materi-praktikum/NLP/N-Gram.ipynb
2025-11-14 16:01:27 +00:00

381 lines
13 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "JVPdWpz3hhbj"
},
"source": [
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "4Mvva3v65h1v"
},
"source": [
"# **UNIGRAM**"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "1cub_VJnUJMl",
"outputId": "1889eb61-4f3f-4780-f42e-02368076cce3"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Corpus: saya suka makan nasi\n",
"Tokens (4): ['saya', 'suka', 'makan', 'nasi']\n",
"\n",
"Frekuensi Unigram dalam kalimat\n",
" ('saya'): 1\n",
" ('suka'): 1\n",
" ('makan'): 1\n",
" ('nasi'): 1\n",
"\n",
"Total unigram dalam 1 kalimat: 4\n",
"\n",
"Probabilitas masing-masing unigram:\n",
" P(saya) = 0.25 (25.00%)\n",
" P(suka) = 0.25 (25.00%)\n",
" P(makan) = 0.25 (25.00%)\n",
" P(nasi) = 0.25 (25.00%)\n",
"\n",
"Probabilitas Keseluruhan Kalimat (Model Unigram):\n",
" P(saya suka makan nasi) = P(saya)=0.25 x P(suka)=0.25 x P(makan)=0.25 x P(nasi)=0.25 = 0.0039 (0.39%)\n"
]
}
],
"source": [
"from collections import Counter\n",
"from IPython.display import clear_output\n",
"import math\n",
"\n",
"# 1. Input Kalimat dan Tokenisasi\n",
"kalimat = input(\"Masukkan kalimat: \").strip()\n",
"\n",
"# Bersihkan output (khusus lingkungan notebook)\n",
"try:\n",
" clear_output()\n",
"except:\n",
" pass\n",
"\n",
"print(f\"Corpus: {kalimat}\")\n",
"\n",
"# Tokenize\n",
"tokens = kalimat.lower().split()\n",
"print(f\"Tokens ({len(tokens)}): {tokens}\")\n",
"\n",
"# 2. Hitung Frekuensi Unigram\n",
"unigram_counts = Counter(tokens)\n",
"total_tokens = sum(unigram_counts.values())\n",
"\n",
"print(\"\\nFrekuensi Unigram dalam kalimat\")\n",
"for pair, count in unigram_counts.items():\n",
" print(f\" ('{pair}'): {count}\")\n",
"print(f\"\\nTotal unigram dalam 1 kalimat: {total_tokens}\")\n",
"\n",
"# 3. Hitung Probabilitas Unigram: P(wi) = Count(wi) / Total Kata\n",
"unigram_probabilities = {}\n",
"for word, count in unigram_counts.items():\n",
" prob = count / total_tokens\n",
" unigram_probabilities[word] = prob\n",
"\n",
"print(\"\\nProbabilitas masing-masing unigram:\")\n",
"for word, prob in unigram_probabilities.items():\n",
" print(f\" P({word}) = {prob:.2f} ({prob*100:.2f}%)\")\n",
"\n",
"# 4. Hitung Probabilitas Kalimat Keseluruhan (P(kalimat) = P(w1) * P(w2) * ...)\n",
"p_kalimat = 1\n",
"prob_parts = []\n",
"\n",
"# Loop untuk menghitung probabilitas total dan membangun string rumus detail\n",
"for word in tokens:\n",
" prob_value = unigram_probabilities[word]\n",
" p_kalimat *= prob_value\n",
" # Format: P(word)=prob_value\n",
" prob_parts.append(f\"P({word})={prob_value:.2f}\")\n",
"\n",
"# Gabungkan bagian-bagian rumus untuk mendapatkan prob_str detail\n",
"prob_str = \" x \".join(prob_parts)\n",
"\n",
"print(\"\\nProbabilitas Keseluruhan Kalimat (Model Unigram):\")\n",
"print(f\" P({' '.join(tokens)}) = {prob_str} = {p_kalimat:.4f} ({p_kalimat*100:.2f}%)\")"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "Vstwt996-FrS"
},
"source": [
"# **BIGRAM**"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "XRIY4qgTVbjl",
"outputId": "ea6e62ce-45a0-40c9-ca98-1fcc30558479"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Corpus: saya makan nasi dan saya makan roti\n",
"Tokens (7): ['saya', 'makan', 'nasi', 'dan', 'saya', 'makan', 'roti']\n",
"\n",
"Frekuensi Bigram dalam kalimat:\n",
" ('saya', 'makan'): 2\n",
" ('makan', 'nasi'): 1\n",
" ('nasi', 'dan'): 1\n",
" ('dan', 'saya'): 1\n",
" ('makan', 'roti'): 1\n",
"\n",
"Total bigram dalam 1 kalimat: 6\n",
"\n",
"Probabilitas masing-masing bigram:\n",
" P(makan|saya) = 1.00 (100.00%)\n",
" P(nasi|makan) = 0.50 (50.00%)\n",
" P(dan|nasi) = 1.00 (100.00%)\n",
" P(saya|dan) = 1.00 (100.00%)\n",
" P(roti|makan) = 0.50 (50.00%)\n",
"\n",
"Probabilitas Keseluruhan Kalimat (Model Bigram):\n",
" P(saya makan nasi dan saya makan roti) = P(saya)=0.29 x P(makan|saya)=1.00 x P(nasi|makan)=0.50 x P(dan|nasi)=1.00 x P(saya|dan)=1.00 x P(makan|saya)=1.00 x P(roti|makan)=0.50 = 0.071429 (7.14%)\n"
]
}
],
"source": [
"from collections import Counter\n",
"from IPython.display import clear_output\n",
"import math\n",
"\n",
"# 1. Input Kalimat dan Tokenisasi\n",
"kalimat = input(\"Masukkan kalimat: \").strip()\n",
"\n",
"# Bersihkan output (khusus lingkungan notebook)\n",
"try:\n",
" clear_output()\n",
"except:\n",
" pass\n",
"\n",
"print(f\"Corpus: {kalimat}\")\n",
"\n",
"# Tokenisasi\n",
"tokens = kalimat.lower().split()\n",
"print(f\"Tokens ({len(tokens)}): {tokens}\")\n",
"\n",
"# 2. Hitung Frekuensi Unigram dan Bigram\n",
"unigram_counts = Counter(tokens)\n",
"bigrams = [(tokens[i], tokens[i+1]) for i in range(len(tokens) - 1)]\n",
"bigram_counts = Counter(bigrams)\n",
"\n",
"print(\"\\nFrekuensi Bigram dalam kalimat:\")\n",
"for pair, count in bigram_counts.items():\n",
" print(f\" {pair}: {count}\")\n",
"print(f\"\\nTotal bigram dalam 1 kalimat: {sum(bigram_counts.values())}\")\n",
"\n",
"# 3. Hitung Probabilitas Bigram: P(w2 | w1) = Count(w1,w2) / Count(w1)\n",
"bigram_probabilities = {}\n",
"for (w1, w2), count in bigram_counts.items():\n",
" prob = count / unigram_counts[w1]\n",
" bigram_probabilities[(w1, w2)] = prob\n",
"\n",
"print(\"\\nProbabilitas masing-masing bigram:\")\n",
"for (w1, w2), prob in bigram_probabilities.items():\n",
" print(f\" P({w2}|{w1}) = {prob:.2f} ({prob*100:.2f}%)\")\n",
"\n",
"# 4. Hitung Probabilitas Kalimat Keseluruhan (Model Bigram)\n",
"# P(kalimat) = P(w1) * P(w2|w1) * P(w3|w2) * ...\n",
"total_tokens = sum(unigram_counts.values())\n",
"p_w1 = unigram_counts.get(tokens[0], 0) / total_tokens # P(w1)\n",
"p_kalimat = p_w1 # Inisialisasi dengan P(w1)\n",
"\n",
"prob_str_parts = [f\"P({tokens[0]})={p_w1:.2f}\"] # Tambahkan P(w1) ke rumus\n",
"\n",
"for i in range(1, len(tokens)):\n",
" pair = (tokens[i-1], tokens[i])\n",
" p = bigram_probabilities.get(pair, 0)\n",
" p_kalimat *= p\n",
" prob_str_parts.append(f\"P({pair[1]}|{pair[0]})={p:.2f}\")\n",
"\n",
"# Gabungkan rumus perkalian untuk ditampilkan\n",
"prob_str = \" x \".join(prob_str_parts)\n",
"\n",
"print(\"\\nProbabilitas Keseluruhan Kalimat (Model Bigram):\")\n",
"print(f\" P({' '.join(tokens)}) = {prob_str} = {p_kalimat:.6f} ({p_kalimat*100:.2f}%)\")"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "E6n1IU8X-G9S"
},
"source": [
"# **TRIGRAM**"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "BIRARsj2FHJg",
"outputId": "968d420e-9370-40e5-e7e1-148e1d351d62"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Corpus: mahasiswa mengerjakan tugas kemudian mahasiswa upload e-learning\n",
"Tokens (7): ['mahasiswa', 'mengerjakan', 'tugas', 'kemudian', 'mahasiswa', 'upload', 'e-learning']\n",
"\n",
"Frekuensi Trigram dalam kalimat:\n",
" ('mahasiswa', 'mengerjakan', 'tugas'): 1\n",
" ('mengerjakan', 'tugas', 'kemudian'): 1\n",
" ('tugas', 'kemudian', 'mahasiswa'): 1\n",
" ('kemudian', 'mahasiswa', 'upload'): 1\n",
" ('mahasiswa', 'upload', 'e-learning'): 1\n",
"\n",
"Total trigram dalam 1 kalimat: 5\n",
"\n",
"Probabilitas masing-masing trigram:\n",
" P(tugas|mahasiswa,mengerjakan) = 1.00 (100.00%)\n",
" P(kemudian|mengerjakan,tugas) = 1.00 (100.00%)\n",
" P(mahasiswa|tugas,kemudian) = 1.00 (100.00%)\n",
" P(upload|kemudian,mahasiswa) = 1.00 (100.00%)\n",
" P(e-learning|mahasiswa,upload) = 1.00 (100.00%)\n",
"\n",
"Probabilitas Keseluruhan Kalimat (Model Trigram):\n",
" P(mahasiswa mengerjakan tugas kemudian mahasiswa upload e-learning) = P(mahasiswa)=0.29 x P(mengerjakan|mahasiswa)=0.50 x P(tugas|mahasiswa,mengerjakan)=1.00 x P(kemudian|mengerjakan,tugas)=1.00 x P(mahasiswa|tugas,kemudian)=1.00 x P(upload|kemudian,mahasiswa)=1.00 x P(e-learning|mahasiswa,upload)=1.00 = 0.142857 (14.29%)\n"
]
}
],
"source": [
"from collections import Counter\n",
"from IPython.display import clear_output\n",
"import math\n",
"\n",
"# 1. Input Kalimat dan Tokenisasi\n",
"kalimat = input(\"Masukkan kalimat: \").strip()\n",
"\n",
"# Bersihkan output (khusus lingkungan notebook)\n",
"try:\n",
" clear_output()\n",
"except:\n",
" pass\n",
"\n",
"print(f\"Corpus: {kalimat}\")\n",
"\n",
"# Tokenisasi\n",
"tokens = kalimat.lower().split()\n",
"print(f\"Tokens ({len(tokens)}): {tokens}\")\n",
"\n",
"# 2. Hitung Frekuensi Bigram dan Trigram\n",
"bigrams = [(tokens[i], tokens[i+1]) for i in range(len(tokens) - 1)]\n",
"trigrams = [(tokens[i], tokens[i+1], tokens[i+2]) for i in range(len(tokens) - 2)]\n",
"\n",
"bigram_counts = Counter(bigrams)\n",
"trigram_counts = Counter(trigrams)\n",
"\n",
"print(\"\\nFrekuensi Trigram dalam kalimat:\")\n",
"for tg, count in trigram_counts.items():\n",
" print(f\" {tg}: {count}\")\n",
"print(f\"\\nTotal trigram dalam 1 kalimat: {sum(trigram_counts.values())}\")\n",
"\n",
"# 3. Hitung Probabilitas Trigram: P(w3 | w1, w2) = Count(w1,w2,w3) / Count(w1,w2)\n",
"trigram_probabilities = {}\n",
"for (w1, w2, w3), count in trigram_counts.items():\n",
" # Hindari pembagian dengan nol (jika ada bigram yang tidak muncul)\n",
" if bigram_counts[(w1, w2)] > 0:\n",
" prob = count / bigram_counts[(w1, w2)]\n",
" else:\n",
" prob = 0\n",
" trigram_probabilities[(w1, w2, w3)] = prob\n",
"\n",
"print(\"\\nProbabilitas masing-masing trigram:\")\n",
"for (w1, w2, w3), prob in trigram_probabilities.items():\n",
" print(f\" P({w3}|{w1},{w2}) = {prob:.2f} ({prob*100:.2f}%)\")\n",
"\n",
"# Tambahkan perhitungan Unigram Count (dibutuhkan untuk P(w1) dan P(w2|w1))\n",
"unigram_counts = Counter(tokens)\n",
"total_tokens = sum(unigram_counts.values())\n",
"\n",
"# 4. Hitung Probabilitas Kalimat Keseluruhan (Model Trigram)\n",
"# P(kalimat) = P(w1) * P(w2|w1) * P(w3|w1,w2) * ...\n",
"\n",
"# a. P(w1)\n",
"p_w1 = unigram_counts.get(tokens[0], 0) / total_tokens if total_tokens > 0 else 0\n",
"\n",
"# b. P(w2|w1) (Menggunakan Bigram tanpa smoothing)\n",
"if len(tokens) > 1:\n",
" count_w1 = unigram_counts.get(tokens[0], 1) # Hindari pembagian dengan 0\n",
" p_w2_w1 = bigram_counts.get((tokens[0], tokens[1]), 0) / count_w1\n",
"else:\n",
" p_w2_w1 = 1.0 # Jika hanya 1 kata\n",
"\n",
"p_kalimat = p_w1 * p_w2_w1 # Inisialisasi dengan P(w1) * P(w2|w1)\n",
"\n",
"# Daftar bagian rumus untuk ditampilkan\n",
"prob_str_parts = [f\"P({tokens[0]})={p_w1:.2f}\"]\n",
"if len(tokens) > 1:\n",
" prob_str_parts.append(f\"P({tokens[1]}|{tokens[0]})={p_w2_w1:.2f}\")\n",
"\n",
"# c. Perkalian Trigram P(wi | wi-2, wi-1) untuk i >= 3\n",
"for i in range(len(tokens) - 2):\n",
" triplet = (tokens[i], tokens[i+1], tokens[i+2])\n",
" p = trigram_probabilities.get(triplet, 0)\n",
" p_kalimat *= p\n",
" prob_str_parts.append(f\"P({triplet[2]}|{triplet[0]},{triplet[1]})={p:.2f}\")\n",
"\n",
"prob_str = \" x \".join(prob_str_parts)\n",
"\n",
"print(\"\\nProbabilitas Keseluruhan Kalimat (Model Trigram):\")\n",
"print(f\" P({' '.join(tokens)}) = {prob_str} = {p_kalimat:.6f} ({p_kalimat*100:.2f}%)\")\n"
]
}
],
"metadata": {
"colab": {
"provenance": []
},
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.2"
}
},
"nbformat": 4,
"nbformat_minor": 4
}