1 1 1 2 1 1 1 1 2
314 691628 8 6 4 10 10 1 3 5 1 4
315 693702 1 1 1 1 2 1 1 1 1 2
316 704097 1 1 1 1 1 1 2 1 1 2
317 704168 4 6 5 6 7 ? 4 9 1 2
318 706426 5 5 5 2 5 10 4 3 1 4
319 709287 6 8 7 8 6 8 8 9 1 4
320 718641 1 1 1 1 5 1 3 1 1 2
321 721482 4 4 4 4 6 5 7 3 1 2
322 730881 7 6 3 2 5 10 7 4 6 4
323 733639 3 1 1 1 2 ? 3 1 1 2
324 733639 3 1 1 1 2 1 3 1 1 2
325 733823 5 4 6 10 2 10 4 1 1 4
326 740492 1 1 1 1 2 1 3 1 1 2
327 743348 3 2 2 1 2 1 2 3 1 2
328 752904 10 1 1 1 2 10 5 4 1 4
329 756136 1 1 1 1 2 1 2 1 1 2
330 760001 8 10 3 2 6 4 3 10 1 4
331 760239 10 4 6 4 5 10 7 1 1 4
332 76389 10 4 7 2 2 8 6 1 1 4
333 764974 5 1 1 1 2 1 3 1 2 2
334 770066 5 2 2 2 2 1 2 2 1 2
335 785208 5 4 6 6 4 10 4 3 1 4
336 785615 8 6 7 3 3 10 3 4 2 4
337 792744 1 1 1 1 2 1 1 1 1 2
338 797327 6 5 5 8 4 10 3 4 1 4
339 798429 1 1 1 1 2 1 3 1 1 2
340 704097 1 1 1 1 1 1 2 1 1 2
341 806423 8 5 5 5 2 10 4 3 1 4
342 809912 10 3 3 1 2 10 7 6 1 4
343 810104 1 1 1 1 2 1 3 1 1 2
344 814265 2 1 1 1 2 1 1 1 1 2
345 814911 1 1 1 1 2 1 1 1 1 2
346 822829 7 6 4 8 10 10 9 5 3 4
347 826923 1 1 1 1 2 1 1 1 1 2
348 830690 5 2 2 2 3 1 1 3 1 2
349 831268 1 1 1 1 1 1 1 3 1 2
350 832226 3 4 4 10 5 1 3 3 1 4
351 832567 4 2 3 5 3 8 7 6 1 4
352 836433 5 1 1 3 2 1 1 1 1 2
353 837082 2 1 1 1 2 1 3 1 1 2
354 846832 3 4 5 3 7 3 4 6 1 2
355 850831 2 7 10 10 7 10 4 9 4 4
356 855524 1 1 1 1 2 1 2 1 1 2
357 857774 4 1 1 1 3 1 2 2 1 2
358 859164 5 3 3 1 3 3 3 3 3 4
359 859350 8 10 10 7 10 10 7 3 8 4
360 866325 8 10 5 3 8 4 4 10 3 4
361 873549 10 3 5 4 3 7 3 5 3 4
362 877291 6 10 10 10 10 10 8 10 10 4
363 877943 3 10 3 10 6 10 5 1 4 4
364 888169 3 2 2 1 4 3 2 1 1 2
365 888523 4 4 4 2 2 3 2 1 1 2
366 896404 2 1 1 1 2 1 3 1 1 2
367 897172 2 1 1 1 2 1 2 1 1 2
368 95719 6 10 10 10 8 10 7 10 7 4
369 160296 5 8 8 10 5 10 8 10 3 4
370 342245 1 1 3 1 2 1 1 1 1 2
371 428598 1 1 3 1 1 1 2 1 1 2
372 492561 4 3 2 1 3 1 2 1 1 2
373 493452 1 1 3 1 2 1 1 1 1 2
374 493452 4 1 2 1 2 1 2 1 1 2
375 521441 5 1 1 2 2 1 2 1 1 2
376 560680 3 1 2 1 2 1 2 1 1 2
377 636437 1 1 1 1 2 1 1 1 1 2
378 640712 1 1 1 1 2 1 2 1 1 2
379 654244 1 1 1 1 1 1 2 1 1 2
380 657753 3 1 1 4 3 1 2 2 1 2
381 685977 5 3 4 1 4 1 3 1 1 2
382 805448 1 1 1 1 2 1 1 1 1 2
383 846423 10 6 3 6 4 10 7 8 4 4
384 1002504 3 2 2 2 2 1 3 2 1 2
385 1022257 2 1 1 1 2 1 1 1 1 2
386 1026122 2 1 1 1 2 1 1 1 1 2
387 1071084 3 3 2 2 3 1 1 2 3 2
388 1080233 7 6 6 3 2 10 7 1 1 4
389 1114570 5 3 3 2 3 1 3 1 1 2
390 1114570 2 1 1 1 2 1 2 2 1 2
391 1116715 5 1 1 1 3 2 2 2 1 2
392 1131411 1 1 1 2 2 1 2 1 1 2
393 1151734 10 8 7 4 3 10 7 9 1 4
394 1156017 3 1 1 1 2 1 2 1 1 2
395 1158247 1 1 1 1 1 1 1 1 1 2
396 1158405 1 2 3 1 2 1 2 1 1 2
397 1168278 3 1 1 1 2 1 2 1 1 2
398 1176187 3 1 1 1 2 1 3 1 1 2
399 1196263 4 1 1 1 2 1 1 1 1 2
400 1196475 3 2 1 1 2 1 2 2 1 2
401 1206314 1 2 3 1 2 1 1 1 1 2
402 1211265 3 10 8 7 6 9 9 3 8 4
403 1213784 3 1 1 1 2 1 1 1 1 2
404 1223003 5 3 3 1 2 1 2 1 1 2
405 1223306 3 1 1 1 2 4 1 1 1 2
406 1223543 1 2 1 3 2 1 1 2 1 2
407 1229929 1 1 1 1 2 1 2 1 1 2
408 1231853 4 2 2 1 2 1 2 1 1 2
409 1234554 1 1 1 1 2 1 2 1 1 2
410 1236837 2 3 2 2 2 2 3 1 1 2
411 1237674 3 1 2 1 2 1 2 1 1 2
412 1238021 1 1 1 1 2 1 2 1 1 2
413 1238464 1 1 1 1 1 ? 2 1 1 2
414 1238633 10 10 10 6 8 4 8 5 1 4
415 1238915 5 1 2 1 2 1 3 1 1 2
416 1238948 8 5 6 2 3 10 6 6 1 4
417 1239232 3 3 2 6 3 3 3 5 1 2
418 1239347 8 7 8 5 10 10 7 2 1 4
419 1239967 1 1 1 1 2 1 2 1 1 2
420 1240337 5 2 2 2 2 2 3 2 2 2
421 1253505 2 3 1 1 5 1 1 1 1 2
422 1255384 3 2 2 3 2 3 3 1 1 2
423 1257200 10 10 10 7 10 10 8 2 1 4
424 1257648 4 3 3 1 2 1 3 3 1 2
425 1257815 5 1 3 1 2 1 2 1 1 2
426 1257938 3 1 1 1 2 1 1 1 1 2
427 1258549 9 10 10 10 10 10 10 10 1 4
428 1258556 5 3 6 1 2 1 1 1 1 2
429 1266154 8 7 8 2 4 2 5 10 1 4
430 1272039 1 1 1 1 2 1 2 1 1 2
431 1276091 2 1 1 1 2 1 2 1 1 2
432 1276091 1 3 1 1 2 1 2 2 1 2
433 1276091 5 1 1 3 4 1 3 2 1 2
434 1277629 5 1 1 1 2 1 2 2 1 2
435 1293439 3 2 2 3 2 1 1 1 1 2
436 1293439 6 9 7 5 5 8 4 2 1 2
437 1294562 10 8 10 1 3 10 5 1 1 4
438 1295186 10 10 10 1 6 1 2 8 1 4
439 527337 4 1 1 1 2 1 1 1 1 2
440 558538 4 1 3 3 2 1 1 1 1 2
441 566509 5 1 1 1 2 1 1 1 1 2
442 608157 10 4 3 10 4 10 10 1 1 4
443 677910 5 2 2 4 2 4 1 1 1 2
444 734111 1 1 1 3 2 3 1 1 1 2
445 734111 1 1 1 1 2 2 1 1 1 2
446 780555 5 1 1 6 3 1 2 1 1 2
447 827627 2 1 1 1 2 1 1 1 1 2
448 1049837 1 1 1 1 2 1 1 1 1 2
449 1058849 5 1 1 1 2 1 1 1 1 2
450 1182404 1 1 1 1 1 1 1 1 1 2
451 1193544 5 7 9 8 6 10 8 10 1 4
452 1201870 4 1 1 3 1 1 2 1 1 2
453 1202253 5 1 1 1 2 1 1 1 1 2
454 1227081 3 1 1 3 2 1 1 1 1 2
455 1230994 4 5 5 8 6 10 10 7 1 4
456 1238410 2 3 1 1 3 1 1 1 1 2
457 1246562 10 2 2 1 2 6 1 1 2 4
458 1257470 10 6 5 8 5 10 8 6 1 4
459 1259008 8 8 9 6 6 3 10 10 1 4
460 1266124 5 1 2 1 2 1 1 1 1 2
461 1267898 5 1 3 1 2 1 1 1 1 2
462 1268313 5 1 1 3 2 1 1 1 1 2
463 1268804 3 1 1 1 2 5 1 1 1 2
464 1276091 6 1 1 3 2 1 1 1 1 2
465 1280258 4 1 1 1 2 1 1 2 1 2
466 1293966 4 1 1 1 2 1 1 1 1 2
467 1296572 10 9 8 7 6 4 7 10 3 4
468 1298416 10 6 6 2 4 10 9 7 1 4
469 1299596 6 6 6 5 4 10 7 6 2 4
470 1105524 4 1 1 1 2 1 1 1 1 2
471 1181685 1 1 2 1 2 1 2 1 1 2
472 1211594 3 1 1 1 1 1 2 1 1 2
473 1238777 6 1 1 3 2 1 1 1 1 2
474 1257608 6 1 1 1 1 1 1 1 1 2
475 1269574 4 1 1 1 2 1 1 1 1 2
476 1277145 5 1 1 1 2 1 1 1 1 2
477 1287282 3 1 1 1 2 1 1 1 1 2
478 1296025 4 1 2 1 2 1 1 1 1 2
479 1296263 4 1 1 1 2 1 1 1 1 2
480 1296593 5 2 1 1 2 1 1 1 1 2
481 1299161 4 8 7 10 4 10 7 5 1 4
482 1301945 5 1 1 1 1 1 1 1 1 2
483 1302428 5 3 2 4 2 1 1 1 1 2
484 1318169 9 10 10 10 10 5 10 10 10 4
485 474162 8 7 8 5 5 10 9 10 1 4
486 787451 5 1 2 1 2 1 1 1 1 2
487 1002025 1 1 1 3 1 3 1 1 1 2
488 1070522 3 1 1 1 1 1 2 1 1 2
489 1073960 10 10 10 10 6 10 8 1 5 4
490 1076352 3 6 4 10 3 3 3 4 1 4
491 1084139 6 3 2 1 3 4 4 1 1 4
492 1115293 1 1 1 1 2 1 1 1 1 2
493 1119189 5 8 9 4 3 10 7 1 1 4
494 1133991 4 1 1 1 1 1 2 1 1 2
495 1142706 5 10 10 10 6 10 6 5 2 4
496 1155967 5 1 2 10 4 5 2 1 1 2
497 1170945 3 1 1 1 1 1 2 1 1 2
498 1181567 1 1 1 1 1 1 1 1 1 2
499 1182404 4 2 1 1 2 1 1 1 1 2
500 1204558 4 1 1 1 2 1 2 1 1 2
501 1217952 4 1 1 1 2 1 2 1 1 2
502 1224565 6 1 1 1 2 1 3 1 1 2
503 1238186 4 1 1 1 2 1 2 1 1 2
504 1253917 4 1 1 2 2 1 2 1 1 2
505 1265899 4 1 1 1 2 1 3 1 1 2
506 1268766 1 1 1 1 2 1 1 1 1 2
507 1277268 3 3 1 1 2 1 1 1 1 2
508 1286943 8 10 10 10 7 5 4 8 7 4
509 1295508 1 1 1 1 2 4 1 1 1 2
510 1297327 5 1 1 1 2 1 1 1 1 2
511 1297522 2 1 1 1 2 1 1 1 1 2
512 1298360 1 1 1 1 2 1 1 1 1 2
513 1299924 5 1 1 1 2 1 2 1 1 2
514 1299994 5 1 1 1 2 1 1 1 1 2
515 1304595 3 1 1 1 1 1 2 1 1 2
516 1306282 6 6 7 10 3 10 8 10 2 4
517 1313325 4 10 4 7 3 10 9 10 1 4
518 1320077 1 1 1 1 1 1 1 1 1 2
519 1320077 1 1 1 1 1 1 2 1 1 2
520 1320304 3 1 2 2 2 1 1 1 1 2
521 1330439 4 7 8 3 4 10 9 1 1 4
522 333093 1 1 1 1 3 1 1 1 1 2
523 369565 4 1 1 1 3 1 1 1 1 2
524 412300 10 4 5 4 3 5 7 3 1 4
525 672113 7 5 6 10 4 10 5 3 1 4
526 749653 3 1 1 1 2 1 2 1 1 2
527 769612 3 1 1 2 2 1 1 1 1 2
528 769612 4 1 1 1 2 1 1 1 1 2
529 798429 4 1 1 1 2 1 3 1 1 2
530 807657 6 1 3 2 2 1 1 1 1 2
531 8233704 4 1 1 1 1 1 2 1 1 2
532 837480 7 4 4 3 4 10 6 9 1 4
533 867392 4 2 2 1 2 1 2 1 1 2
534 869828 1 1 1 1 1 1 3 1 1 2
535 1043068 3 1 1 1 2 1 2 1 1 2
536 1056171 2 1 1 1 2 1 2 1 1 2
537 1061990 1 1 3 2 2 1 3 1 1 2
538 1113061 5 1 1 1 2 1 3 1 1 2
539 1116192 5 1 2 1 2 1 3 1 1 2
540 1135090 4 1 1 1 2 1 2 1 1 2
541 1145420 6 1 1 1 2 1 2 1 1 2
542 1158157 5 1 1 1 2 2 2 1 1 2
543 1171578 3 1 1 1 2 1 1 1 1 2
544 1174841 5 3 1 1 2 1 1 1 1 2
545 1184586 4 1 1 1 2 1 2 1 1 2
546 1186936 2 1 3 2 2 1 2 1 1 2
547 1197527 5 1 1 1 2 1 2 1 1 2
548 1222464 6 10 10 10 4 10 7 10 1 4
549 1240603 2 1 1 1 1 1 1 1 1 2
550 1240603 3 1 1 1 1 1 1 1 1 2
551 1241035 7 8 3 7 4 5 7 8 2 4
552 1287971 3 1 1 1 2 1 2 1 1 2
553 1289391 1 1 1 1 2 1 3 1 1 2
554 1299924 3 2 2 2 2 1 4 2 1 2
555 1306339 4 4 2 1 2 5 2 1 2 2
556 1313658 3 1 1 1 2 1 1 1 1 2
557 1313982 4 3 1 1 2 1 4 8 1 2
558 1321264 5 2 2 2 1 1 2 1 1 2
559 1321321 5 1 1 3 2 1 1 1 1 2
560 1321348 2 1 1 1 2 1 2 1 1 2
561 1321931 5 1 1 1 2 1 2 1 1 2
562 1321942 5 1 1 1 2 1 3 1 1 2
563 1321942 5 1 1 1 2 1 3 1 1 2
564 1328331 1 1 1 1 2 1 3 1 1 2
565 1328755 3 1 1 1 2 1 2 1 1 2
566 1331405 4 1 1 1 2 1 3 2 1 2
567 1331412 5 7 10 10 5 10 10 10 1 4
568 1333104 3 1 2 1 2 1 3 1 1 2
569 1334071 4 1 1 1 2 3 2 1 1 2
570 1343068 8 4 4 1 6 10 2 5 2 4
571 1343374 10 10 8 10 6 5 10 3 1 4
572 1344121 8 10 4 4 8 10 8 2 1 4
573 142932 7 6 10 5 3 10 9 10 2 4
574 183936 3 1 1 1 2 1 2 1 1 2
575 324382 1 1 1 1 2 1 2 1 1 2
576 378275 10 9 7 3 4 2 7 7 1 4
577 385103 5 1 2 1 2 1 3 1 1 2
578 690557 5 1 1 1 2 1 2 1 1 2
579 695091 1 1 1 1 2 1 2 1 1 2
580 695219 1 1 1 1 2 1 2 1 1 2
581 824249 1 1 1 1 2 1 3 1 1 2
582 871549 5 1 2 1 2 1 2 1 1 2
583 878358 5 7 10 6 5 10 7 5 1 4
584 1107684 6 10 5 5 4 10 6 10 1 4
585 1115762 3 1 1 1 2 1 1 1 1 2
586 1217717 5 1 1 6 3 1 1 1 1 2
587 1239420 1 1 1 1 2 1 1 1 1 2
588 1254538 8 10 10 10 6 10 10 10 1 4
589 1261751 5 1 1 1 2 1 2 2 1 2
590 1268275 9 8 8 9 6 3 4 1 1 4
591 1272166 5 1 1 1 2 1 1 1 1 2
592 1294261 4 10 8 5 4 1 10 1 1 4
593 1295529 2 5 7 6 4 10 7 6 1 4
594 1298484 10 3 4 5 3 10 4 1 1 4
595 1311875 5 1 2 1 2 1 1 1 1 2
596 1315506 4 8 6 3 4 10 7 1 1 4
597 1320141 5 1 1 1 2 1 2 1 1 2
598 1325309 4 1 2 1 2 1 2 1 1 2
599 1333063 5 1 3 1 2 1 3 1 1 2
600 1333495 3 1 1 1 2 1 2 1 1 2
601 1334659 5 2 4 1 1 1 1 1 1 2
602 1336798 3 1 1 1 2 1 2 1 1 2
603 1344449 1 1 1 1 1 1 2 1 1 2
604 1350568 4 1 1 1 2 1 2 1 1 2
605 1352663 5 4 6 8 4 1 8 10 1 4
606 188336 5 3 2 8 5 10 8 1 2 4
607 352431 10 5 10 3 5 8 7 8 3 4
608 353098 4 1 1 2 2 1 1 1 1 2
609 411453 1 1 1 1 2 1 1 1 1 2
610 557583 5 10 10 10 10 10 10 1 1 4
611 636375 5 1 1 1 2 1 1 1 1 2
612 736150 10 4 3 10 3 10 7 1 2 4
613 803531 5 10 10 10 5 2 8 5 1 4
614 822829 8 10 10 10 6 10 10 10 10 4
615 1016634 2 3 1 1 2 1 2 1 1 2
616 1031608 2 1 1 1 1 1 2 1 1 2
617 1041043 4 1 3 1 2 1 2 1 1 2
618 1042252 3 1 1 1 2 1 2 1 1 2
619 1057067 1 1 1 1 1 ? 1 1 1 2
620 1061990 4 1 1 1 2 1 2 1 1 2
621 1073836 5 1 1 1 2 1 2 1 1 2
622 1083817 3 1 1 1 2 1 2 1 1 2
623 1096352 6 3 3 3 3 2 6 1 1 2
624 1140597 7 1 2 3 2 1 2 1 1 2
625 1149548 1 1 1 1 2 1 1 1 1 2
626 1174009 5 1 1 2 1 1 2 1 1 2
627 1183596 3 1 3 1 3 4 1 1 1 2
628 1190386 4 6 6 5 7 6 7 7 3 4
629 1190546 2 1 1 1 2 5 1 1 1 2
630 1213273 2 1 1 1 2 1 1 1 1 2
631 1218982 4 1 1 1 2 1 1 1 1 2
632 1225382 6 2 3 1 2 1 1 1 1 2
633 1235807 5 1 1 1 2 1 2 1 1 2
634 1238777 1 1 1 1 2 1 1 1 1 2
635 1253955 8 7 4 4 5 3 5 10 1 4
636 1257366 3 1 1 1 2 1 1 1 1 2
637 1260659 3 1 4 1 2 1 1 1 1 2
638 1268952 10 10 7 8 7 1 10 10 3 4
639 1275807 4 2 4 3 2 2 2 1 1 2
640 1277792 4 1 1 1 2 1 1 1 1 2
641 1277792 5 1 1 3 2 1 1 1 1 2
642 1285722 4 1 1 3 2 1 1 1 1 2
643 1288608 3 1 1 1 2 1 2 1 1 2
644 1290203 3 1 1 1 2 1 2 1 1 2
645 1294413 1 1 1 1 2 1 1 1 1 2
646 1299596 2 1 1 1 2 1 1 1 1 2
647 1303489 3 1 1 1 2 1 2 1 1 2
648 1311033 1 2 2 1 2 1 1 1 1 2
649 1311108 1 1 1 3 2 1 1 1 1 2
650 1315807 5 10 10 10 10 2 10 10 10 4
651 1318671 3 1 1 1 2 1 2 1 1 2
652 1319609 3 1 1 2 3 4 1 1 1 2
653 1323477 1 2 1 3 2 1 2 1 1 2
654 1324572 5 1 1 1 2 1 2 2 1 2
655 1324681 4 1 1 1 2 1 2 1 1 2
656 1325159 3 1 1 1 2 1 3 1 1 2
657 1326892 3 1 1 1 2 1 2 1 1 2
658 1330361 5 1 1 1 2 1 2 1 1 2
659 1333877 5 4 5 1 8 1 3 6 1 2
660 1334015 7 8 8 7 3 10 7 2 3 4
661 1334667 1 1 1 1 2 1 1 1 1 2
662 1339781 1 1 1 1 2 1 2 1 1 2
663 1339781 4 1 1 1 2 1 3 1 1 2
664 13454352 1 1 3 1 2 1 2 1 1 2
665 1345452 1 1 3 1 2 1 2 1 1 2
666 1345593 3 1 1 3 2 1 2 1 1 2
667 1347749 1 1 1 1 2 1 1 1 1 2
668 1347943 5 2 2 2 2 1 1 1 2 2
669 1348851 3 1 1 1 2 1 3 1 1 2
670 1350319 5 7 4 1 6 1 7 10 3 4
671 1350423 5 10 10 8 5 5 7 10 1 4
672 1352848 3 10 7 8 5 8 7 4 1 4
673 1353092 3 2 1 2 2 1 3 1 1 2
674 1354840 2 1 1 1 2 1 3 1 1 2
675 1354840 5 3 2 1 3 1 1 1 1 2
676 1355260 1 1 1 1 2 1 2 1 1 2
677 1365075 4 1 4 1 2 1 1 1 1 2
678 1365328 1 1 2 1 2 1 2 1 1 2
679 1368267 5 1 1 1 2 1 1 1 1 2
680 1368273 1 1 1 1 2 1 1 1 1 2
681 1368882 2 1 1 1 2 1 1 1 1 2
682 1369821 10 10 10 10 5 10 10 10 7 4
683 1371026 5 10 10 10 4 10 5 6 3 4
684 1371920 5 1 1 1 2 1 3 2 1 2
685 466906 1 1 1 1 2 1 1 1 1 2
686 466906 1 1 1 1 2 1 1 1 1 2
687 534555 1 1 1 1 2 1 1 1 1 2
688 536708 1 1 1 1 2 1 1 1 1 2
689 566346 3 1 1 1 2 1 2 3 1 2
690 603148 4 1 1 1 2 1 1 1 1 2
691 654546 1 1 1 1 2 1 1 1 8 2
692 654546 1 1 1 3 2 1 1 1 1 2
693 695091 5 10 10 5 4 5 4 4 1 4
694 714039 3 1 1 1 2 1 1 1 1 2
695 763235 3 1 1 1 2 1 2 1 2 2
696 776715 3 1 1 1 3 2 1 1 1 2
697 841769 2 1 1 1 2 1 1 1 1 2
698 888820 5 10 10 3 7 3 8 10 2 4
699 897471 4 8 6 4 3 4 10 6 1 4
700 897471 4 8 8 5 4 5 10 4 1 4