diff --git a/Tugas.Classification/Eva Yusfika Hidayah_202310715012_F5A2.ipynb b/Tugas.Classification/Eva Yusfika Hidayah_202310715012_F5A2.ipynb new file mode 100644 index 0000000..6b9ee6c --- /dev/null +++ b/Tugas.Classification/Eva Yusfika Hidayah_202310715012_F5A2.ipynb @@ -0,0 +1,1644 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

\n", + " \n", + " \"Skills\n", + " \n", + "

\n", + "\n", + "\n", + "# SVM (Support Vector Machines)\n", + "\n", + "\n", + "Estimated time needed: **15** minutes\n", + " \n", + "\n", + "## Objectives\n", + "\n", + "After completing this lab you will be able to:\n", + "\n", + "* Use scikit-learn to Support Vector Machine to classify\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In this notebook, you will use SVM (Support Vector Machines) to build and train a model using human cell records, and classify cells to whether the samples are benign or malignant.\n", + "\n", + "SVM works by mapping data to a high-dimensional feature space so that data points can be categorized, even when the data are not otherwise linearly separable. A separator between the categories is found, then the data is transformed in such a way that the separator could be drawn as a hyperplane. Following this, characteristics of new data can be used to predict the group to which a new record should belong.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

Table of contents

\n", + "\n", + "
\n", + "
    \n", + "
  1. Load the Cancer data
  2. \n", + "
  3. Modeling
  4. \n", + "
  5. Evaluation
  6. \n", + "
  7. Practice
  8. \n", + "
\n", + "
\n", + "
\n", + "
\n" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Collecting scikit-learn\n", + " Downloading scikit_learn-1.7.2-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.metadata (11 kB)\n", + "Collecting numpy>=1.22.0 (from scikit-learn)\n", + " Downloading numpy-2.3.5-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.metadata (62 kB)\n", + "Collecting scipy>=1.8.0 (from scikit-learn)\n", + " Downloading scipy-1.16.3-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.metadata (62 kB)\n", + "Collecting joblib>=1.2.0 (from scikit-learn)\n", + " Downloading joblib-1.5.2-py3-none-any.whl.metadata (5.6 kB)\n", + "Collecting threadpoolctl>=3.1.0 (from scikit-learn)\n", + " Downloading threadpoolctl-3.6.0-py3-none-any.whl.metadata (13 kB)\n", + "Downloading scikit_learn-1.7.2-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (9.5 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m9.5/9.5 MB\u001b[0m \u001b[31m83.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading joblib-1.5.2-py3-none-any.whl (308 kB)\n", + "Downloading numpy-2.3.5-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (16.6 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m16.6/16.6 MB\u001b[0m \u001b[31m182.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading scipy-1.16.3-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (35.7 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m35.7/35.7 MB\u001b[0m \u001b[31m99.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0mta \u001b[36m0:00:01\u001b[0m\n", + "\u001b[?25hDownloading threadpoolctl-3.6.0-py3-none-any.whl (18 kB)\n", + "Installing collected packages: threadpoolctl, numpy, joblib, scipy, scikit-learn\n", + "Successfully installed joblib-1.5.2 numpy-2.3.5 scikit-learn-1.7.2 scipy-1.16.3 threadpoolctl-3.6.0\n", + "Collecting matplotlib\n", + " Downloading matplotlib-3.10.7-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.metadata (11 kB)\n", + "Collecting contourpy>=1.0.1 (from matplotlib)\n", + " Downloading contourpy-1.3.3-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.metadata (5.5 kB)\n", + "Collecting cycler>=0.10 (from matplotlib)\n", + " Downloading cycler-0.12.1-py3-none-any.whl.metadata (3.8 kB)\n", + "Collecting fonttools>=4.22.0 (from matplotlib)\n", + " Downloading fonttools-4.60.1-cp312-cp312-manylinux1_x86_64.manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_5_x86_64.whl.metadata (112 kB)\n", + "Collecting kiwisolver>=1.3.1 (from matplotlib)\n", + " Downloading kiwisolver-1.4.9-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.metadata (6.3 kB)\n", + "Requirement already satisfied: numpy>=1.23 in /opt/conda/lib/python3.12/site-packages (from matplotlib) (2.3.5)\n", + "Requirement already satisfied: packaging>=20.0 in /opt/conda/lib/python3.12/site-packages (from matplotlib) (24.2)\n", + "Collecting pillow>=8 (from matplotlib)\n", + " Downloading pillow-12.0.0-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.metadata (8.8 kB)\n", + "Collecting pyparsing>=3 (from matplotlib)\n", + " Downloading pyparsing-3.2.5-py3-none-any.whl.metadata (5.0 kB)\n", + "Requirement already satisfied: python-dateutil>=2.7 in /opt/conda/lib/python3.12/site-packages (from matplotlib) (2.9.0.post0)\n", + "Requirement already satisfied: six>=1.5 in /opt/conda/lib/python3.12/site-packages (from python-dateutil>=2.7->matplotlib) (1.17.0)\n", + "Downloading matplotlib-3.10.7-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (8.7 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m8.7/8.7 MB\u001b[0m \u001b[31m155.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "Downloading contourpy-1.3.3-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (362 kB)\n", + "Downloading cycler-0.12.1-py3-none-any.whl (8.3 kB)\n", + "Downloading fonttools-4.60.1-cp312-cp312-manylinux1_x86_64.manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_5_x86_64.whl (4.9 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m4.9/4.9 MB\u001b[0m \u001b[31m147.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading kiwisolver-1.4.9-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (1.5 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.5/1.5 MB\u001b[0m \u001b[31m93.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading pillow-12.0.0-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (7.0 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m7.0/7.0 MB\u001b[0m \u001b[31m152.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading pyparsing-3.2.5-py3-none-any.whl (113 kB)\n", + "Installing collected packages: pyparsing, pillow, kiwisolver, fonttools, cycler, contourpy, matplotlib\n", + "Successfully installed contourpy-1.3.3 cycler-0.12.1 fonttools-4.60.1 kiwisolver-1.4.9 matplotlib-3.10.7 pillow-12.0.0 pyparsing-3.2.5\n", + "Collecting pandas\n", + " Downloading pandas-2.3.3-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl.metadata (91 kB)\n", + "Requirement already satisfied: numpy>=1.26.0 in /opt/conda/lib/python3.12/site-packages (from pandas) (2.3.5)\n", + "Requirement already satisfied: python-dateutil>=2.8.2 in /opt/conda/lib/python3.12/site-packages (from pandas) (2.9.0.post0)\n", + "Requirement already satisfied: pytz>=2020.1 in /opt/conda/lib/python3.12/site-packages (from pandas) (2024.2)\n", + "Collecting tzdata>=2022.7 (from pandas)\n", + " Downloading tzdata-2025.2-py2.py3-none-any.whl.metadata (1.4 kB)\n", + "Requirement already satisfied: six>=1.5 in /opt/conda/lib/python3.12/site-packages (from python-dateutil>=2.8.2->pandas) (1.17.0)\n", + "Downloading pandas-2.3.3-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl (12.4 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m12.4/12.4 MB\u001b[0m \u001b[31m134.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading tzdata-2025.2-py2.py3-none-any.whl (347 kB)\n", + "Installing collected packages: tzdata, pandas\n", + "Successfully installed pandas-2.3.3 tzdata-2025.2\n", + "Requirement already satisfied: numpy in /opt/conda/lib/python3.12/site-packages (2.3.5)\n" + ] + } + ], + "source": [ + "!pip install scikit-learn\n", + "!pip install matplotlib\n", + "!pip install pandas \n", + "!pip install numpy \n", + "%matplotlib inline" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "import pylab as pl\n", + "import numpy as np\n", + "import scipy.optimize as opt\n", + "from sklearn import preprocessing\n", + "from sklearn.model_selection import train_test_split\n", + "%matplotlib inline \n", + "import matplotlib.pyplot as plt" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

Load the Cancer data

\n", + "The example is based on a dataset that is publicly available from the UCI Machine Learning Repository (Asuncion and Newman, 2007)[http://mlearn.ics.uci.edu/MLRepository.html]. The dataset consists of several hundred human cell sample records, each of which contains the values of a set of cell characteristics. The fields in each record are:\n", + "\n", + "|Field name|Description|\n", + "|--- |--- |\n", + "|ID|Clump thickness|\n", + "|Clump|Clump thickness|\n", + "|UnifSize|Uniformity of cell size|\n", + "|UnifShape|Uniformity of cell shape|\n", + "|MargAdh|Marginal adhesion|\n", + "|SingEpiSize|Single epithelial cell size|\n", + "|BareNuc|Bare nuclei|\n", + "|BlandChrom|Bland chromatin|\n", + "|NormNucl|Normal nucleoli|\n", + "|Mit|Mitoses|\n", + "|Class|Benign or malignant|\n", + "\n", + "
\n", + "
\n", + "\n", + "For the purposes of this example, we're using a dataset that has a relatively small number of predictors in each record. To download the data, we will use `!wget` to download it from IBM Object Storage. \n" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "--2025-11-19 04:37:48-- https://cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud/IBMDeveloperSkillsNetwork-ML0101EN-SkillsNetwork/labs/Module%203/data/cell_samples.csv\n", + "Resolving cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud (cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud)... 169.63.118.104\n", + "Connecting to cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud (cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud)|169.63.118.104|:443... connected.\n", + "200 OKequest sent, awaiting response... \n", + "Length: 19975 (20K) [text/csv]\n", + "Saving to: ‘cell_samples.csv’\n", + "\n", + "cell_samples.csv 100%[===================>] 19.51K --.-KB/s in 0s \n", + "\n", + "2025-11-19 04:37:48 (73.0 MB/s) - ‘cell_samples.csv’ saved [19975/19975]\n", + "\n" + ] + } + ], + "source": [ + "#Click here and press Shift+Enter\n", + "!wget -O cell_samples.csv https://cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud/IBMDeveloperSkillsNetwork-ML0101EN-SkillsNetwork/labs/Module%203/data/cell_samples.csv" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Load Data From CSV File \n" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
IDClumpUnifSizeUnifShapeMargAdhSingEpiSizeBareNucBlandChromNormNuclMitClass
010000255111213112
1100294554457103212
210154253111223112
310162776881343712
410170234113213112
\n", + "
" + ], + "text/plain": [ + " ID Clump UnifSize UnifShape MargAdh SingEpiSize BareNuc \\\n", + "0 1000025 5 1 1 1 2 1 \n", + "1 1002945 5 4 4 5 7 10 \n", + "2 1015425 3 1 1 1 2 2 \n", + "3 1016277 6 8 8 1 3 4 \n", + "4 1017023 4 1 1 3 2 1 \n", + "\n", + " BlandChrom NormNucl Mit Class \n", + "0 3 1 1 2 \n", + "1 3 2 1 2 \n", + "2 3 1 1 2 \n", + "3 3 7 1 2 \n", + "4 3 1 1 2 " + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "cell_df = pd.read_csv(\"cell_samples.csv\")\n", + "cell_df.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The ID field contains the patient identifiers. The characteristics of the cell samples from each patient are contained in fields Clump to Mit. The values are graded from 1 to 10, with 1 being the closest to benign.\n", + "\n", + "The Class field contains the diagnosis, as confirmed by separate medical procedures, as to whether the samples are benign (value = 2) or malignant (value = 4).\n", + "\n", + "Let's look at the distribution of the classes based on Clump thickness and Uniformity of cell size:\n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjIAAAGwCAYAAACzXI8XAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAOE1JREFUeJzt3Xl4VPWh//HPmAABzEaQJRrISIIgiqJgDLRKSzAoca1aCbai/rRXQUC0FrzFe0UUtWKVllLRFnALVet2VZibIKJiDEHApSpZSAIVkJqEhP3C5Pz+CJkyJGSdzJnvyfv1PPM8zvc7y+d4ZnI+nHNmxmVZliUAAAADnWR3AAAAgNaiyAAAAGNRZAAAgLEoMgAAwFgUGQAAYCyKDAAAMBZFBgAAGCvc7gDtraamRtu3b1dkZKRcLpfdcQAAQDNYlqU9e/YoPj5eJ5104v0uji8y27dvV0JCgt0xAABAK2zbtk2nnXbaCecdX2QiIyMl1f6PiIqKsjkNAABojurqaiUkJPi24yfi+CJTdzgpKiqKIgMAgGGaOi2Ek30BAICxKDIAAMBYFBkAAGAsx58j01xer1eHDx+2OwYCpFOnTgoLC7M7BgCgnXX4ImNZlnbu3Kndu3fbHQUBFhMToz59+vD9QQDgYB2+yNSVmF69eqlbt25s9BzAsizt379fu3btkiT17dvX5kQAgPbSoYuM1+v1lZi4uDi74yCAunbtKknatWuXevXqxWEmAHCoDn2yb905Md26dbM5CdpD3Xrl3CcAcK4OXWTqcDjJmVivAOB8FBkAAGAsW4vMhx9+qMsvv1zx8fFyuVx68803/eYty9IDDzygvn37qmvXrkpLS1NhYaE9YQG0SEFBhVas2KLCwkq7o7SJx1OiOXM+UXZ2qd1RIOesD6e8Px5+OFc//enf9Oijn9qWwdaTffft26dzzjlHt9xyi6655pp6848//rgWLFigZcuWye12a/bs2UpPT9fXX3+tiIgIGxI726RJk7R7925foRw9erTOPfdcPfXUU7bmglkqKg4oM/NdeTylvrH09ERlZWUoNtac921xcaVSUl5SeflB31hcXITy82+U2x1jX7AOyinrwynvj/ffL1Na2quyrNrrq1dv0/33f6wPPrheF13UL6hZbN0jc+mll2ru3Lm6+uqr681ZlqWnnnpKv/3tb3XllVdq6NChev7557V9+/Z6e27QPl5//XU99NBDdsdoUGJiIgUrRGVmvqucnDK/sZycMk2Y8I5NiVrn+I2mJJWXH9SIES/alKhjc8r6cMr749gSU8eypNGjXwl6lpA9R6akpEQ7d+5UWlqabyw6OlopKSnKzc094f0OHTqk6upqv0swOGU34bF69OjR5M+nA8cqKKiQx1Mqr9f/L5zXa8njKTXm/eHxlNTbaNYpLz9o/GEN0zhlfTjl/fHww7n1Skwdy1LQDzOFbJHZuXOnJKl3795+47179/bNNWTevHmKjo72XRISEto1Z0XFAY0b95rOOOOvuuyy1zVw4F80btxrqqxs+E0XKKNHj9Zdd92l6dOnKzY2Vr1799azzz6rffv26eabb1ZkZKSSkpK0YsUKSbXfmXPrrbfK7Xara9euOuOMM/T00083+RzTp0/3Xd+xY4fGjx+vrl27yu126+WXX663Z8Tlcum5557T1VdfrW7duik5OVlvv/22b745OSZNmqSrrrpKTzzxhPr27au4uDhNnjzZ9zHq0aNHq6ysTHfffbdcLhefTgohxcW7G50vKjLjD3Ve3o5G53NztwcpCSTnrA+nvD9Wrdra6Pz//m9Zo/OBFrJFprVmzZqlqqoq32Xbtm3t+nx27iZctmyZevbsqXXr1umuu+7SHXfcoeuuu04jR47Uhg0bdMkll+gXv/iF9u/fr5qaGp122ml69dVX9fXXX+uBBx7Q/fffr1deaf5uwF/+8pfavn27PvjgA/3973/X4sWLfd+ee6wHH3xQ119/vb744gtddtllmjhxoioqKiSp2TlWr16t4uJirV69WsuWLdPSpUu1dOlSSbWHvE477TTNmTNHO3bs0I4djf+RQ/AMGBDT6HxSUmxwgrRRSkrj3wadmhofpCSQnLM+nPL+GDOm8XNgLrmkf5CS1ArZItOnTx9J0vfff+83/v333/vmGtKlSxdFRUX5XdqL3bsJzznnHP32t79VcnKyZs2apYiICPXs2VO33XabkpOT9cADD6i8vFxffPGFOnXqpAcffFDDhw+X2+3WxIkTdfPNNze7yHz77bfKycnRs88+q5SUFJ133nl67rnndODAgXq3nTRpkiZMmKCkpCQ98sgj2rt3r9atWydJzc4RGxurP/7xjxo0aJAyMjI0fvx4rVq1SlLtIa+wsDBFRkaqT58+jb4eEFwDB/ZQenqiwsL895KFhbmUnp6o5GQz/lCnp7sVF9fwiZdxcREaOzYxuIE6OKesD6e8P/7zP1N1oh3hLpc0c+aFQc0TskXG7XarT58+vo2XJFVXVysvL0+pqak2Jvs3u3cTDh061PffYWFhiouL09lnn+0bqzssV7fXZOHChTr//PN1yimn6OSTT9bixYu1dWvjuwjrbN68WeHh4TrvvPN8Y0lJSYqNrf/GOzZX9+7dFRUV5bfnpjk5hgwZ4vezAn379m1w7w9CT1ZWhtLS/P9FlpbWX1lZGTYlap38/BvrbTzrPiWD4HPK+nDK++ODD66vV2ZcrtrxYLP149d79+5VUVGR73pJSYk2bdqkHj16qF+/fpo+fbrmzp2r5ORk38ev4+PjddVVV9kX+hh27ybs1KmT33WXy+U3VnfuSE1NjZYvX657771X8+fPV2pqqiIjI/W73/1OeXl5QclVU1MjSc3O0dhjILTFxkZo5cprVVhYqaKiSiUlxRrzL81jud0x+uGHKcrOLlVu7nalpsYb8y9/J3LK+nDK++Oii/qppuZePfrop/rf/y3TJZf0D/qemDq2Fpn169frJz/5ie/6jBkzJEk33XSTli5dqvvuu0/79u3T7bffrt27d+tHP/qRVq5cGTLfIVO3mzAnp8zv8FJYmEtpaf1D6sW5du1ajRw5UnfeeadvrLi4uNn3P+OMM3TkyBFt3LhR559/viSpqKhIlZUt2+vU1hx1OnfuLK/X2+L7IXiSk838A328sWMTjdxgOpVT1odT3h8zZ15oW4GpY+uhpdGjR8uyrHqXupM6XS6X5syZo507d+rgwYPKycnRwIED7Yxcjym7CZOTk7V+/Xp5PB4VFBRo9uzZys/Pb/b9Bw0apLS0NN1+++1at26dNm7cqNtvv11du3Zt0aeG2pqjTmJioj788EN99913+uGHH1p8fwCAM4TsOTKmqNtNWFBwq9577xoVFNyqlSuvDblvaPzVr36la665Rj//+c+VkpKi8vJyv70izfH888+rd+/euuiii3T11VfrtttuU2RkZIv2kAUihyTNmTNHpaWlGjBggE455ZQW3x8A4AwuyzrR19o4Q3V1taKjo1VVVVXvE0wHDx5USUmJ3G53yByuMsk///lPJSQkKCcnR2PGjLE7Tj2sXwAwV2Pb72PZeo4MzPL+++9r7969Ovvss7Vjxw7dd999SkxM1EUXXWR3NABAB0WRQbMdPnxY999/v7Zs2aLIyEiNHDlSL730Ur1PGAEAECwUGTRbenq60tPT7Y4BAIAPJ/sCAABjUWQAAICxKDIAAMBYFBkAAGAsigwAADAWRcZQo0eP1vTp09v1OSZNmhQyP9AJAEBD+Pg1Tujpp5+Ww7/4GQBgOIoMTig6OtruCAAANIpDSwFTIGmFpMKgPeORI0c0ZcoURUdHq2fPnpo9e7ZvD8qhQ4d077336tRTT1X37t2VkpKiDz74wHffpUuXKiYmRh6PR4MHD9bJJ5+scePGaceOHb7bHH9oac+ePZo4caK6d++uvn376ve//329Q1yJiYl65JFHdMsttygyMlL9+vXT4sWL2/t/BQCgg6LItFmFpHGSzpB0maSBR69XtvszL1u2TOHh4Vq3bp2efvppPfnkk3ruueckSVOmTFFubq6WL1+uL774Qtddd53GjRunwsJ/F639+/friSee0AsvvKAPP/xQW7du1b333nvC55sxY4bWrl2rt99+W9nZ2froo4+0YcOGerebP3++hg8fro0bN+rOO+/UHXfcoc2bNwf+fwAAAJbDVVVVWZKsqqqqenMHDhywvv76a+vAgQNteIZ0y7LCLMvSMZewo+Pt5+KLL7YGDx5s1dTU+MZ+85vfWIMHD7bKysqssLAw67vvvvO7z5gxY6xZs2ZZlmVZS5YssSRZRUVFvvmFCxdavXv39l2/6aabrCuvvNKyLMuqrq62OnXqZL366qu++d27d1vdunWzpk2b5hvr37+/deONN/qu19TUWL169bIWLVoUkOVuicCsXwCAHRrbfh+Lc2TapECSp4Fx79HxQknJ7fbsF154oVwul+96amqq5s+fry+//FJer1cDBw70u/2hQ4cUFxfnu96tWzcNGDDAd71v377atWtXg8+1ZcsWHT58WBdccIFvLDo6WmeccUa92w4dOtT33y6XS3369Dnh4wIA0BYUmTYpbmK+SO1ZZE5k7969CgsL02effaawsDC/uZNPPtn338f/arXL5QrIp5Qaetyampo2Py4AAMejyLTJgCbmk9r12fPy8vyuf/rpp0pOTtawYcPk9Xq1a9cu/fjHPw7Ic51++unq1KmT8vPz1a9fP0lSVVWVCgoKdNFFFwXkOQAAaClO9m2TgZLSJYUdNx52dLx998Zs3bpVM2bM0ObNm5WVlaU//OEPmjZtmgYOHKiJEyfql7/8pV5//XWVlJRo3bp1mjdvnt59991WPVdkZKRuuukm/frXv9bq1av1j3/8Q7feeqtOOukkv8NbAAAEE3tk2ixL0gT5nyuTdnS8ff3yl7/UgQMHdMEFFygsLEzTpk3T7bffLklasmSJ5s6dq3vuuUffffedevbsqQsvvFAZGRmtfr4nn3xS//Ef/6GMjAxFRUXpvvvu07Zt2xQRERGoRQIAoEVcViBOighh1dXVio6OVlVVlaKiovzmDh48qJKSErnd7gBsjAtVe05Mkuw4L8YO+/bt06mnnqr58+fr1ltvtTtOPYFdvwCAYGps+30s9sgETLKcXmA2btyob7/9VhdccIGqqqo0Z84cSdKVV15pczIAQEdFkUGLPPHEE9q8ebM6d+6s888/Xx999JF69uxpdywAQAdFkUGzDRs2TJ999pndMQAA8OFTSwAAwFgUGSkgXwKH0MN6BQDn69BFpu4baPfv329zErSHuvV6/DcNAwCco0OfIxMWFqaYmBjf7wB169aNL3dzAMuytH//fu3atUsxMTH1fqYBAOAcHbrISFKfPn0kiR81dKCYmBjf+gUAOFOHLzIul0t9+/ZVr169dPjwYbvjIEA6derEnhgA6AA6fJGpExYWxoYPAADDdOiTfQEAgNkoMgAAwFgUGQAAYCyKDAAAMBZFBgAAGIsiAwAAjEWRAQAAxqLIAAAAY1FkAACAsSgyAADAWBQZAABgLIoMAAAwFkUGAAAYiyIDAACMRZEBAADGosgAAABjUWQAAICxKDIAAMBYFBkAAGAsigwAADAWRQYAABiLIgMAAIxFkQEAAMaiyAAAAGNRZAAAgLEoMgAAwFgUGQAAYCyKDAAAMBZFBgAAGIsiAwAAjEWRAQAAxqLIAAAAY4V0kfF6vZo9e7bcbre6du2qAQMG6KGHHpJlWXZHA9BhFEhaIanQ7iBtUlBQoRUrtqiwsNLuKEBAhdsdoDGPPfaYFi1apGXLlmnIkCFav369br75ZkVHR2vq1Kl2xwPgaBWSMiV5jhlLl5QlKdaWRK1RUXFAmZnvyuMp9Y2lpycqKytDsbER9gUDAiSk98h88sknuvLKKzV+/HglJibq2muv1SWXXKJ169bZHQ2A42VKyjluLEfSBBuytF5m5rvKySnzG8vJKdOECe/YlAgIrJAuMiNHjtSqVatUUFAgSfr888/18ccf69JLLz3hfQ4dOqTq6mq/CwC0TIFq98R4jxv3Hh034zBTQUGFPJ5Seb3+h+O9XkseTymHmeAIIX1oaebMmaqurtagQYMUFhYmr9erhx9+WBMnTjzhfebNm6cHH3wwiCkBOE9xE/NFkpKDEaRNiot3NzpfVFSp5GRzDpMBDQnpPTKvvPKKXnrpJb388svasGGDli1bpieeeELLli074X1mzZqlqqoq32Xbtm1BTAzAGQY0MZ8UlBRtNWBATKPzSUmUGJgvpPfI/PrXv9bMmTN1ww03SJLOPvtslZWVad68ebrpppsavE+XLl3UpUuXYMYE4DgDVXtib478Dy+FSUqTCXtjJGngwB5KT09UTk6Z3+GlsDCX0tL6szcGjhDSe2T279+vk07yjxgWFqaamhqbEgHoOLJUW1qOlXZ03BxZWRlKS+vvN5aW1l9ZWRk2JQICK6T3yFx++eV6+OGH1a9fPw0ZMkQbN27Uk08+qVtuucXuaAAcL1bSStWe2Fuk2sNJZuyJOVZsbIRWrrxWhYWVKiqqVFJSLHti4CguK4S/XW7Pnj2aPXu23njjDe3atUvx8fGaMGGCHnjgAXXu3LlZj1FdXa3o6GhVVVUpKiqqnRMDAIBAaO72O6SLTCBQZAAAME9zt98hfY4MAABAYygyAADAWBQZAABgLIoMAAAwFkUGAAAYiyIDAACMRZEBAADGosgAAABjUWQAAICxKDIAAMBYFBkAAGAsigwAADAWRQYAABiLIgMAAIxFkQEAAMaiyAAAAGNRZAAAgLEoMgAAwFgUGQAAYCyKDAAAMBZFBgAAGIsiAwAAjEWRAQAAxqLIAAAAY1FkAACAsSgyAADAWOF2BwACpaCgQsXFu5WUFKvk5Fi74wBoB7zPQ4vHU6K8vB1KTY3X2LGJtmSgyMB4FRUHlJn5rjyeUt9YenqisrIyFBsbYV8wAAHD+zy0FBdXKiXlJZWXH/SNxcVFKD//RrndMUHNwqElGC8z813l5JT5jeXklGnChHdsSgQg0Hifh5bjS4wklZcf1IgRLwY9C0UGRisoqJDHUyqv1/Ib93oteTylKiystCkZgEDhfR5aPJ6SeiWmTnn5QWVnlwY1D0UGRisu3t3ofFERf+AA0/E+Dy15eTsanc/N3R6kJLUoMjDagAExjc4nJXEyIGA63uehJSWlb6PzqanxQUpSiyIDow0c2EPp6YkKC3P5jYeFuZSensinGgAH4H0eWtLT3YqLa/gE67i4iKB/eokiA+NlZWUoLa2/31haWn9lZWXYlAhAoPE+Dy35+TfWKzN1n1oKNpdlWVbTNzNXdXW1oqOjVVVVpaioKLvjoB0VFlaqqKiS75cAHIz3eWjJzi5Vbu72dvkemeZuvykyAAAg5DR3+82hJQAAYCyKDAAAMBZFBgAAGIsiAwAAjEWRAQAAxqLIAAAAY1FkAACAsSgyAADAWBQZAABgLIoMAAAwFkUGAAAYiyIDAACMRZEBAADGosgAAABjUWQAAICxKDIAAMBYFBkAAGAsigwAADAWRQYAABiLIgMAAIxFkQEAAMaiyAAAAGNRZAAAgLEoMgAAwFgUGQAAYCyKDAAAMFari8zu3bv13HPPadasWaqoqJAkbdiwQd99913AwgEAADQmvDV3+uKLL5SWlqbo6GiVlpbqtttuU48ePfT6669r69atev755wOdE2hSQUGFiot3KykpVsnJsXbH6fCcsz4KJBVLSpKUbHMWOIVT3h8eT4ny8nYoNTVeY8cm2pKhVUVmxowZmjRpkh5//HFFRkb6xi+77DJlZmYGLJwkfffdd/rNb36jFStWaP/+/UpKStKSJUs0fPjwgD4PzFVRcUCZme/K4yn1jaWnJyorK0OxsRH2BeugnLM+KiRlSvIcM5YuKUuSuRse2Msp74/i4kqlpLyk8vKDvrG4uAjl598otzsmqFladWgpPz9fv/rVr+qNn3rqqdq5c2ebQ9WprKzUqFGj1KlTJ61YsUJff/215s+fr9hY/ojg3zIz31VOTpnfWE5OmSZMeMemRB2bc9ZHpqSc48ZyJE2wIQucwinvj+NLjCSVlx/UiBEvBj1Lq/bIdOnSRdXV1fXGCwoKdMopp7Q5VJ3HHntMCQkJWrJkiW/M7XY3ep9Dhw7p0KFDvusN5YRzFBRU+P3Lpo7Xa8njKVVhYaXRu21N45z1USD/PTF1vEfHC8VhJrSUU94fHk9JvRJTp7z8oLKzS4N6mKlVe2SuuOIKzZkzR4cPH5YkuVwubd26Vb/5zW/0s5/9LGDh3n77bQ0fPlzXXXedevXqpWHDhunZZ59t9D7z5s1TdHS075KQkBCwPAg9xcW7G50vKqoMThBIctL6KG5ivigoKeAsTnl/5OXtaHQ+N3d7kJLUalWRmT9/vvbu3atevXrpwIEDuvjii5WUlKTIyEg9/PDDAQu3ZcsWLVq0SMnJyfJ4PLrjjjs0depULVu27IT3mTVrlqqqqnyXbdu2BSwPQs+AATGNziclhf6/bpzEOetjQBPzSUFJAWdxyvsjJaVvo/OpqfFBSlLLZVmW1do7f/zxx/riiy+0d+9enXfeeUpLSwtkNnXu3FnDhw/XJ5984hubOnWq8vPzlZub26zHqK6uVnR0tKqqqhQVFRXQfAgN48a9ppycMnm9/34ph4W5lJbWXytXXmtjso7JOetjnGrPifEeMxYmKU3SSlsSwXxOeX/07PnHBg8vxcVF6IcfpgTkOZq7/W7VHpmtW7fq0KFD+tGPfqQ777xT9913n9LS0mRZlrZu3drq0Mfr27evzjzzTL+xwYMHB/Q5YL6srAylpfX3G0tL66+srAybEnVszlkfWaotLcdKOzoOtI5T3h/5+TcqLs7/U1Z1n1oKtlbtkTnppJM0ePBgvf322xow4N+7YL///nvFx8fL6/U2cu/my8zM1LZt2/TRRx/5xu6++27l5eX57aVpDHtkOo7CwkoVFVUa/70MTuGc9VGo2nNi+B4ZBI5T3h/Z2aXKzd3eLt8j09ztd6uLzDXXXKPVq1frlVde0ZgxYyTVFpm+ffuqpqam9cmPkZ+fr5EjR+rBBx/U9ddfr3Xr1um2227T4sWLNXHixGY9BkUGAADztOuhJZfLpT/96U/67W9/q/Hjx2vBggV+c4EyYsQIvfHGG8rKytJZZ52lhx56SE899VSzSwwAAHC2Vn2PTN1OnLvvvluDBg3ShAkT9OWXX+qBBx4IaDhJysjIUEaGWccOAQBAcLSqyBzr0ksv1SeffKIrrrhC69atC0QmAACAZmnVoaWLL75YnTt39l0/88wzlZeXp5iYGLXh09wAAAAt0qbvkTEBJ/sCAGCe5m6/m31oqbq62vdATf1+EYUBAAAEQ7OLTGxsrHbs2KFevXopJiamwU8nWZYll8sVsO+RAQAAaEyzi8z777+vHj16SJJWr17dboEAAACai3NkAABAyGmXL8T74YcfVFZW5jf2j3/8QzfffLOuv/56vfzyy61LCwAA0AotKjJ33XWX37f47tq1Sz/+8Y+Vn5+vQ4cOadKkSXrhhRcCHhIAAKAhLSoyn376qa644grf9eeff149evTQpk2b9NZbb+mRRx7RwoULAx4SAACgIS0qMjt37lRiYqLv+vvvv69rrrlG4eG15wxfccUVKiwsDGhAAACAE2lRkYmKitLu3bt919etW6eUlBTfdZfLpUOHDgUsHAAAQGNaVGQuvPBCLViwQDU1NXrttde0Z88e/fSnP/XNFxQUKCEhIeAhAQAAGtKiH4186KGHNGbMGL344os6cuSI7r//fsXGxvrmly9frosvvjjgIQEAABrSoiIzdOhQffPNN1q7dq369Onjd1hJkm644QadeeaZAQ0IAABwIs0+tNSjRw/98MMP6tmzp956660GC8v48ePldrsDGhAAAOBEml1k/u///s/3Y5HLli3TwYMH2y0UAABAczT70FJqaqquuuoqnX/++bIsS1OnTlXXrl0bvO1f//rXgAUEAAA4kWYXmRdffFG///3vVVxcLJfLpaqqKvbKAAAAW7XqRyPdbrfWr1+vuLi49sgUUPxoJAAA5mnu9rtFn1qqU1JS0upgAAAAgdLsIrNgwQLdfvvtioiI8PvhyIZMnTq1zcEAAACa0uxDS8ceTmrsI9Yul0tbtmwJWMC24tASAADmCfihpWMPJ3FoCQAAhIIW/dYSAABAKGnVyb5er1dLly7VqlWrtGvXLtXU1PjNv//++wEJBwAA0JhWFZlp06Zp6dKlGj9+vM466yy5XK5A50IQFRRUqLh4t5KSYpWcHNv0HUKUU5bDKVgfoYX1EVo8nhLl5e1Qamq8xo5NtDtOq4XCcrSqyCxfvlyvvPKKLrvsskDnQRBVVBxQZua78nhKfWPp6YnKyspQbGyEfcFayCnL4RSsj9DC+ggtxcWVSkl5SeXl//5C2bi4COXn3yi3O8a+YC0USsvRqnNkOnfurKSkpEBnQZBlZr6rnJwyv7GcnDJNmPCOTYlaxynL4RSsj9DC+ggtx2/8Jam8/KBGjHjRpkStE0rL0aoic8899+jpp59WK74UGCGioKBCHk+pvF7/dej1WvJ4SlVYWGlTspZxynI4BesjtLA+QovHU1Jv41+nvPygsrNLgxuolUJtOVp1aOnjjz/W6tWrtWLFCg0ZMkSdOnXym3/99dcDEg7tp7h4d6PzRUWVRhxHd8pyOAXrI7SwPkJLXt6ORudzc7cbcb5MqC1Hq4pMTEyMrr766kBnQRANGBDT6HxSkhl/3JyyHE7B+ggtrI/QkpLSt9H51NT4ICVpm1BbjlYVmSVLlgQ6B4Js4MAeSk9PVE5Omd9u57Awl9LS+hvzrzSnLIdTsD5CC+sjtKSnuxUXF9HgYZm4uAgj9sZIobccLTpHJjY2Vj169Kh3cbvdSk9PV3Z2dnvlRDvIyspQWlp/v7G0tP7KysqwKVHrOGU5nIL1EVpYH6ElP/9GxcX5f1qs7tM+Jgml5Wj2by1J0rJlyxoc3717tz777DP97W9/02uvvabLL788YAHbit9aalphYaWKiiqN/34JpyyHU7A+QgvrI7RkZ5cqN3e78d8j057L0dztd4uKTFOefPJJvfbaa/rkk08C9ZBtRpEBAMA8zd1+B/S3ljIyMvTtt98G8iEBAABOKKBF5tChQ+rcuXMgHxIAAOCEAlpk/vKXv+jcc88N5EMCAACcUIs+fj1jxowGx6uqqrRhwwYVFBToww8/DEgwAACAprSoyGzcuLHB8aioKI0dO1avv/663G53QIIBAAA0pUVFZvXq1e2VAwAAoMUCeo4MAABAMFFkAACAsSgyAADAWBQZAABgLIoMAAAwFkUGAAAYiyIDAACMRZEBAADGosgAAABjUWQAAICxKDIAAMBYFBkAAGAsigwAADAWRQYAABiLIgMAAIxFkQEAAMaiyAAAAGNRZAAAgLEoMgAAwFgUGQAAYCyKDAAAMJZRRebRRx+Vy+XS9OnT7Y4CoAklJeuUn/9XlZautzsKJBUUVGjFii0qLKy0O0qbsByhxeMp0Zw5nyg7u9S2DOG2PXML5efn65lnntHQoUPtjgKgEZWV36m4eLyGD/9cbnft2Pr15ygpaYViYvraG64Dqqg4oMzMd+XxlPrG0tMTlZWVodjYCPuCtRDLEVqKiyuVkvKSyssP+sbi4iKUn3+j3O6YoGYxYo/M3r17NXHiRD377LOKjY21Ow6ARhQXj9e5537hN3buuV+oqOhSmxJ1bJmZ7yonp8xvLCenTBMmvGNTotZhOULL8SVGksrLD2rEiBeDnsWIIjN58mSNHz9eaWlpTd720KFDqq6u9rsACI6SknUaPvxzhYdbfuPh4ZaGD/+cw0xBVlBQIY+nVF6v//rwei15PKXGHNZgOUKLx1NSr8TUKS8/GPTDTCFfZJYvX64NGzZo3rx5zbr9vHnzFB0d7bskJCS0c0IAdX744atG5//1ry8anUdgFRfvbnS+qMiMDSfLEVry8nY0Op+buz1ISWqFdJHZtm2bpk2bppdeekkREc07djhr1ixVVVX5Ltu2bWvnlADq9Ox5VqPzp5zCOW7BNGBATKPzSUlmHKpnOUJLSkrj57qlpsYHKUmtkC4yn332mXbt2qXzzjtP4eHhCg8P15o1a7RgwQKFh4fL6/XWu0+XLl0UFRXldwEQHG73BVq//hwdOeLyGz9yxKX1689RYuJwm5J1TAMH9lB6eqLCwvzXR1iYS+npiUpONmPDyXKElvR0t+LiGt65EBcXobFjE4OaJ6SLzJgxY/Tll19q06ZNvsvw4cM1ceJEbdq0SWFhYXZHBHCcpKQV2rTJf8/Lpk1DlZS0wqZEHVtWVobS0vr7jaWl9VdWVoZNiVqH5Qgt+fk31iszdZ9aCjaXZVlW0zcLHaNHj9a5556rp556qlm3r66uVnR0tKqqqtg7AwRRael6/etfX+iUU4ayJyYEFBZWqqioUklJscb8y78hLEdoyc4uVW7udqWmxgd8T0xzt98UGQAAEHKau/025gvx6nzwwQd2RwAAACEipM+RAQAAaAxFBgAAGIsiAwAAjEWRAQAAxqLIAAAAY1FkAACAsSgyAADAWBQZAABgLIoMAAAwFkUGAAAYiyIDAACMRZEBAADGosgAAABjUWQAAICxKDIAAMBYFBkAAGAsigwAADAWRQYAABiLIgMAAIxFkQEAAMaiyAAAAGNRZAAAgLEoMgAAwFgUGQAAYCyKDAAAMBZFBgAAGCvc7gDmKpBULClJUrLNWdqmoKBCxcW7lZQUq+TkWLvjtJpTlsMpFi36m8rKNsrtPl+/+tV1dsdpNae8rjyeEuXl7VBqarzGjk20O06rOWV9OEUovK4oMi1WISlTkueYsXRJWZLMelNVVBxQZua78nhKfWPp6YnKyspQbGyEfcFayCnL4RQffvi59u+/XnfcUeAbW7lyoKKiXtPIkWfbmKxlnPK6Ki6uVErKSyovP+gbi4uLUH7+jXK7Y+wL1kJOWR9OEUqvKw4ttVimpJzjxnIkTbAhS9tkZr6rnJwyv7GcnDJNmPCOTYlaxynL4RT791+vtLRCv7G0tEJVV19rU6LWccrr6viNjSSVlx/UiBEv2pSodZyyPpwilF5XFJkWKVDtnhjvcePeo+OF9e4RqgoKKuTxlMrrtfzGvV5LHk+pCgsrbUrWMk5ZDqdYtOhvGjeuQOHh/usjPNzSuHEFeuaZV21K1jJOeV15PCX1NjZ1yssPKju7NLiBWskp68MpQu11RZFpkeIm5ouCkiIQiot3NzpfVGTGHwanLIdTlJVtbHS+pOSzICVpG6e8rvLydjQ6n5u7PUhJ2sYp68MpQu11RZFpkQFNzCcFJUUgDBgQ0+h8UpIZ5/s4ZTmcon//YY3Ou93nBylJ2zjldZWS0rfR+dTU+CAlaRunrA+nCLXXFUWmRQaq9sTesOPGw46Om/PppYEDeyg9PVFhYS6/8bAwl9LTE435NIBTlsMp7rjj51q5cqCOHPFfH0eOuLRy5UBjPr3klNdVerpbcXENnwgbFxdhzKeXnLI+nCLUXlcUmRbLkpR23Fja0XGzZGVlKC2tv99YWlp/ZWVl2JSodZyyHE4RFfWacnL8S31OTrKiol6zKVHrOOV1lZ9/Y72NTt2nS0zilPXhFKH0unJZlmU1fTNzVVdXKzo6WlVVVYqKigrgIxeq9pwY879HprCwUkVFlcZ/L4NTlsMpnnnmVZWUfGb898g45XWVnV2q3Nztxn+PjFPWh1O05+uqudtvigwAAAg5zd1+c2gJAAAYiyIDAACMRZEBAADGosgAAABjUWQAAICxKDIAAMBYFBkAAGAsigwAADAWRQYAABiLIgMAAIxFkQEAAMaiyAAAAGNRZAAAgLEoMgAAwFgUGQAAYCyKDAAAMBZFBgAAGIsiAwAAjEWRAQAAxqLIAAAAY1FkAACAsSgyAADAWBQZAABgLIoMAAAwFkUGAAAYiyIDAACMRZEBAADGosgAAABjhXSRmTdvnkaMGKHIyEj16tVLV111lTZv3mx3LAcqkLRCUqHdQdqI5QglH320Si+/PF9r1662O0obOWN9OIXHU6I5cz5Rdnap3VEQIsLtDtCYNWvWaPLkyRoxYoSOHDmi+++/X5dccom+/vprde/e3e54DlAhKVOS55ixdElZkmJtSdQ6LEcoKSnZoi1bMjRmzDe+sVWrBisp6T31759oX7AWc8b6cIri4kqlpLyk8vKDvrG4uAjl598otzvGvmCwncuyLMvuEM31r3/9S7169dKaNWt00UUXNes+1dXVio6OVlVVlaKioto5oWnGScqR5D1mLExSmqSVtiRqHZYjlKxadaYuvvhbhYf/+0/LkSMurVkzSGPGfG1jspZyxvpwip49/+hXYurExUXohx+m2JAI7a252++QPrR0vKqqKklSjx49TnibQ4cOqbq62u+ChhSo9l+a3uPGvUfHTdmNznKEko8+WqUxY77xKzGSFB5uacyYbww6zOSM9eEUHk9JgyVGksrLD3KYqYMzpsjU1NRo+vTpGjVqlM4666wT3m7evHmKjo72XRISEoKY0iTFTcwXBSVF27EcoWTbtk2NzpeVbQhOkDZzxvpwiry8HY3O5+ZuD1IShCJjiszkyZP11Vdfafny5Y3ebtasWaqqqvJdtm3bFqSEphnQxHxSUFK0HcsRShISzm10vn//84ITpM2csT6cIiWlb6PzqanxQUqCUGREkZkyZYreeecdrV69Wqeddlqjt+3SpYuioqL8LmjIQNWeuBh23HjY0fHkoCdqHZYjlPz4x2O0atVgHTni8hs/csSlVasGa9Son9iUrKWcsT6cIj3drbi4iAbn4uIiNHZsYnADIaSEdJGxLEtTpkzRG2+8offff19ut9vuSA6TpdoTF4+VdnTcJCxHKElKek9r1gzyG1uzZpCSkt6zKVFrOWN9OEV+/o31ykzdp5bQsYX0p5buvPNOvfzyy3rrrbd0xhln+Majo6PVtWvXZj0Gn1pqjkLVHvNPktn/0mQ5QsnatatVVrZB/fufZ9CemIY4Y304RXZ2qXJztys1NZ49MQ7X3O13SBcZl8vV4PiSJUs0adKkZj0GRQYAAPM0d/sd0l+IF8IdCwAAhICQPkcGAACgMRQZAABgLIoMAAAwFkUGAAAYiyIDAACMRZEBAADGosgAAABjUWQAAICxKDIAAMBYFBkAAGAsigwAADAWRQYAABiLIgMAAIxFkQEAAMaiyAAAAGNRZAAAgLEoMgAAwFgUGQAAYCyKDAAAMBZFBgAAGIsiAwAAjEWRAQAAxqLIAAAAY1FkAACAsSgyAADAWBQZAABgLIpMqyWo9n9fP7uDBMBISd0l/cjuIG10taTekq61O0gbOWU5/iLpF5KW2pyjrQokrZBUaHcQAA2gyLTYTZJckv4pyZK07ej12+0M1UpzVJs9V9J+SWuPXn/UzlCtsEi1ud+UtEvS349e/4uNmVrDKcvxmaTOkv6fpBcl3Xz0+iYbM7VGhaRxks6QdJmkgUevV9oZCsBxXJZlWXaHaE/V1dWKjo5WVVWVoqKiAvCIrkbmTPtf6ZRlYTlCS2dJhxsY7yTp/4KcpS3GScqR5D1mLExSmqSVtiQCOpLmbr/ZI9MiCU3Mm3SYaWQT86YcZrq6iXlTDs84ZTn+ooZLjI6OLw1elDYpkOSRf4nR0esecZgJCB0UmRb5ron5fwYlRWB83sT8xqCkaLtPmpj/KCgp2s4py/FBE/OrghEiAIqbmC8KSgoATaPItMipTcyfFpQUgXFOE/PDgpKi7Zras/TjoKRoO6csx+gm5scEI0QADGhiPikoKQA0jXNkWswp5zFIzlkWliO0cI4MgLbjHJl2c1sLx0PZvBaOh6rnWjgeqpyyHOtUW1qO1enouEmyVFtajpV2dBxAqGCPTKv1U+05MadJ2hrAx7XDj1R7TswwSR/bnKUtrlXtuSQ/lvSazVnawinLsVS158SMkTTJ1iRtU6jac2KSJCXbnAXoOJq7/abIAACAkMOhJQAA4HgUGQAAYCyKDAAAMBZFBgAAGIsiAwAAjEWRAQAAxqLIAAAAY1FkAACAsSgyAADAWBQZAABgrHC7A7S3ul9gqK6utjkJAABorrrtdlO/pOT4IrNnzx5JUkJCgs1JAABAS+3Zs0fR0dEnnHf8j0bW1NRo+/btioyMlMvlsjtOSKqurlZCQoK2bdvGD2uGANZHaGF9hBbWR2hpz/VhWZb27Nmj+Ph4nXTSic+EcfwemZNOOkmnnXaa3TGMEBUVxR+GEML6CC2sj9DC+ggt7bU+GtsTU4eTfQEAgLEoMgAAwFgUGahLly76r//6L3Xp0sXuKBDrI9SwPkIL6yO0hML6cPzJvgAAwLnYIwMAAIxFkQEAAMaiyAAAAGNRZAAAgLEoMh3UvHnzNGLECEVGRqpXr1666qqrtHnzZrtj4ahHH31ULpdL06dPtztKh/bdd9/pxhtvVFxcnLp27aqzzz5b69evtztWh+T1ejV79my53W517dpVAwYM0EMPPdTk7/AgMD788ENdfvnlio+Pl8vl0ptvvuk3b1mWHnjgAfXt21ddu3ZVWlqaCgsLg5KNItNBrVmzRpMnT9ann36q7OxsHT58WJdccon27dtnd7QOLz8/X88884yGDh1qd5QOrbKyUqNGjVKnTp20YsUKff3115o/f75iY2PtjtYhPfbYY1q0aJH++Mc/6ptvvtFjjz2mxx9/XH/4wx/sjtYh7Nu3T+ecc44WLlzY4Pzjjz+uBQsW6M9//rPy8vLUvXt3paen6+DBg+2ejY9fQ5L0r3/9S7169dKaNWt00UUX2R2nw9q7d6/OO+88/elPf9LcuXN17rnn6qmnnrI7Voc0c+ZMrV27Vh999JHdUSApIyNDvXv31l/+8hff2M9+9jN17dpVL774oo3JOh6Xy6U33nhDV111laTavTHx8fG65557dO+990qSqqqq1Lt3by1dulQ33HBDu+Zhjwwk1b7oJKlHjx42J+nYJk+erPHjxystLc3uKB3e22+/reHDh+u6665Tr169NGzYMD377LN2x+qwRo4cqVWrVqmgoECS9Pnnn+vjjz/WpZdeanMylJSUaOfOnX5/t6Kjo5WSkqLc3Nx2f37H/2gkmlZTU6Pp06dr1KhROuuss+yO02EtX75cGzZsUH5+vt1RIGnLli1atGiRZsyYofvvv1/5+fmaOnWqOnfurJtuusnueB3OzJkzVV1drUGDBiksLExer1cPP/ywJk6caHe0Dm/nzp2SpN69e/uN9+7d2zfXnigy0OTJk/XVV1/p448/tjtKh7Vt2zZNmzZN2dnZioiIsDsOVFvwhw8frkceeUSSNGzYMH311Vf685//TJGxwSuvvKKXXnpJL7/8soYMGaJNmzZp+vTpio+PZ310cBxa6uCmTJmid955R6tXr9Zpp51md5wO67PPPtOuXbt03nnnKTw8XOHh4VqzZo0WLFig8PBweb1euyN2OH379tWZZ57pNzZ48GBt3brVpkQd269//WvNnDlTN9xwg84++2z94he/0N1336158+bZHa3D69OnjyTp+++/9xv//vvvfXPtiSLTQVmWpSlTpuiNN97Q+++/L7fbbXekDm3MmDH68ssvtWnTJt9l+PDhmjhxojZt2qSwsDC7I3Y4o0aNqveVBAUFBerfv79NiTq2/fv366ST/DdZYWFhqqmpsSkR6rjdbvXp00erVq3yjVVXVysvL0+pqant/vwcWuqgJk+erJdffllvvfWWIiMjfccxo6Oj1bVrV5vTdTyRkZH1zk/q3r274uLiOG/JJnfffbdGjhypRx55RNdff73WrVunxYsXa/HixXZH65Auv/xyPfzww+rXr5+GDBmijRs36sknn9Qtt9xid7QOYe/evSoqKvJdLykp0aZNm9SjRw/169dP06dP19y5c5WcnCy3263Zs2crPj7e98mmdmWhQ5LU4GXJkiV2R8NRF198sTVt2jS7Y3Ro//M//2OdddZZVpcuXaxBgwZZixcvtjtSh1VdXW1NmzbN6tevnxUREWGdfvrp1n/+539ahw4dsjtah7B69eoGtxk33XSTZVmWVVNTY82ePdvq3bu31aVLF2vMmDHW5s2bg5KN75EBAADG4hwZAABgLIoMAAAwFkUGAAAYiyIDAACMRZEBAADGosgAAABjUWQAAICxKDIAAMBYFBkAIcXlcunNN9+0OwYAQ1BkAATVzp07ddddd+n0009Xly5dlJCQoMsvv9zvB+cAoLn40UgAQVNaWqpRo0YpJiZGv/vd73T22Wfr8OHD8ng8mjx5sr799lu7IwIwDHtkAATNnXfeKZfLpXXr1ulnP/uZBg4cqCFDhmjGjBn69NNP693+gw8+kMvl0u7du31jmzZtksvlUmlpqSRp6dKliomJ0TvvvKMzzjhD3bp107XXXqv9+/dr2bJlSkxMVGxsrKZOnSqv1+t7nMTERD300EOaMGGCunfvrlNPPVULFy5s7/8FAAKMIgMgKCoqKrRy5UpNnjxZ3bt3rzcfExPT6sfev3+/FixYoOXLl2vlypX64IMPdPXVV+u9997Te++9pxdeeEHPPPOMXnvtNb/7/e53v9M555yjjRs3aubMmZo2bZqys7NbnQNA8HFoCUBQFBUVybIsDRo0KOCPffjwYS1atEgDBgyQJF177bV64YUX9P333+vkk0/WmWeeqZ/85CdavXq1fv7zn/vuN2rUKM2cOVOSNHDgQK1du1a///3vNXbs2IBnBNA+2CMDICgsy2q3x+7WrZuvxEhS7969lZiYqJNPPtlvbNeuXX73S01NrXf9m2++abecAAKPIgMgKJKTk+VyuVp0Qu9JJ9X+iTq2BB0+fLje7Tp16uR33eVyNThWU1PTksgADECRARAUPXr0UHp6uhYuXKh9+/bVmz/2hN46p5xyiiRpx44dvrFNmzYFLNPxJxh/+umnGjx4cMAeH0D7o8gACJqFCxfK6/Xqggsu0N///ncVFhbqm2++0YIFC+od5pGkpKQkJSQk6L//+79VWFiod999V/Pnzw9YnrVr1+rxxx9XQUGBFi5cqFdffVXTpk0L2OMDaH8UGQBBc/rpp2vDhg36yU9+onvuuUdnnXWWxo4dq1WrVmnRokX1bt+pUydlZWXp22+/1dChQ/XYY49p7ty5Actzzz33aP369Ro2bJjmzp2rJ598Uunp6QF7fADtz2W15xl4ABCiEhMTNX36dE2fPt3uKADagD0yAADAWBQZAABgLA4tAQAAY7FHBgAAGIsiAwAAjEWRAQAAxqLIAAAAY1FkAACAsSgyAADAWBQZAABgLIoMAAAw1v8HllQG/SRRQtUAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "ax = cell_df[cell_df['Class'] == 4][0:50].plot(kind='scatter', x='Clump', y='UnifSize', color='DarkBlue', label='malignant');\n", + "cell_df[cell_df['Class'] == 2][0:50].plot(kind='scatter', x='Clump', y='UnifSize', color='Yellow', label='benign', ax=ax);\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Data pre-processing and selection\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's first look at columns data types:\n" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "ID int64\n", + "Clump int64\n", + "UnifSize int64\n", + "UnifShape int64\n", + "MargAdh int64\n", + "SingEpiSize int64\n", + "BareNuc object\n", + "BlandChrom int64\n", + "NormNucl int64\n", + "Mit int64\n", + "Class int64\n", + "dtype: object" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "cell_df.dtypes" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "It looks like the __BareNuc__ column includes some values that are not numerical. We can drop those rows:\n" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "ID int64\n", + "Clump int64\n", + "UnifSize int64\n", + "UnifShape int64\n", + "MargAdh int64\n", + "SingEpiSize int64\n", + "BareNuc int64\n", + "BlandChrom int64\n", + "NormNucl int64\n", + "Mit int64\n", + "Class int64\n", + "dtype: object" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "cell_df = cell_df[pd.to_numeric(cell_df['BareNuc'], errors='coerce').notnull()]\n", + "cell_df['BareNuc'] = cell_df['BareNuc'].astype('int')\n", + "cell_df.dtypes" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[ 5, 1, 1, 1, 2, 1, 3, 1, 1],\n", + " [ 5, 4, 4, 5, 7, 10, 3, 2, 1],\n", + " [ 3, 1, 1, 1, 2, 2, 3, 1, 1],\n", + " [ 6, 8, 8, 1, 3, 4, 3, 7, 1],\n", + " [ 4, 1, 1, 3, 2, 1, 3, 1, 1]])" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "feature_df = cell_df[['Clump', 'UnifSize', 'UnifShape', 'MargAdh', 'SingEpiSize', 'BareNuc', 'BlandChrom', 'NormNucl', 'Mit']]\n", + "X = np.asarray(feature_df)\n", + "X[0:5]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We want the model to predict the value of Class (that is, benign (=2) or malignant (=4)).\n" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([2, 2, 2, 2, 2])" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "y = np.asarray(cell_df['Class'])\n", + "y [0:5]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Train/Test dataset\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We split our dataset into train and test set:\n" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Train set: (546, 9) (546,)\n", + "Test set: (137, 9) (137,)\n" + ] + } + ], + "source": [ + "X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.2, random_state=4)\n", + "print ('Train set:', X_train.shape, y_train.shape)\n", + "print ('Test set:', X_test.shape, y_test.shape)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

Modeling (SVM with Scikit-learn)

\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The SVM algorithm offers a choice of kernel functions for performing its processing. Basically, mapping data into a higher dimensional space is called kernelling. The mathematical function used for the transformation is known as the kernel function, and can be of different types, such as:\n", + "\n", + " 1.Linear\n", + " 2.Polynomial\n", + " 3.Radial basis function (RBF)\n", + " 4.Sigmoid\n", + "Each of these functions has its characteristics, its pros and cons, and its equation, but as there's no easy way of knowing which function performs best with any given dataset. We usually choose different functions in turn and compare the results. Let's just use the default, RBF (Radial Basis Function) for this lab.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
SVC()
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" + ], + "text/plain": [ + "SVC()" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from sklearn import svm\n", + "clf = svm.SVC(kernel='rbf')\n", + "clf.fit(X_train, y_train) " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "After being fitted, the model can then be used to predict new values:\n" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([2, 4, 2, 4, 2])" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "yhat = clf.predict(X_test)\n", + "yhat [0:5]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

Evaluation

\n" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.metrics import classification_report, confusion_matrix\n", + "import itertools" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "def plot_confusion_matrix(cm, classes,\n", + " normalize=False,\n", + " title='Confusion matrix',\n", + " cmap=plt.cm.Blues):\n", + " \"\"\"\n", + " This function prints and plots the confusion matrix.\n", + " Normalization can be applied by setting `normalize=True`.\n", + " \"\"\"\n", + " if normalize:\n", + " cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]\n", + " print(\"Normalized confusion matrix\")\n", + " else:\n", + " print('Confusion matrix, without normalization')\n", + "\n", + " print(cm)\n", + "\n", + " plt.imshow(cm, interpolation='nearest', cmap=cmap)\n", + " plt.title(title)\n", + " plt.colorbar()\n", + " tick_marks = np.arange(len(classes))\n", + " plt.xticks(tick_marks, classes, rotation=45)\n", + " plt.yticks(tick_marks, classes)\n", + "\n", + " fmt = '.2f' if normalize else 'd'\n", + " thresh = cm.max() / 2.\n", + " for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):\n", + " plt.text(j, i, format(cm[i, j], fmt),\n", + " horizontalalignment=\"center\",\n", + " color=\"white\" if cm[i, j] > thresh else \"black\")\n", + "\n", + " plt.tight_layout()\n", + " plt.ylabel('True label')\n", + " plt.xlabel('Predicted label')" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " precision recall f1-score support\n", + "\n", + " 2 1.00 0.94 0.97 90\n", + " 4 0.90 1.00 0.95 47\n", + "\n", + " accuracy 0.96 137\n", + " macro avg 0.95 0.97 0.96 137\n", + "weighted avg 0.97 0.96 0.96 137\n", + "\n", + "Confusion matrix, without normalization\n", + "[[85 5]\n", + " [ 0 47]]\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAHpCAYAAACspBc0AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAX65JREFUeJzt3Xl8TNf/x/HXZE+QhCCRSiK22JfypYpaStFSSqv2ULTa1Fq1tLXX2trX1k4p1aK1lBLEvteuqT0UUVQiyCKZ3x9+mZqGNpNEMsb72cd9PMy59577uTri45zPPddgNBqNiIiIiFghu6wOQERERORxlKiIiIiI1VKiIiIiIlZLiYqIiIhYLSUqIiIiYrWUqIiIiIjVUqIiIiIiVkuJioiIiFgtJSoiIiJitZSoiMhjnTp1ildeeQUPDw8MBgMrV67M0P7Pnz+PwWBg3rx5GdqvLShQoADt27fP6jBEspwSFRErd+bMGd577z0KFiyIi4sL7u7uVK1alYkTJ3Lv3r0neu3g4GCOHj3K8OHDWbhwIRUrVnyi17NFJ06cYPDgwZw/fz6rQxF5Khn0rh8R67VmzRreeustnJ2dadeuHaVKlSI+Pp7t27fzww8/0L59e77++usncu179+7h5ubGp59+yueff/5ErmE0GomLi8PR0RF7e/snco2s9v333/PWW2+xefNmatasmerz4uLisLOzw9HR8ckFJ/IUcMjqAETk0c6dO0eLFi0ICAhg06ZN5MuXz7QvJCSE06dPs2bNmid2/T///BMAT0/PJ3YNg8GAi4vLE+v/aWM0GomNjcXV1RVnZ+esDkfEKmjqR8RKjRkzhpiYGGbPnm2WpCQrXLgw3bt3N32+f/8+w4YNo1ChQjg7O1OgQAE++eQT4uLizM4rUKAADRs2ZPv27VSqVAkXFxcKFizIggULTMcMHjyYgIAAAD7++GMMBgMFChQAoH379qZfP2zw4MEYDAaztg0bNlCtWjU8PT3Jnj07QUFBfPLJJ6b9j6tR2bRpE9WrVydbtmx4enrSuHFjTp48+cjrnT59mvbt2+Pp6YmHhwcdOnTg7t27j/+N/X81a9akVKlSHDlyhBo1auDm5kbhwoX5/vvvAQgLC6Ny5cq4uroSFBTExo0bzc6/cOECH3zwAUFBQbi6uuLl5cVbb71lNsUzb9483nrrLQBq1aqFwWDAYDCwZcsW4O//F+vXr6dixYq4urry1VdfmfYl16gYjUZq1apFnjx5uHbtmqn/+Ph4SpcuTaFChbhz585/3rPI00iJioiVWrVqFQULFuTFF19M1fGdOnVi4MCBPP/884wfP54aNWowcuRIWrRokeLY06dP8+abb1K3bl3Gjh1Lzpw5ad++PcePHwegadOmjB8/HoCWLVuycOFCJkyYYFH8x48fp2HDhsTFxTF06FDGjh3L66+/zo4dO/71vI0bN1KvXj2uXbvG4MGD6dWrFzt37qRq1aqPrPNo3rw5t2/fZuTIkTRv3px58+YxZMiQVMX4119/0bBhQypXrsyYMWNwdnamRYsWLF26lBYtWvDqq68yatQo7ty5w5tvvsnt27dN5+7bt4+dO3fSokULJk2aRJcuXQgNDaVmzZqmROmll16iW7duAHzyyScsXLiQhQsXUrx4cVM/4eHhtGzZkrp16zJx4kTKlSuXIk6DwcCcOXOIjY2lS5cupvZBgwZx/Phx5s6dS7Zs2VJ1zyJPHaOIWJ2oqCgjYGzcuHGqjj906JARMHbq1MmsvXfv3kbAuGnTJlNbQECAETBu3brV1Hbt2jWjs7Oz8aOPPjK1nTt3zggYv/jiC7M+g4ODjQEBASliGDRokPHhHynjx483AsY///zzsXEnX2Pu3LmmtnLlyhnz5s1rvHHjhqnt8OHDRjs7O2O7du1SXO+dd94x6/ONN94wenl5PfaayWrUqGEEjIsXLza1/fbbb0bAaGdnZ9y9e7epff369SnivHv3boo+d+3aZQSMCxYsMLUtW7bMCBg3b96c4vjk/xfr1q175L7g4GCztq+++soIGL/55hvj7t27jfb29sYePXr8572KPM00oiJihaKjowHIkSNHqo5fu3YtAL169TJr/+ijjwBS1LKUKFGC6tWrmz7nyZOHoKAgzp49m+aY/ym5tuXHH38kKSkpVedcuXKFQ4cO0b59e3LlymVqL1OmDHXr1jXd58MeHmEAqF69Ojdu3DD9Hv6b7Nmzm404BQUF4enpSfHixalcubKpPfnXD//+uLq6mn6dkJDAjRs3KFy4MJ6enhw8eDAVd/tAYGAg9erVS9Wx7777LvXq1aNr1660bduWQoUKMWLEiFRfS+RppERFxAq5u7sDmE01/JsLFy5gZ2dH4cKFzdp9fHzw9PTkwoULZu3+/v4p+siZMyd//fVXGiNO6e2336Zq1ap06tQJb29vWrRowXffffevSUtynEFBQSn2FS9enOvXr6eoxfjnveTMmRMgVfeSP3/+FHU1Hh4e+Pn5pWj7Z5/37t1j4MCB+Pn54ezsTO7cucmTJw+3bt0iKirqP6+dLDAwMNXHAsyePZu7d+9y6tQp5s2bZ5YwidgiJSoiVsjd3R1fX1+OHTtm0Xn//Ev3cR73KLAxFasVPO4aiYmJZp9dXV3ZunUrGzdupG3bthw5coS3336bunXrpjg2PdJzL487NzV9du3aleHDh9O8eXO+++47fvnlFzZs2ICXl1eqR5AAixONLVu2mAqkjx49atG5Ik8jJSoiVqphw4acOXOGXbt2/eexAQEBJCUlcerUKbP2yMhIbt26ZXqCJyPkzJmTW7dupWj/56gNgJ2dHS+//DLjxo3jxIkTDB8+nE2bNrF58+ZH9p0cZ3h4eIp9v/32G7lz57aaotHvv/+e4OBgxo4daypMrlatWorfm9Qmj6lx5coVunbtyiuvvELDhg3p3bv3I3/fRWyJEhURK9WnTx+yZctGp06diIyMTLH/zJkzTJw4EYBXX30VIMWTOePGjQPgtddey7C4ChUqRFRUFEeOHDG1XblyhRUrVpgdd/PmzRTnJj/R8s9HppPly5ePcuXKMX/+fLO/8I8dO8Yvv/xiuk9rYG9vn2LUZvLkySlGi5ITq0cld5bq3LkzSUlJzJ49m6+//hoHBwc6duyYqtEjkaeVFnwTsVKFChVi8eLFvP322xQvXtxsZdqdO3eybNky0zobZcuWJTg4mK+//ppbt25Ro0YN9u7dy/z582nSpAm1atXKsLhatGhB3759eeONN+jWrRt3795l+vTpFC1a1KyIdOjQoWzdupXXXnuNgIAArl27xrRp08ifPz/VqlV7bP9ffPEFDRo0oEqVKnTs2JF79+4xefJkPDw8GDx4cIbdR3o1bNiQhQsX4uHhQYkSJdi1axcbN27Ey8vL7Lhy5cphb2/P6NGjiYqKwtnZmdq1a5M3b16Lrjd37lzWrFnDvHnzyJ8/P/AgMWrTpg3Tp0/ngw8+yLB7E7EmSlRErNjrr7/OkSNH+OKLL/jxxx+ZPn06zs7OlClThrFjx9K5c2fTsbNmzaJgwYLMmzePFStW4OPjQ//+/Rk0aFCGxuTl5cWKFSvo1asXffr0ITAwkJEjR3Lq1CmzROX111/n/PnzzJkzh+vXr5M7d25q1KjBkCFDTMWpj1KnTh3WrVvHoEGDGDhwII6OjtSoUYPRo0dbXHj6JE2cOBF7e3sWLVpEbGwsVatWNa0B8zAfHx9mzJjByJEj6dixI4mJiWzevNmiROXSpUv07NmTRo0aERwcbGpv3bo1P/zwA3369KFBgwZW9fsjklH0rh8RERGxWqpREREREaulREVERESslhIVERERsVpKVERERMRqKVERERERq6VERURERKyW1lF5hiUlJXH58mVy5MiRoct8i4jIg3dD3b59G19fX+zsnvy4QGxsLPHx8enqw8nJCRcXlwyKKGMoUXmGXb58OcVbYkVEJGNdvHjRtJrwkxIbG4trDi+4fzdd/fj4+HDu3DmrSlaUqDzDcuTIAYBTiWAM9k5ZHI1I6pxcNyqrQxBJldu3oylbLND0s/ZJio+Ph/t3cS7ZAdL68zwxnqvH5xIfH69ERaxD8nSPwd5JiYo8NXK4u2d1CCIWydSpdQcnDPbOaTrVaKUVACqmFREREaulERURERFbYbB7sKX1XCukREVERMRWGAwPtrSea4WsM30SERERQSMqIiIitkNTPyIiImK1bHDqR4mKiIiIzUjHiIqVVoNYZ1QiIiIiaERFRETEdmjqR0RERKyWimlFRETEatngiIp1pk8iIiIiaERFRETEdtjg1I91RiUiIiKWS576SetmgcTERAYMGEBgYCCurq4UKlSIYcOGYTQaTccYjUYGDhxIvnz5cHV1pU6dOpw6dcqi6yhRERERsRXJIypp3SwwevRopk+fzpQpUzh58iSjR49mzJgxTJ482XTMmDFjmDRpEjNmzGDPnj1ky5aNevXqERsbm+rraOpHRERELLZz504aN27Ma6+9BkCBAgX49ttv2bt3L/BgNGXChAl89tlnNG7cGIAFCxbg7e3NypUradGiRaquoxEVERERW2EwpGNE5cHUT3R0tNkWFxf3yEu9+OKLhIaG8vvvvwNw+PBhtm/fToMGDQA4d+4cV69epU6dOqZzPDw8qFy5Mrt27Ur1LWlERURExFbYGR5saT0X8PPzM2seNGgQgwcPTnF4v379iI6OplixYtjb25OYmMjw4cNp3bo1AFevXgXA29vb7Dxvb2/TvtRQoiIiImIrMuCpn4sXL+Lu7m5qdnZ2fuTh3333HYsWLWLx4sWULFmSQ4cO0aNHD3x9fQkODk5bDI+gREVERERM3N3dzRKVx/n444/p16+fqdakdOnSXLhwgZEjRxIcHIyPjw8AkZGR5MuXz3ReZGQk5cqVS3U8qlERERGxFZn4ePLdu3exszNPI+zt7UlKSgIgMDAQHx8fQkNDTfujo6PZs2cPVapUSfV1NKIiIiJiKzJxwbdGjRoxfPhw/P39KVmyJL/++ivjxo3jnXfeedCdwUCPHj34/PPPKVKkCIGBgQwYMABfX1+aNGmS6usoUREREbEVmfiun8mTJzNgwAA++OADrl27hq+vL++99x4DBw40HdOnTx/u3LnDu+++y61bt6hWrRrr1q3DxcUl9WEZH15CTp4p0dHReHh44Fy6MwZ7p6wORyRVLm6bkNUhiKTK7ehoCj7nRVRUVKpqPtLD9PO85mAMDqlPAh5mvB9L3JbBmRKvJTSiIiIiYits8F0/SlRERERsRSZO/WQWJSoiIiK2wgZHVKwzKhERERE0oiIiImI7NPUjIiIi1isdUz9WOslinVGJiIiIoBEVERER26GpHxEREbFaBkM6nvpRoiIiIiJPkh5PFhEREck8GlERERGxFapREREREatlg1M/SlRERERshQ2OqFhn+iQiIiKCRlRERERsh6Z+RERExGrZ4NSPEhUREREbYTAYMNhYomKd4zwiIiIiaERFRETEZtjiiIoSFREREVth+P8tredaISUqIiIiNsIWR1RUoyIiIiJWSyMqIiIiNsIWR1SUqIiIiNgIJSoiIiJitWwxUVGNioiIiFgtjaiIiIjYCj2eLCIiItbKFqd+lKiIiIjYiAfvJExropKxsWQU1aiIiIiIxQoUKGAawXl4CwkJASA2NpaQkBC8vLzInj07zZo1IzIy0uLrKFERERGxEQZSJg6p3iwcUtm3bx9XrlwxbRs2bADgrbfeAqBnz56sWrWKZcuWERYWxuXLl2natKnF96SpHxERERuRmTUqefLkMfs8atQoChUqRI0aNYiKimL27NksXryY2rVrAzB37lyKFy/O7t27eeGFF1J9HY2oiIiIiEl0dLTZFhcX95/nxMfH88033/DOO+9gMBg4cOAACQkJ1KlTx3RMsWLF8Pf3Z9euXRbFo0RFRETEVhjSuQF+fn54eHiYtpEjR/7nZVeuXMmtW7do3749AFevXsXJyQlPT0+z47y9vbl69apFt6SpHxEREVuRjqkf4/+fd/HiRdzd3U3tzs7O/3nu7NmzadCgAb6+vmm69r9RoiIiImIj0lOjknyeu7u7WaLyXy5cuMDGjRtZvny5qc3Hx4f4+Hhu3bplNqoSGRmJj4+PRXFp6kdERETSbO7cueTNm5fXXnvN1FahQgUcHR0JDQ01tYWHhxMREUGVKlUs6l8jKiIiIjYiI0ZULJGUlMTcuXMJDg7GweHvlMLDw4OOHTvSq1cvcuXKhbu7O127dqVKlSoWPfEDSlRERERsRya/62fjxo1ERETwzjvvpNg3fvx47OzsaNasGXFxcdSrV49p06ZZfA0lKiIiIjYis0dUXnnlFYxG4yP3ubi4MHXqVKZOnZqmeJKpRkVERESslkZUREREbERmj6hkBiUqIiIiNkKJioiIiFgtW0xUVKMiIiIiVksjKiIiIrYikx9PzgxKVERERGyELU79KFERERGxEbaYqKhGRURERKyWRlRE0sDOzsBnXV6l5av/w9vLnSt/RrFw1R5GzVxnOubrIW1o+7r5Oy1+2XGCxh9avoS0yJMwZsRQvhg5zKytcJEgdh08lkURSXrZ4oiKEhWRNPiofV06v1mdzgMXcuLMFSqU9OerwW2IjrnHtG/DTMet33Gc9wZ9Y/ocF38/K8IVeaxixUvy/aq/E2wHe/218FRTMa2IALxQtiCrw46wbvtxACKu3KR5/YpULBlgdlx8/H0ib9zOihBFUsXewR5vb5+sDkMyiC2OqKhGRSQNdh8+S61KQRT2zwtA6aLPUaVcQX7ZccLsuOoVi3AhdCSHVwxg4idvk8sjW1aEK/JY586cplQRfyqWLkqXjm25dDEiq0MSMaMRlTQoUKAAPXr0oEePHhned9u2bSlevDiffPJJqo6/fv06JUqU4ODBg+TPnz/D45FH+3LuBtyzu3B4xWckJhqxtzcwaOpqlvy833TMhp0n+XHTYc7/cYOC+XMzpGsjfpzyPjWCx5KU9Oi3jYpkpucrVmLSjNkULlKUyKtX+XLkMBrVq8W2PYfIniNHVocnaaARFSvXvn170/8kg8GAl5cX9evX58iRIxl6nX379vHuu+9maJ8Ahw8fZu3atXTr1g2AhIQE+vbtS+nSpcmWLRu+vr60a9eOy5cvm87JnTs37dq1Y9CgQRkejzzem688T4sG/6P9J/Op0mo0nQYupEfbl2ndqLLpmGXrD7Am7CjHT19m1ZYjNO02g4qlCvBSxSJZGLnI3+q8Up/Gb7xJyVJlqF3nFb79YRVRUbdYuXxZVocmaWTAYPb3oEWblRap2FSiAlC/fn2uXLnClStXCA0NxcHBgYYNG2boNfLkyYObm1uG9gkwefJk3nrrLbJnzw7A3bt3OXjwIAMGDODgwYMsX76c8PBwXn/9dbPzOnTowKJFi7h582aGxySPNqJHE76cu4Fl6w9w/PRlvl2zj8mLNvFxh7qPPef8Hzf486/bFPLLk4mRiqSeh6cnhQoX4dzZM1kdiqRRmpOUdIzEPGk2l6g4Ozvj4+ODj48P5cqVo1+/fly8eJE///wTgIsXL9K8eXM8PT3JlSsXjRs35vz586bz27dvT5MmTfjyyy/Jly8fXl5ehISEkJCQYDqmQIECTJgwwfT5t99+o1q1ari4uFCiRAk2btyIwWBg5cqVAJw/fx6DwcDy5cupVasWbm5ulC1bll27dpn6SExM5Pvvv6dRo0amNg8PDzZs2EDz5s0JCgrihRdeYMqUKRw4cICIiL/nkUuWLImvry8rVqzI4N9NeRxXFyeSjElmbYlJRuzsHv9H6rm8nnh5ZOPq9egnHZ5ImsTExHD+3Fm8fVRcK9bD5hKVh8XExPDNN99QuHBhvLy8SEhIoF69euTIkYNt27axY8cOsmfPTv369YmPjzedt3nzZs6cOcPmzZuZP38+8+bNY968eY+8RmJiIk2aNMHNzY09e/bw9ddf8+mnnz7y2E8//ZTevXtz6NAhihYtSsuWLbl//8HjqkeOHCEqKoqKFSv+6z1FRUVhMBjw9PQ0a69UqRLbtm3713Pj4uKIjo422yRt1m49St+O9ahfrST++XLxeq0ydGtTi582HQYgm6sTI3o0oVLpAvjny0XNSkX5bvy7nLl4nQ07T2Zx9CIPDPqkDzu2byXiwnn27t5J+1ZvYm9nT9M3W2R1aJJWhnRuVsjmimlXr15tmjq5c+cO+fLlY/Xq1djZ2bF48WKSkpKYNWuWaYhr7ty5eHp6smXLFl555RUAcubMyZQpU7C3t6dYsWK89tprhIaG0rlz5xTX27BhA2fOnGHLli34/P+/QoYPH07duimnAHr37s1rr70GwJAhQyhZsiSnT5+mWLFiXLhwAXt7e/LmzfvYe4uNjaVv3760bNkSd3d3s32+vr78+uuv//p7M3LkSIYMGfKvx0jq9Bq9jEEfNGTiJ2+TJ2d2rvwZxezvdzDi65+BB6MrpYo8R+tGlfHM4cqVP6PYuOs3hk5bTXyC1lIR63D58h+816ENf928gVfuPFSuUpWfN20ndx5NTz6tbLGY1uYSlVq1ajF9+nQA/vrrL6ZNm0aDBg3Yu3cvhw8f5vTp0+T4RzV7bGwsZ878PSdbsmRJ7O3tTZ/z5cvH0aNHH3m98PBw/Pz8TEkKPBjdeJQyZcqY9Qlw7do1ihUrxr1793B2dn7sFyUhIYHmzZtjNBpN9/cwV1dX7t69+8hzk/Xv359evXqZPkdHR+Pn5/ev58ijxdyN4+Mvf+DjL3945P7YuAReD5mayVGJWGbmvEVZHYJkMCUqT4Fs2bJRuHBh0+dZs2bh4eHBzJkziYmJoUKFCixalPIPZ56H/gXh6Ohots9gMJCUlPTPUyz2cL/JX4jkfnPnzs3du3eJj4/HycnJ7LzkJOXChQts2rQpxWgKwM2bN83u4VGcnZ1xdnZO722IiIhkGptLVP7JYDBgZ2fHvXv3eP7551m6dCl58+Z95F/2aREUFMTFixeJjIzE29sbePD4sqXKlSsHwIkTJ0y/hr+TlFOnTrF582a8vLweef6xY8eoWbOmxdcVERHbYTA82NJ6rjWyuWLauLg4rl69ytWrVzl58iRdu3YlJiaGRo0a0bp1a3Lnzk3jxo3Ztm0b586dY8uWLXTr1o1Lly6l6Xp169alUKFCBAcHc+TIEXbs2MFnn30GWDaMlidPHp5//nm2b99uaktISODNN99k//79LFq0iMTERNO9PVz8e/fuXQ4cOGCqsRERkWfTg0QlrY8nZ3X0j2Zzicq6devIly8f+fLlo3Llyuzbt49ly5ZRs2ZN3Nzc2Lp1K/7+/jRt2pTixYvTsWNHYmNj0zzCYm9vz8qVK4mJieF///sfnTp1Mj314+LiYlFfnTp1MpuW+uOPP/jpp5+4dOkS5cqVM91Xvnz52Llzp+m4H3/8EX9/f6pXr56mexAREbFWBqPRqLW8M9iOHTuoVq0ap0+fplChQqk+7969ewQFBbF06VKqVKmS6vNeeOEFunXrRqtWrSyKMzo6Gg8PD5xLd8Zg7/TfJ4hYgYvbJmR1CCKpcjs6moLPeREVFZVh5QaPk/zzvGC377F3Tts7xRLj7nB20puZEq8lbL5GJTOsWLGC7NmzU6RIEU6fPk337t2pWrWqRUkKPHhyZ8GCBVy/fj3V51y/fp2mTZvSsmVLS8MWEREbo6d+5JFu375N3759iYiIIHfu3NSpU4exY8emqS9LC2Jz585Nnz590nQtERGxLbZYTKtEJQO0a9eOdu3aZXUYIiIiNkeJioiIiI2wszNgZ5e2oRFjGs970mzuqR8REZFnVfLUT1o3S/3xxx+0adMGLy8vXF1dKV26NPv37zftNxqNDBw4kHz58uHq6kqdOnU4deqURddQoiIiImIj0r6GiuVFuH/99RdVq1bF0dGRn3/+mRMnTjB27Fhy5sxpOmbMmDFMmjSJGTNmsGfPHrJly0a9evWIjY1N9XU09SMiIiIWGz16NH5+fsydO9fUFhgYaPq10WhkwoQJfPbZZzRu3BiABQsW4O3tzcqVK2nRInVv6daIioiIiI3IiKmf6Ohosy0uLu6R1/rpp5+oWLEib731Fnnz5qV8+fLMnDnTtP/cuXNcvXqVOnXqmNo8PDyoXLkyu3btSvU9KVERERGxERkx9ePn54eHh4dpGzly5COvdfbsWaZPn06RIkVYv34977//Pt26dWP+/PkAXL16FcD0Hrxk3t7epn2poakfERERG5ERC75dvHjRbGVaZ2fnRx6flJRExYoVGTFiBADly5fn2LFjzJgxg+Dg4DTF8CgaURERERETd3d3s+1xiUq+fPkoUaKEWVvx4sWJiIgAwMfHB4DIyEizYyIjI037UkOJioiIiI3IzMeTq1atSnh4uFnb77//TkBAAPCgsNbHx4fQ0FDT/ujoaPbs2WPR++w09SMiImIjDKRj6gfLzuvZsycvvvgiI0aMoHnz5uzdu5evv/6ar7/++kF/BgM9evTg888/p0iRIgQGBjJgwAB8fX1p0qRJqq+jREVERMRGZOa7fv73v/+xYsUK+vfvz9ChQwkMDGTChAm0bt3adEyfPn24c+cO7777Lrdu3aJatWqsW7cOFxeXVF9HiYqIiIikScOGDWnYsOFj9xsMBoYOHcrQoUPTfA0lKiIiIjYiI576sTZKVERERGxEZk79ZBYlKiIiIjbCFkdU9HiyiIiIWC2NqIiIiNgITf2IiIiI1bLFqR8lKiIiIrYiHSMqFq73lmlUoyIiIiJWSyMqIiIiNkJTPyIiImK1bLGYVlM/IiIiYrU0oiIiImIjNPUjIiIiVssWp36UqIiIiNgIWxxRUY2KiIiIWC2NqIiIiNgIWxxRUaIiIiJiI1SjIiIiIlbLFkdUVKMiIiIiVksjKiIiIjZCUz8iIiJitWxx6keJioiIiI0wkI4RlQyNJOOoRkVERESslkZUREREbISdwYBdGodU0nrek6ZERURExEaomFZERESsli0W06pGRURERKyWRlRERERshJ3hwZbWc62REhURERFbYUjHFI4SFREREXmSbLGYVjUqIiIiYrHBgwebineTt2LFipn2x8bGEhISgpeXF9mzZ6dZs2ZERkZafB0lKiIiIjbCkM7/LFWyZEmuXLli2rZv327a17NnT1atWsWyZcsICwvj8uXLNG3a1OJraOpHRETERmR2Ma2DgwM+Pj4p2qOiopg9ezaLFy+mdu3aAMydO5fixYuze/duXnjhhdRfIzUH/fTTT6nu8PXXX0/1sSIiIpJxMmIdlejoaLN2Z2dnnJ2dH3nOqVOn8PX1xcXFhSpVqjBy5Ej8/f05cOAACQkJ1KlTx3RssWLF8Pf3Z9euXRmfqDRp0iRVnRkMBhITE1N9cREREbEufn5+Zp8HDRrE4MGDUxxXuXJl5s2bR1BQEFeuXGHIkCFUr16dY8eOcfXqVZycnPD09DQ7x9vbm6tXr1oUT6oSlaSkJIs6FRERkcyXEU/9XLx4EXd3d1P740ZTGjRoYPp1mTJlqFy5MgEBAXz33Xe4urqmLYhHSFcxbWxsbEbFISIiIumU/FLCtG4A7u7uZtvjEpV/8vT0pGjRopw+fRofHx/i4+O5deuW2TGRkZGPrGn513uy6GggMTGRYcOG8dxzz5E9e3bOnj0LwIABA5g9e7al3YmIiIgNiImJ4cyZM+TLl48KFSrg6OhIaGioaX94eDgRERFUqVLFon4tTlSGDx/OvHnzGDNmDE5OTqb2UqVKMWvWLEu7ExERkQySPPWT1s0SvXv3JiwsjPPnz7Nz507eeOMN7O3tadmyJR4eHnTs2JFevXqxefNmDhw4QIcOHahSpYpFhbSQhseTFyxYwNdff83LL79Mly5dTO1ly5blt99+s7Q7ERERySCZ+fbkS5cu0bJlS27cuEGePHmoVq0au3fvJk+ePACMHz8eOzs7mjVrRlxcHPXq1WPatGkWx2VxovLHH39QuHDhFO1JSUkkJCRYHICIiIhkjMxcQn/JkiX/ut/FxYWpU6cyderUtAX0/yye+ilRogTbtm1L0f79999Tvnz5dAUjIiIi8jCLR1QGDhxIcHAwf/zxB0lJSSxfvpzw8HAWLFjA6tWrn0SMIiIikgoPP72TlnOtkcUjKo0bN2bVqlVs3LiRbNmyMXDgQE6ePMmqVauoW7fuk4hRREREUsGQzs0apeldP9WrV2fDhg0ZHYuIiIikQ2YW02aWNL+UcP/+/Zw8eRJ4ULdSoUKFDAtKREREBNKQqCQ/jrRjxw7TGv63bt3ixRdfZMmSJeTPnz+jYxQREZFUyOy3J2cGi2tUOnXqREJCAidPnuTmzZvcvHmTkydPkpSURKdOnZ5EjCIiIpIKyVM/ad2skcUjKmFhYezcuZOgoCBTW1BQEJMnT6Z69eoZGpyIiIhYxkrzjTSzeETFz8/vkQu7JSYm4uvrmyFBiYiIiEAaEpUvvviCrl27sn//flPb/v376d69O19++WWGBiciIiKp98xO/eTMmdPsBu7cuUPlypVxcHhw+v3793FwcOCdd96hSZMmTyRQERER+Xe2WEybqkRlwoQJTzgMERERSa9ndh2V4ODgJx2HiIiISAppXvANIDY2lvj4eLM2d3f3dAUkIiIiaZOepfCtczwlDcW0d+7c4cMPPyRv3rxky5aNnDlzmm0iIiKSNZJfSpjWzRpZnKj06dOHTZs2MX36dJydnZk1axZDhgzB19eXBQsWPIkYRUREJBUMhvRt1sjiqZ9Vq1axYMECatasSYcOHahevTqFCxcmICCARYsW0bp16ycRp4iIiDyDLB5RuXnzJgULFgQe1KPcvHkTgGrVqrF169aMjU5ERERSzRbXUbE4USlYsCDnzp0DoFixYnz33XfAg5GW5JcUioiISOazxakfixOVDh06cPjwYQD69evH1KlTcXFxoWfPnnz88ccZHqCIiIikji0W01pco9KzZ0/Tr+vUqcNvv/3GgQMHKFy4MGXKlMnQ4EREROTZlq51VAACAgIICAjIiFhEREQkHdIzhWOlAyqpS1QmTZqU6g67deuW5mBEREQk7Z7ZJfTHjx+fqs4MBoMSladQxJYvtaKwPDXe+fZQVocgkioJ92KyOgSbkKpEJfkpHxEREbFedqThKZmHzrVG6a5REREREevwzE79iIiIiPUzGMDOxopprXWkR0REREQjKiIiIrbCLh0jKmk970lToiIiImIjbLFGJU1TP9u2baNNmzZUqVKFP/74A4CFCxeyffv2DA1OREREUi95RCWtW3qMGjUKg8FAjx49TG2xsbGEhITg5eVF9uzZadasGZGRkZbdk6WB/PDDD9SrVw9XV1d+/fVX4uLiAIiKimLEiBGWdiciIiJPuX379vHVV1+leJVOz549WbVqFcuWLSMsLIzLly/TtGlTi/q2OFH5/PPPmTFjBjNnzsTR0dHUXrVqVQ4ePGhpdyIiIpJBsuLtyTExMbRu3ZqZM2eSM2dOU3tUVBSzZ89m3Lhx1K5dmwoVKjB37lx27tzJ7t27U92/xYlKeHg4L730Uop2Dw8Pbt26ZWl3IiIikkEy4u3J0dHRZlvyzMnjhISE8Nprr1GnTh2z9gMHDpCQkGDWXqxYMfz9/dm1a1fq78mC+wfAx8eH06dPp2jfvn07BQsWtLQ7ERERySB26dwA/Pz88PDwMG0jR4587PWWLFnCwYMHH3nM1atXcXJywtPT06zd29ubq1evpvqeLH7qp3PnznTv3p05c+ZgMBi4fPkyu3btonfv3gwYMMDS7kRERMSKXLx40ez9b87Ozo89rnv37mzYsAEXF5cnFo/FiUq/fv1ISkri5Zdf5u7du7z00ks4OzvTu3dvunbt+iRiFBERkVRIT61J8nnu7u6pelHtgQMHuHbtGs8//7ypLTExka1btzJlyhTWr19PfHw8t27dMhtViYyMxMfHJ9VxWZyoGAwGPv30Uz7++GNOnz5NTEwMJUqUIHv27JZ2JSIiIhnIjr9rTdJyriVefvlljh49atbWoUMHihUrRt++ffHz88PR0ZHQ0FCaNWsGPKhzjYiIoEqVKqm+TpoXfHNycqJEiRJpPV1EREQyWEaMqKRWjhw5KFWqlFlbtmzZ8PLyMrV37NiRXr16kStXLtzd3enatStVqlThhRdeSPV1LE5UatWq9a+r123atMnSLkVERMQGjR8/Hjs7O5o1a0ZcXBz16tVj2rRpFvVhcaJSrlw5s88JCQkcOnSIY8eOERwcbGl3IiIikkGy+l0/W7ZsMfvs4uLC1KlTmTp1apr7tDhRGT9+/CPbBw8eTExMTJoDERERkfQxGEhzjYqVvuonbe/6eZQ2bdowZ86cjOpORERELJQVK9M+aRmWqOzateuJPkctIiIizx6Lp37++TIho9HIlStX2L9/vxZ8ExERyUJZXaPyJFicqHh4eJh9trOzIygoiKFDh/LKK69kWGAiIiJiGcP//5fWc62RRYlKYmIiHTp0oHTp0mZvSBQREZGsZ4sjKhbVqNjb2/PKK6/oLckiIiKSKSwupi1VqhRnz559ErGIiIhIOiSPqKR1s0YWJyqff/45vXv3ZvXq1Vy5coXo6GizTURERLKGwWBI12aNUl2jMnToUD766CNeffVVAF5//XWzmzIajRgMBhITEzM+ShEREXkmpTpRGTJkCF26dGHz5s1PMh4RERFJI1sspk11omI0GgGoUaPGEwtGRERE0i4z356cWSx6PNla569ERETkwXt+0vqun7Se96RZlKgULVr0P5OVmzdvpisgERERkWQWJSpDhgxJsTKtiIiIWIdnukYFoEWLFuTNm/dJxSIiIiLpkZ63ID/tiYrqU0RERKybHQbs0phxpPW8Jy3VC74lP/UjIiIikllSPaKSlJT0JOMQERGRdHrmH08WERER6/XMF9OKiIiI9bLFdVQsfimhiIiISGbRiIqIiIiNUI2KiIiIWC070jH1Y6WPJytRERERsRG2OKKiGhURERGxWhpRERERsRF2pH0EwlpHLpSoiIiI2AiDwZDmV95Y66tylKiIiIjYCANpf7egdaYp1jvSIyIiIlZs+vTplClTBnd3d9zd3alSpQo///yzaX9sbCwhISF4eXmRPXt2mjVrRmRkpMXXUaIiIiJiI5JXpk3rZon8+fMzatQoDhw4wP79+6lduzaNGzfm+PHjAPTs2ZNVq1axbNkywsLCuHz5Mk2bNrX4njT1IyIiYkMyawqnUaNGZp+HDx/O9OnT2b17N/nz52f27NksXryY2rVrAzB37lyKFy/O7t27eeGFF1J9HY2oiIiI2IjkdVTSugFER0ebbXFxcf953cTERJYsWcKdO3eoUqUKBw4cICEhgTp16piOKVasGP7+/uzatcuie1KiIiIiIiZ+fn54eHiYtpEjRz722KNHj5I9e3acnZ3p0qULK1asoESJEly9ehUnJyc8PT3Njvf29ubq1asWxaOpHxERERuREY8nX7x4EXd3d1O7s7PzY88JCgri0KFDREVF8f333xMcHExYWFiarv84SlRERERsREYs+Jb8FE9qODk5UbhwYQAqVKjAvn37mDhxIm+//Tbx8fHcunXLbFQlMjISHx+fNMUlIiIiT7nkEZW0bumVlJREXFwcFSpUwNHRkdDQUNO+8PBwIiIiqFKlikV9akRFRERELNa/f38aNGiAv78/t2/fZvHixWzZsoX169fj4eFBx44d6dWrF7ly5cLd3Z2uXbtSpUoVi574ASUqIiIiNiMzV6a9du0a7dq148qVK3h4eFCmTBnWr19P3bp1ARg/fjx2dnY0a9aMuLg46tWrx7Rp0yyOS4mKiIiIjcjMd/3Mnj37X/e7uLgwdepUpk6dmqZ4kqlGRURERKyWRlRERERsREY89WNtlKiIiIjYiMyc+sksSlRERERsRGYW02YWax3pEREREdGIioiIiK14+OWCaTnXGilRERERsRF2GLBL4yROWs970pSoiIiI2AhbHFFRjYqIiIhYLY2oiIiI2AjD//+X1nOtkRIVERERG2GLUz9KVERERGyEIR3FtNY6oqIaFREREbFaGlERERGxEZr6EREREaulREVERESsli0+9aMaFREREbFaGlERERGxEXaGB1taz7VGSlRERERshC1O/ShREclgM6ZNZfy4L4i8epXSZcoybsJk/lepUlaHJWKmUcm8tHzel59P/snC/X+QO5sTk5qWeOSxE8POsSciKpMjlLRQMa2I/Ktl3y2l78e9mDx1Bv+rVJkpkybw+mv1OHw8nLx582Z1eCIAFPRy5eWiXly4ec/UduNuPO8vO2Z2XO0iXjQsmZdDl29ndogiJiqmFclAkyaMo0PHzrRr34HiJUowedoMXN3cmD9vTlaHJgKAs4MdIdUCmLXrInfiE03tRiNExd432/7n78HuC7eIu5+UhRGLJQz8Pf1j+X/WSYmKSAaJj4/n14MHqP1yHVObnZ0dtWvXYe/uXVkYmcjfOlTKz69/RHPsasy/HheYy5UCudzYcvpGJkUmGSG5mDatmzVSoiKSQa5fv05iYiJ583qbtef19ubq1atZFJXI36oU8KRALleWHrzyn8fWLOzFpVuxnPrzbiZEJhkl7aMp1jumYjOJyvnz5zEYDBw6dAiALVu2YDAYuHXrVpbGZanw8HB8fHy4fTv1c8L9+vWja9euTzAqEXna5XJzpF3F55i6/QIJScZ/PdbR3sCLgTk1miJWIUsTlfbt22MwGOjSpUuKfSEhIRgMBtq3b5+mvl988UWuXLmCh4dHOqPMePPmzcPT0/OR+/r370/Xrl3JkSNHin2nT58mR44cKc7t3bs38+fP5+zZs08gWkmt3LlzY29vz7VrkWbt1yIj8fHxyaKoRB4o6OWGh6sjI14LYmHrsixsXZYSPtmpVyw3C1uXNXvio7K/J872BradvZl1AUuaJD/1k9bNGmX5iIqfnx9Llizh3r2/q89jY2NZvHgx/v7+ae7XyckJHx8fDNb6O/8IERERrF69+pHJWUJCAi1btqR69eop9uXOnZt69eoxffr0TIhSHsfJyYnyz1dg86ZQU1tSUhKbN4dS6YUqWRiZCBy7cps+q36j/5pw03bm+l12nPuL/mvCMT40yFKzsBcHLkVzOy7x8R2KVTKkc7NGWZ6oPP/88/j5+bF8+XJT2/Lly/H396d8+fKmtnXr1lGtWjU8PT3x8vKiYcOGnDlz5rH9PmrqZ+bMmfj5+eHm5sYbb7zBuHHjzEYnBg8eTLly5Vi4cCEFChTAw8ODFi1amE3D/FccyVNQy5cvp1atWri5uVG2bFl27dpliqtDhw5ERUVhMBgwGAwMHjwYgO+++46yZcvy3HPPpbifzz77jGLFitG8efNH3m+jRo1YsmTJY38/JHN069GLubNn8s2C+fx28iTdQt7n7p07tAvukNWhyTMu9n4Sl27Fmm1x95OIiUvk0q1Y03HeOZwo5p2NzZr2ESuR5YkKwDvvvMPcuXNNn+fMmUOHDuY/2O/cuUOvXr3Yv38/oaGh2NnZ8cYbb5CUlLrH5nbs2EGXLl3o3r07hw4dom7dugwfPjzFcWfOnGHlypWsXr2a1atXExYWxqhRoyyO49NPP6V3794cOnSIokWL0rJlS+7fv8+LL77IhAkTcHd358qVK1y5coXevXsDsG3bNipWrJgipk2bNrFs2TKmTp362PurVKkSly5d4vz58489Ji4ujujoaLNNMtZbzd9m5OgvGTpkIJUrluPw4UP8uHod3t7e/32yiBWoWciLm3cTOKq1U55KdhiwM6Rxs9IxFatY8K1Nmzb079+fCxcuAA+SiiVLlrBlyxbTMc2aNTM7Z86cOeTJk4cTJ05QqlSp/7zG5MmTadCggSkpKFq0KDt37mT16tVmxyUlJTFv3jxTjUjbtm0JDQ01JTWpjaN379689tprAAwZMoSSJUty+vRpihUrhoeHBwaDIUXdwoULF1IkKjdu3KB9+/Z88803uLu7P/b+fH19TX0UKFDgkceMHDmSIUOGPLYPyRjvh3zI+yEfZnUYIv/p8w2nU7QtPXSFpYf++6kgsU7pmcKxzjTFSkZU8uTJw2uvvca8efOYO3cur732Grlz5zY75tSpU7Rs2ZKCBQvi7u5u+ss4IiIiVdcIDw+n0j+WMf/nZ4ACBQqYFbLmy5ePa9euWRxHmTJlzPoAzPp5lHv37uHi4mLW1rlzZ1q1asVLL730r+e6uroCcPfu4x8l7N+/P1FRUabt4sWL/9qniIg8ZTKxSGXkyJH873//I0eOHOTNm5cmTZoQHh5udkxsbCwhISF4eXmRPXt2mjVrRmRk5GN6fDSrSFTgwfTPvHnzmD9/Pu+8806K/Y0aNeLmzZvMnDmTPXv2sGfPHuDBIlsZydHR0eyzwWAwm9ZJbRwP95Nc0Ptf01S5c+fmr7/+MmvbtGkTX375JQ4ODjg4ONCxY0eioqJwcHBgzpy/Vzu9efNBdX6ePHke27+zszPu7u5mm4iISFqEhYUREhLC7t272bBhAwkJCbzyyivcuXPHdEzPnj1ZtWoVy5YtIywsjMuXL9O0aVOLrmMVUz8A9evXJz4+HoPBQL169cz23bhxg/DwcGbOnGl66mX79u0W9R8UFMS+ffvM2v75+b9kRBzw4OmQxMSU1fTly5fnxIkTZm27du0yO/bHH39k9OjR7Ny506zo9tixYzg6OlKyZEmL4xEREduQmW9PXrdundnnefPmkTdvXg4cOMBLL71EVFQUs2fPZvHixdSuXRuAuXPnUrx4cXbv3s0LL7yQqutYTaJib2/PyZMnTb9+WM6cOfHy8uLrr78mX758RERE0K9fP4v679q1Ky+99BLjxo2jUaNGbNq0iZ9//tmix5czIg54ML0UExNDaGgoZcuWxc3NDTc3N+rVq0enTp1ITEw0/R4UL17c7Nz9+/djZ2eXoi5n27ZtVK9e3TQFJCIiz6D0rIfy/+f980ELZ2dnnJ2d//P0qKgHb9jOlSsXAAcOHCAhIYE6df5+rUixYsXw9/dn165dqU5UrGbqB3jsdISdnR1LlizhwIEDlCpVip49e/LFF19Y1HfVqlWZMWMG48aNo2zZsqxbt46ePXumqAn5NxkRBzxYjK5Lly68/fbb5MmThzFjxgDQoEEDHBwc2Lhxo8V9LlmyhM6dO1t8noiI2I6MKFHx8/PDw8PDtI0cOfI/r5uUlESPHj2oWrWq6R/SV69excnJKcUipd4WvlbEYDQa/30tZRvWuXNnfvvtN7Zt25bVoZhMnTqVn376ifXr16f6nJ9//pmPPvqII0eO4OCQ+kGy6OhoPDw8iLwRpXoVeWq88+2hrA5BJFUS7sXw/XvViYp68j9jk3+ebzoUQfYcabtWzO1oapfz5+LFi2bxpmZE5f333+fnn39m+/bt5M+fH4DFixfToUMH4uLizI6tVKkStWrVYvTo0amKy2qmfjLDl19+Sd26dcmWLRs///wz8+fPZ9q0aVkdlpn33nuPW7ducfv27Ucuo/8od+7cYe7cuRYlKSIiYoMy4PlkSx+2+PDDD1m9ejVbt241JSkAPj4+xMfHc+vWLbNRlUgLXyvyTP3NtnfvXsaMGcPt27cpWLAgkyZNolOnTlkdlhkHBwc+/fRTi8558803n1A0IiLyNMnMYlqj0UjXrl1ZsWIFW7ZsITAw0Gx/hQoVcHR0JDQ01LQGWXh4OBEREVSpkvrXijxTicp3332X1SGIiIg8Mel5uaCl54WEhLB48WJ+/PFHcuTIYao78fDwwNXVFQ8PDzp27EivXr3IlSsX7u7udO3alSpVqqS6kBaesURFREREMkbyi3Br1qxp1j537lzTy3XHjx+PnZ0dzZo1Iy4ujnr16llccqFERURExEZk5hL6qXkWx8XFhalTp/7ru+r+ixIVERERW2GDL/tRoiIiImIjMrOYNrNY1YJvIiIiIg/TiIqIiIiNyMynfjKLEhUREREbYYMlKkpUREREbIYNZiqqURERERGrpREVERERG2GLT/0oUREREbERKqYVERERq2WDJSqqURERERHrpREVERERW2GDQypKVERERGyELRbTaupHRERErJZGVERERGyEnvoRERERq2WDJSpKVERERGyGDWYqqlERERERq6URFRERERthi0/9KFERERGxESqmFREREatlgyUqqlERERER66URFREREVthg0MqSlRERERshIppRURExHqlo5jWSvMU1aiIiIiI9dKIioiIiI2wwRIVJSoiIiI2wwYzFSUqIiIiNsIWi2lVoyIiIiJWS4mKiIiIjUheQj+tm6W2bt1Ko0aN8PX1xWAwsHLlSrP9RqORgQMHki9fPlxdXalTpw6nTp2y6BpKVERERGyEIZ2bpe7cuUPZsmWZOnXqI/ePGTOGSZMmMWPGDPbs2UO2bNmoV68esbGxqb6GalRERERsRSYX0zZo0IAGDRo8cp/RaGTChAl89tlnNG7cGIAFCxbg7e3NypUradGiRaquoREVERERMYmOjjbb4uLi0tTPuXPnuHr1KnXq1DG1eXh4ULlyZXbt2pXqfpSoiIiI2AhDOv8D8PPzw8PDw7SNHDkyTbFcvXoVAG9vb7N2b29v077U0NSPiIiIjTCQ9iX0k0+7ePEi7u7upnZnZ+d0x5UeGlERERGxERlRTOvu7m62pTVR8fHxASAyMtKsPTIy0rQvNZSoiIiISIYLDAzEx8eH0NBQU1t0dDR79uyhSpUqqe5HUz8iIiI2Iq3roSSfa6mYmBhOnz5t+nzu3DkOHTpErly58Pf3p0ePHnz++ecUKVKEwMBABgwYgK+vL02aNEn1NZSoiIiI2IzMfT55//791KpVy/S5V69eAAQHBzNv3jz69OnDnTt3ePfdd7l16xbVqlVj3bp1uLi4pPoaSlREREQkTWrWrInRaHzsfoPBwNChQxk6dGiar6FERURExEZk9tRPZlCiIiIiYiMyeWHaTKFERURExEbY4oiKHk8WERERq6URFRERERvx8FL4aTnXGilRERERsRU2WKSiREVERMRG2GCeohoVERERsV4aUREREbERtvjUjxIVERERG6FiWhEREbFeNlikohoVERERsVoaUREREbERNjigokRFRETEVqiYVkRERKxY2otprXVMRTUqIiIiYrU0oiIiImIjbHHqRyMqIiIiYrU0oiIiImIjNKIiIiIikok0oiIiImIjtIS+iIiIWC1bnPpRoiIiImIjbHFlWtWoiIiIiNXSiIqIiIitsMEhFSUqIiIiNkLFtCIiImK1bLGYVjUqIiIiYrU0oiIiImIjbLBERSMqIiIiNsOQzi0Npk6dSoECBXBxcaFy5crs3bs3nTdhTomKiIiIpMnSpUvp1asXgwYN4uDBg5QtW5Z69epx7dq1DLuGEhUREREbYUjnf5YaN24cnTt3pkOHDpQoUYIZM2bg5ubGnDlzMuyeVKPyDDMajQDcjo7O4khEUi/hXkxWhyCSKgn37gB//6zNDLdvR6f56Z3btx/8XRD9j78TnJ2dcXZ2TnF8fHw8Bw4coH///qY2Ozs76tSpw65du9IWxCMoUXmG3b59G4DCgX5ZHImIiO26ffs2Hh4eT/QaTk5O+Pj4UCSdP8+zZ8+On595H4MGDWLw4MEpjr1+/TqJiYl4e3ubtXt7e/Pbb7+lK46HKVF5hvn6+nLx4kVy5MiBwVofoH8KRUdH4+fnx8WLF3F3d8/qcET+k76zT4bRaOT27dv4+vo+8Wu5uLhw7tw54uPj09WP0WhM8ffBo0ZTMpMSlWeYnZ0d+fPnz+owbJa7u7t+6MtTRd/ZjPekR1Ie5uLigouLS6ZdL3fu3Njb2xMZGWnWHhkZiY+PT4ZdR8W0IiIiYjEnJycqVKhAaGioqS0pKYnQ0FCqVKmSYdfRiIqIiIikSa9evQgODqZixYpUqlSJCRMmcOfOHTp06JBh11CiIpLBnJ2dGTRoUJbP64qklr6zklZvv/02f/75JwMHDuTq1auUK1eOdevWpSiwTQ+DMTOfmxIRERGxgGpURERExGopURERERGrpURFRERErJYSFREREbFaSlRERETEailREREREaulREXESmnlALFV+m6LJZSoiFip5BeDJSUlZXEkIunzzTffsG7dOtNng8Gg77WkmhIVESvTtWtXateuTdeuXQkPD8fOTn9M5em1d+9edu/eTatWrWjdujVDhgwB0PdaUk0r04pYmZs3b/Lzzz+zYcMGVqxYwXvvvUejRo2oXr16VocmkmanTp3ihx9+YP78+bi7uzN//nyCgoJMI4cij6NERcSKJCYmYm9vb/q8YMECFi1aRGxsLCEhITRv3jwLoxOxXFJSEklJSTg4OJCQkMAff/xBixYtuHbtGgsWLKBatWpZHaJYOSUqIlbo/v37ODg8eGfo7t27+frrr9m/fz9DhgzhjTfeyOLoRP7bihUryJUrFzVq1DDVozw83VO7dm0uXbrEzp07yZ07N0lJSZoOkkdSoiJiBbZv386JEyeIiIigY8eOBAYGmiUrR44c4csvvyQqKorRo0dTrFixLI5Y5PEOHz5M+fLlsbe3Z82aNbzyyiumJ32SkpKwt7fn/v37PP/88/j5+bFmzZosjlismdJXkSw2Z84cWrZsycKFC1m6dCnly5fn1KlTODg4kJiYCECZMmUIDg7m3LlzhIWFAZj2iVib3LlzU7FiRdq1a8fbb7/NunXrMBgMGAwG09Smg4MDU6ZM4c8//2TlypVZG7BYNSUqIllo1apV9OnTh/Hjx7N+/XpOnjxJtWrV6NGjB4mJiWZD4S+//DJt27Zl0KBB3Lx506yWRcSa5MiRg8TERBo1akSzZs1o2bIlu3fvBiA0NJT4+HjgQQIeEBDArl27sjJcsXJKVESyyI0bN1iwYAHvv/8+b775Jm5ubjg4OFC3bl2uX7+Ovb296YmI5GHzbt26UaFCBfbu3ZuVoYukkFyHcv/+fVxcXPDz86Nw4cIMGTKE1q1b06BBA/LmzcuPP/5oKrD19PTk/fffZ+XKlURERGTxHYi1UqIiksn2798PgJeXF+XLl6do0aJm+8uWLcu1a9e4c+cOCQkJwN+Lvzk7O+Pt7c2xY8cyN2iRx+jSpQuRkZGm0T8HBwecnJzImzcvoaGhPPfcc4SEhODg4MCtW7d48cUXcXFxAR4kN+XLlyckJIRs2bJl5W2IFXPI6gBEniWzZs3i119/pWLFigB88sknKY6xt7c3jaA4OjoCsGvXLsqXL4+Liwtjx47lxIkTmRe0yL84f/48O3fu5I033iApKclUi5ItWzauXbsGQMuWLSlYsCBBQUF07doVV1dXGjduDEDOnDlp0qQJXl5eWXkbYsU0oiKSiQIDA1m2bBnHjx83a3/44buEhAQcHR1N/8J86aWX6Nu3L87OzsCDH+xVq1bNvKBF/kX+/Pn5/vvvgQePHyd/lxs3bsy5c+coVqwY7u7urF+/nqFDh1KzZk2mT58O/D1d5O/vnzXBy1NBiYpIJqpWrRp169Zl8+bNZsnJw6tz2tnZYTAYuHv3LvXr1+f69ets3LhRK3iKVUn+/vbr149NmzYxf/584O+1Utzc3FiyZAkFChRg2bJleHp6UqBAAcaPH8/atWvNjhX5N/qWiGQiZ2dnihQpwhdffMHVq1eBB8WHD3Nzc+P+/fvUrl2bU6dOcfjwYZycnFIcJ5IVjEYj9+/fNyXOhQsXpnnz5ixfvpx9+/aZjqtUqRIHDx5k4cKFeHt7m9rz58+PnZ2dXkooqaZERSSTJP8LdPDgweTPn5+GDRsCD4oPH05CoqOjOX/+PHZ2dvz22284OjqaLf4mkpViYmJM38W1a9dy+/ZtmjdvzqVLl5g1a5ZZ/VS5cuXIkyfPI/vRaIqklr4pIk/Qw/9qfHjqZsqUKcTExFCjRg0AsySkdu3aDBs2jK1btypJEauyZcsWihcvTmxsLB9//DHdunXjzp07VK1alU8//ZSNGzcyduxYNm/ebHaeFkCX9NAS+iJPyMPvLtm4cSN3794lMDCQ0qVLk5SUxJYtWwgJCSEpKYlvvvmGoKAg3N3dzfpQkiLWZN++fXzyySccOXKEhIQEjhw5Qv78+TEajRgMBn766ScmT57M3bt3adiwIf379zf9OUg+RsRSSlREnrC+ffsyffp08ubNy4ULFxg3bhwhISHY2dlx+fJlunTpwrlz56hcuTJNmzalVq1auLq6ZnXYIo/Uq1cvJkyYgJ+fH7/++iu5cuUiPj4eJycnAI4fP05YWBjDhw+ndOnSBAQEMHz4cHLnzp3FkcvTSomKSAZ7+F+Ohw8fpn379nz11Vd4e3uzcuVKevbsyeeff06vXr1MC18tWbKEY8eOMX/+fPr160fDhg0JCAjIytsQAf7+PievkbJ161auXbvGnDlzOHXqFJs2bcLf35/Y2FjT9xke1LL88ssvXLx4kbJly1KzZs2suwl5qilREXlCxowZQ2RkJPfv32fixImm9unTpxMSEsKIESMICQkhR44cpn0XL17E2dmZvHnzZkXIImYenr7866+/gAfr+ADs3buX/v37c+HCBcLCwnjuuecA+Oabb6hVq5bps0h6qZhWJIP8M+e/fPky48eP5+jRo8TGxpra33//faZOncqAAQMYNWqU2T4/Pz8lKWI1kpOUQYMGUbduXSpWrMjQoUO5f/8+lSpVYvTo0RQoUIAXXniB1atXU7duXaZOnUq+fPmyOHKxJUpURDJI8nTPzZs3AZgwYQLDhg0jLCyMJUuWmB37/vvvM3LkSMLCwkwrzopYi4efVps2bRqzZs2ibdu2tGnThlGjRtGxY0du3bpFxYoVmThxIpUrV6Zbt27Y2dmxdetWsxVqRdJLUz8i6fTw8PiECRNYsWIF06dPp0SJEgD079+fsWPHMmfOHNq0aWN2bvL8v56IEGu0d+9eduzYQUBAAE2bNgVg27Zt1K9fn2bNmjFp0iQ8PT0BOHfuHAEBAdjZ2elpNclQ+iaJpMPDScrOnTtJSEhg27ZtDBs2jCFDhlC0aFFGjhyJ0WikY8eO2NnZ0apVK9P5SlLEWh0/fpwXXngBgDlz5gAPEuvq1auzbt06GjRogJ2dHaNHj8bb25vAwEDgwZ8JJSmSkTT1I5IOyUlK3759eeutt4iLi6Ndu3asWbOG7t278/vvvwMwatQoPvroI9q0acMvv/xi1oeSFLFGJUuWZNmyZbi5ubF7927i4uJMiXX16tVZv349CxYsYObMmWbnacVZyWia+hGx0D8fw9y3bx8NGjRg2bJl1KpVC3jwWHKtWrV44YUXGD9+PEFBQcCDJ346d+6sf3GKVXl4ZPCfvv32W9q2bUvfvn0ZMmQIDg4OplHAI0eOUKJECX2f5YlS6itigZYtW7J+/Xqztvv37+Pi4mJ6VX1CQgJly5Zl7dq1bNq0iWHDhhEeHg48KKL957t9RLLSw0nK8uXL+eqrrxg3bhzx8fHAg+/8/PnzGT16NIMGDTJ7IWGZMmX0fZYnTmmwiAUCAwNp0KAB8CAhcXR0xMfHh+vXrxMWFkahQoVM/+IsXLgwgYGBLF26lNjYWJYtW2b6Aa9/gYo1MBqNpiSlX79+LFy4kKJFi3L27FmWLVvGhAkTqFixIq1btwagY8eOREdHM2HCBOzt7U396PssT5JGVERSIflxzREjRuDk5MT06dOZOXMmUVFRBAYG0qtXLwYPHsz333+PwWDAYDDg4uJCnTp1WLt2LatXr+arr77K4rsQMZecOE+cOJGFCxeyevVqNm/ezKRJk9izZw/vv/8+e/bsITExkdatWzN58mQOHz6sOhTJVEqDRVLhnz+Yf/75Z06cOEG2bNlo2bIlXbp04a+//uLdd99l//795M+fnxUrVpj+9VmpUiWOHz+eRdGLPN7Nmze5ePEio0aNonz58ixfvpx33nmHKVOmMHPmTD788EMmT55M5cqV6dy5M507dwbQ02qSaZSoiPyHRxUa/vTTT7Rt25YRI0ZgNBpp27YtQ4cOpUSJEkycOJHcuXOTJ08e1q1bh729PXZ2dvj4+GTRHYj87Z8JRs6cOalfvz5lypTh6NGj9OvXj6FDh/LBBx+QL18+mjVrRsuWLVmzZg2lS5c2nackRTKLnvoR+RcPJymHDh0ie/bsuLq6mt5j0qpVKw4cOED//v15++23cXV1JSYmBjc3N7NHlxctWsSWLVsoXLhwlt2LyOOe7klOXubOncu8efNYunQpPj4+/PDDD+zcuZOoqCi++uors7oUkcyiERWRf/FwsrF06VKioqKoU6cOLVu2pGnTpixevJhWrVoxevRoAN544w08PDwAOHjwIAsXLuS7775j9erVSlIkyyV/n6dOncq+ffvInz8/DRo0oGrVqgCcOXOGiIgIYmNjuXnzJvPmzaNatWqMHTsWgMTERCUrkuk0oiLyCA8Pj2/atInOnTszZ84czp8/z9q1azl37hzdu3c3PQ3Rtm1b1qxZw8KFC3nttdcAuH37Ntu2baNkyZIEBARk2b2IPDySMnDgQKZNm0bNmjW5ePEit2/f5vPPP6dp06bcuHGDcuXKERsbS/bs2XF3d2f//v04Ojpm8R3Is0yJisi/WLFiBb/88gsBAQH069cPeDBSMnHiRE6cOEGPHj1MycqQIUP47LPPsLe3V6GhWKXjx48zf/58mjVrRuXKlTly5AjTpk1jzZo1jB07lubNmxMdHc2CBQtwd3enVatWpnVS9AiyZBUlKiKPcfbsWTp06MCRI0fo1KkTX3zxhWnfwYMHmTRpEr/99hsdO3Y0PQkBGh4X6/Tjjz/y/vvvkytXLtauXWtaoPDkyZNMnDiRtWvXMnbsWN566y2z8/R9lqymh+FF/t8/c/aCBQvy6aefUrFiRVasWMHGjRtN+55//nm6d+9O3rx52b17t9n5+qEu1iB57Z/k76WLiwsvvvgiZ8+e5ezZs6bjihcvTvfu3WnYsCGtWrUiLCzMrB99nyWraURFBPM5/D///JPY2Fj8/PyAB29F/vzzz7l//z79+vWjdu3apvN+//13ChcurAWwxKo8PPW4du1aXn31VQB27NjBqFGjOHv2LNOnT+ell14ynXP06FHWrVtHr169lJyIVVGiIs+8h3+oDxs2jFWrVnH9+nVy587NZ599xuuvv86mTZtM7z/p37+/6eWDyf7tpW4imenh7+KJEycoVaoUvXv3ZsyYMQBs2bKFadOmER4ezpQpU6hevXqKPjTdI9ZEP1nlmZecpAwZMoSpU6fy8ccfs2/fPu7evUv//v05d+4ctWvXpkePHri4uPDRRx9x8OBBsz6UpIg1ePjdPRMmTGDixIl4eXnx5Zdf0qNHDwBq1qzJBx98QFBQED169CA0NDRFP0pSxJqojFueeYmJidy4cYN169YxdepUmjVrRmhoKBEREXz55ZcEBgYCUKdOHWJjYwkLC6NcuXJZG7TIQ5JHBZOT7sGDBzN58mRmzZpF/fr1CQsLY8GCBdy/f58pU6ZQs2ZNDAYDw4YNY+HChbz88stZfAcij6epH3kmxcfHc//+fdzc3AC4cOECdevW5ejRo2zZsoU333yTL774gi5dunDnzh0WLlxIy5YtTYu5gaZ7xDr89ddf5MyZ0+xz48aNadGiBR988AEAN27c4Ntvv6V///506dLF9ATbwYMHKVeunL7HYtX07ZRnzg8//EDLli2pVq0an3/+OQABAQHkzJmT1q1b89ZbbzF+/Hi6dOkCwJUrV1i0aBHbtm0z60c/3CWrvfvuu7Rr186szdnZmT/++IPz58+b2ry8vGjVqhXVq1dn7Nix9O7dG3jw9JqdnZ3pCSERa6SftPJM+eqrr3jnnXcICAigRo0aDB48mKlTpwLQpk0bdu7cycsvv0ynTp0AuHfvHj169MDV1ZUGDRpkZegiKXz22Wf88MMPANy9exd48BhykyZNOHbsmFktVa5cuShfvjwNGzZk5cqVTJw40bRPSbdYM3075Zkxa9Ysunbtyvz58xk3bhzjx4+nefPmJCYmcvv2bZo0aUKTJk04ffo0r776Ku+99x716tUjIiKCNWvWYG9vr395ilX48ccfAfD398fJyYk5c+aQP39+IiMjsbOzo379+kRERDBjxgz27t0LQExMDCdPnqRevXrUqlWLX375hZiYmKy8DZFUUaIiz4QtW7bw7rvv8tlnn9GkSRNT+4kTJ5g1axa+vr506dIFHx8fBg4ciKOjI/Hx8dSqVYuDBw/i6OjI/fv39S9PyXI///wzb7zxBmPHjjUt5vbiiy9SsGBBXnrpJSIjI6lbty7Dhg3jwIEDdO7cmWrVqlG9enV+//13QkJCCAoKIiIiQt9neSroqR95Jjz33HNUq1aNAwcOsH//fipWrEizZs24c+cOw4cPx93dnY8++ojLly/TsWPHRy4jrnediDVo0KABkydPpkePHhiNRnr37k2xYsVYsmQJbdq04cUXX2Tnzp288cYb+Pv7Ex4eTlhYGIGBgfTq1Qt4sGx+8eLFlajIU0FP/cgz49SpU3Tr1g17e3tu3brFvXv3+OGHHyhQoADw4AmIihUrsnz5crNRFxFrNHXqVLp27cqoUaPo06cPAKdPn6Zt27ZERkayc+dOfHx8zM75/fffmTNnDl999RXbtm2jVKlSWRG6iEWUTsszo0iRIkyaNIm4uDiOHTtGv379KFCgAElJSaYh9OLFi5MnT54sjlTkv4WEhDB58mT69etnWnW2cOHCLFy4EB8fH2rUqMHly5dNx9+/f5+5c+fyyy+/sGXLFiUp8tTQiIo8c86cOUNISAh2dnb079/ftIR4o0aNiImJITQ0VEPiYlX+bc2eKVOm0K1bN7ORlTNnzlCvXj0qVKjA0qVLTQvCxcXFERUVRd68eTMzfJF0UaIiz6TkaaDkZGX8+PEcO3aMY8eO4ejoqMXcxGo8/F1ctWoVf/31F3FxcXTu3Nl0THKyMnr0aD7++GMA/vjjD3x8fEzL4es7LU8rJSryzDp16hQ9e/bkl19+oWDBghw9etT0dI8KZ8UaPJxc9OvXj4ULF1KgQAFOnTpF+fLlGT16NGXKlMHOzo4pU6bQq1cv+vbty7Bhw0x96AWD8rTTT2N5ZhUpUoQvv/ySadOmMW7cOBwcHJSkiFVJTlLGjRvHwoUL+emnn6hQoQJLliyhVatW3Lt3j4kTJ1KuXDk+/PBDYmJiWLNmjdkbwZWkyNNOIyoi/09JiliLX375hZs3b9KiRQuioqLo168f1apVo3Xr1ixfvpyOHTsyYMAApk2bhq+vL+PGjTMth5+cpDycrIg8zfRTWeT/KUkRa7Bjxw7q169PhQoVSEpKolWrVrz11luULFmSQ4cO0adPH4YMGUK3bt3IkycPwcHBBAcHs2LFCooWLaokRWyOfjKLiFiR69evA+Dm5saSJUuwt7fn7bffBuC7774jICCAli1bAmAwGPjggw+4ceMGhQoVMvWhJEVsiUrARUSsSOPGjWnTpg0GgwFHR0dmzJjBwoULgQdv8r506RKJiYlER0ezdOlSihcvzrfffou9vT2JiYlZHL1IxlONioiIlYiLi8PZ2ZlFixYRFhZGx44dGTNmDH/++Sd9+vShUqVKlCtXDgBXV1eyZcvGgQMHcHR0zNrARZ4gJSoiIllo8+bNnD17lo4dO5rarly5wv/+9z+GDRtGgwYNCAkJ4dq1a/Tr148XX3yRb775BgcHBzp37qyn1cTmKVEREckimzdv5uWXXwbglVdeoUmTJlSrVo1SpUqxZMkSFi9ezOLFi7lw4QKDBg3i+vXrvPvuu7Rq1crUh9ZJEVunGhURkSzi5+dH9erVqVWrFnFxcZw4cYKaNWsyceJErly5wp07dzh06BAlS5Zk6NChGAwGdu7cadaHkhSxdRpRERHJQr///jv9+/cnISGBbt26kZiYyNdff829e/dYt24djRs35vvvv8fe3p7z58/j7++vpfDlmaJERUQki4WHh9OjRw+SkpKYOHEiRYoUITw8nHHjxtG1a1fKli1rtjaK3tsjzxIlKiIiVuDUqVN8+OGHAHz22Wemt3qDEhN5tumbLyJiBYoUKcKUKVOws7NjxIgRbN++3bRPSYo8y/TtFxGxEkWKFGHSpEnY29vTs2dPjhw5ktUhiWQ5JSoiIlakSJEifPHFF7z00kuUKlUqq8MRyXKqURERsWKqT5FnnRIVERERsVpK00VERMRqKVERERERq6VERURERKyWEhURERGxWkpURERExGopURERERGrpURFRDJU+/btadKkielzzZo16dGjR6bHsWXLFgwGA7du3XrsMQaDgZUrV6a6z8GDB1OuXLl0xXX+/HkMBgOHDh1KVz8izwolKiLPgPbt22MwGDAYDDg5OVG4cGGGDh3K/fv3n/i1ly9fzrBhw1J1bGqSCxF5tjhkdQAikjnq16/P3LlziYuLY+3atYSEhODo6Ej//v1THBsfH4+Tk1OGXDdXrlwZ0o+IPJs0oiLyjHB2dsbHx4eAgADef/996tSpw08//QT8PV0zfPhwfH19CQoKAuDixYs0b94cT09PcuXKRePGjTl//rypz8TERHr16oWnpydeXl706dOHfy52/c+pn7i4OPr27Yufnx/Ozs4ULlyY2bNnc/78eWrVqgVAzpw5MRgMtG/fHniwjPzIkSMJDAzE1dWVsmXL8v3335tdZ+3atRQtWhRXV1dq1aplFmdq9e3bl6JFi+Lm5kbBggUZMGAACQkJKY776quv8PPzw83NjebNmxMVFWW2f9asWRQvXhwXFxeKFSvGtGnTLI5FRB5QoiLyjHJ1dSU+Pt70OTQ0lPDwcDZs2MDq1atJSEigXr165MiRg23btrFjxw6yZ89O/fr1TeeNHTuWefPmMWfOHLZv387NmzdZsWLFv163Xbt2fPvtt0yaNImTJ0/y1VdfkT17dvz8/Pjhhx8ACA8P58qVK0ycOBGAkSNHsmDBAmbMmMHx48fp2bMnbdq0ISwsDHiQUDVt2pRGjRpx6NAhOnXqRL9+/Sz+PcmRIwfz5s3jxIkTTJw4kZkzZzJ+/HizY06fPs13333HqlWrWLduHb/++isffPCBaf+iRYsYOHAgw4cP5+TJk4wYMYIBAwYwf/58i+MREcAoIjYvODjY2LhxY6PRaDQmJSUZN2zYYHR2djb27t3btN/b29sYFxdnOmfhwoXGoKAgY1JSkqktLi7O6Orqaly/fr3RaDQa8+XLZxwzZoxpf0JCgjF//vymaxmNRmONGjWM3bt3NxqNRmN4eLgRMG7YsOGRcW7evNkIGP/66y9TW2xsrNHNzc24c+dOs2M7duxobNmypdFoNBr79+9vLFGihNn+vn37pujrnwDjihUrHrv/iy++MFaoUMH0edCgQUZ7e3vjpUuXTG0///yz0c7OznjlyhWj0Wg0FipUyLh48WKzfoYNG2asUqWK0Wg0Gs+dO2cEjL/++utjrysif1ONisgzYvXq1WTPnp2EhASSkpJo1aoVgwcPNu0vXbq0WV3K4cOHOX36NDly5DDrJzY2ljNnzhAVFcWVK1eoXLmyaZ+DgwMVK1ZMMf2T7NChQ9jb21OjRo1Ux3369Gnu3r1L3bp1zdrj4+MpX748ACdPnjSLA6BKlSqpvkaypUuXMmnSJM6cOUNMTAz379/H3d3d7Bh/f3+ee+45s+skJSURHh5Ojhw5OHPmDB07dqRz586mY+7fv4+Hh4fF8YiIimlFnhm1atVi+vTpODk54evri4OD+R//bNmymX2OiYmhQoUKLFq0KEVfefLkSVMMrq6uFp8TExMDwJo1a8wSBHhQd5NRdu3aRevWrRkyZAj16tXDw8ODJUuWMHbsWItjnTlzZorEyd7ePsNiFXmWKFEReUZky5aNwoULp/r4559/nqVLl5I3b94UowrJ8uXLx549e3jppZeAByMHBw4c4Pnnn3/k8aVLlyYpKYmwsDDq1KmTYn/yiE5iYqKprUSJEjg7OxMREfHYkZjixYubCoOT7d69+79v8iE7d+4kICCATz/91NR24cKFFMdFRERw+fJlfH19Tdexs7MjKCgIb29vfH19OXv2LK1bt7bo+iLyaCqmFZFHat26Nblz56Zx48Zs27aNc+fOsWXLFrp168alS5cA6N69O6NGjWLlypX89ttvfPDBB/+6BkqBAgUIDg7mnXfeYeXKlaY+v/vuOwACAgIwGAysXr2aP//8k5iYGHLkyEHv3r3p2bMn8+fP58yZMxw8eJDJkyebClS7dOnCqVOn+PjjjwkPD2fx4sXMmzfPovstUqQIERERLFmyhDNnzjBp0qRHFga7uLgQHBzM4cOH2bZtG926daN58+b4+PgAMGTIEEaOHMmkSZP4/fffOXr0KHPnzmXcuHEWxSMiDyhREZFHcnNzY+vWrfj7+9O0aVOKFy9Ox44diY2NNY2wfPTRR7Rt25bg4GCqVKlCjhw5eOONN/613+nTp/Pmm2/ywQcfUKxYMTp37sydO3cAeO655xgyZAj9+vXD29ubDz/8EIBhw4YxYMAARo4cSfHixalfvz5r1qwhMDAQeFA38sMPP7By5UrKli3LjBkzGDFihEX3+/rrr9OzZ08+/PBDypUrx86dOxkwYECK4woXLkzTpk159dVXeeWVVyhTpozZ48edOnVi1qxZzJ07l9KlS1OjRg3mzZtnilVELGMwPq7qTURERCSLaURFRERErJYSFREREbFaSlRERETEailREREREaulREVERESslhIVERERsVpKVERERMRqKVERERERq6VERURERKyWEhURERGxWkpURERExGr9H2zovDUKkiJaAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Compute confusion matrix\n", + "cnf_matrix = confusion_matrix(y_test, yhat, labels=[2,4])\n", + "np.set_printoptions(precision=2)\n", + "\n", + "print (classification_report(y_test, yhat))\n", + "\n", + "# Plot non-normalized confusion matrix\n", + "plt.figure()\n", + "plot_confusion_matrix(cnf_matrix, classes=['Benign(2)','Malignant(4)'],normalize= False, title='Confusion matrix')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You can also easily use the __f1_score__ from sklearn library:\n" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.9639038982104676" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from sklearn.metrics import f1_score\n", + "f1_score(y_test, yhat, average='weighted') " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's try the jaccard index for accuracy:\n" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.9444444444444444" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from sklearn.metrics import jaccard_score\n", + "jaccard_score(y_test, yhat,pos_label=2)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

Practice

\n", + "Can you rebuild the model, but this time with a __linear__ kernel? You can use __kernel='linear'__ option, when you define the svm. How the accuracy changes with the new kernel function?\n" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Avg F1-score: 0.9639038982104676\n", + "Jaccard score: 0.9038461538461539\n", + "\n", + "Classification Report:\n", + "\n", + " precision recall f1-score support\n", + "\n", + " 0 1.00 0.94 0.97 90\n", + " 1 0.90 1.00 0.95 47\n", + "\n", + " accuracy 0.96 137\n", + " macro avg 0.95 0.97 0.96 137\n", + "weighted avg 0.97 0.96 0.96 137\n", + "\n" + ] + } + ], + "source": [ + "import pandas as pd\n", + "import numpy as np\n", + "from sklearn import preprocessing\n", + "from sklearn.model_selection import train_test_split\n", + "from sklearn import svm\n", + "from sklearn.metrics import classification_report, f1_score\n", + "\n", + "# Fungsi hitung Jaccard manual (untuk sklearn lama)\n", + "def jaccard_manual(y_true, y_pred):\n", + " intersection = np.logical_and(y_true == 1, y_pred == 1).sum()\n", + " union = np.logical_or(y_true == 1, y_pred == 1).sum()\n", + " return intersection / union if union != 0 else 0\n", + "\n", + "# ================================\n", + "# 1. Load Data\n", + "# ================================\n", + "cell_df = pd.read_csv(\"cell_samples.csv\")\n", + "\n", + "# ================================\n", + "# 2. Bersihkan Kolom BareNuc\n", + "# ================================\n", + "cell_df = cell_df[pd.to_numeric(cell_df['BareNuc'], errors='coerce').notnull()]\n", + "cell_df['BareNuc'] = cell_df['BareNuc'].astype('int')\n", + "\n", + "# ================================\n", + "# 3. Buat Feature dan Label\n", + "# ================================\n", + "feature_df = cell_df[['Clump','UnifSize','UnifShape','MargAdh',\n", + " 'SingEpiSize','BareNuc','BlandChrom','NormNucl','Mit']].astype(float)\n", + "\n", + "X = np.asarray(feature_df)\n", + "y = np.where(cell_df['Class'] == 2, 0, 1) # 0 = Benign, 1 = Malignant\n", + "\n", + "# ================================\n", + "# 4. Split Train/Test\n", + "# ================================\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=4)\n", + "\n", + "# ================================\n", + "# 5. Model SVM Kernel LINEAR\n", + "# ================================\n", + "model = svm.SVC(kernel='linear')\n", + "model.fit(X_train, y_train)\n", + "\n", + "# ================================\n", + "# 6. Prediksi\n", + "# ================================\n", + "y_pred = model.predict(X_test)\n", + "\n", + "# ================================\n", + "# 7. Evaluasi\n", + "# ================================\n", + "print(\"Avg F1-score:\", f1_score(y_test, y_pred, average='weighted'))\n", + "print(\"Jaccard score:\", jaccard_manual(y_test, y_pred))\n", + "print(\"\\nClassification Report:\\n\")\n", + "print(classification_report(y_test, y_pred))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
Click here for the solution\n", + "\n", + "```python\n", + "clf2 = svm.SVC(kernel='linear')\n", + "clf2.fit(X_train, y_train) \n", + "yhat2 = clf2.predict(X_test)\n", + "print(\"Avg F1-score: %.4f\" % f1_score(y_test, yhat2, average='weighted'))\n", + "print(\"Jaccard score: %.4f\" % jaccard_score(y_test, yhat2,pos_label=2))\n", + "\n", + "```\n", + "\n", + "
\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Thank you for completing this lab!\n", + "\n", + "\n", + "## Author\n", + "\n", + "Saeed Aghabozorgi\n", + "\n", + "\n", + "### Other Contributors\n", + "\n", + "Joseph Santarcangelo\n", + "\n", + "##

© IBM Corporation 2020. All rights reserved.

\n", + "\n", + "\n", + "\n", + "\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.8" + }, + "prev_pub_hash": "33c7dcfb268d8bbcaef711e72c89e89dc7bc1929452f1913b971040b140900c5" + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/Tugas.Classification/Eva Yusfika Hidayah_202310715012_F5A2_Logistic.ipynb b/Tugas.Classification/Eva Yusfika Hidayah_202310715012_F5A2_Logistic.ipynb new file mode 100644 index 0000000..6b9ee6c --- /dev/null +++ b/Tugas.Classification/Eva Yusfika Hidayah_202310715012_F5A2_Logistic.ipynb @@ -0,0 +1,1644 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

\n", + " \n", + " \"Skills\n", + " \n", + "

\n", + "\n", + "\n", + "# SVM (Support Vector Machines)\n", + "\n", + "\n", + "Estimated time needed: **15** minutes\n", + " \n", + "\n", + "## Objectives\n", + "\n", + "After completing this lab you will be able to:\n", + "\n", + "* Use scikit-learn to Support Vector Machine to classify\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In this notebook, you will use SVM (Support Vector Machines) to build and train a model using human cell records, and classify cells to whether the samples are benign or malignant.\n", + "\n", + "SVM works by mapping data to a high-dimensional feature space so that data points can be categorized, even when the data are not otherwise linearly separable. A separator between the categories is found, then the data is transformed in such a way that the separator could be drawn as a hyperplane. Following this, characteristics of new data can be used to predict the group to which a new record should belong.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

Table of contents

\n", + "\n", + "
\n", + "
    \n", + "
  1. Load the Cancer data
  2. \n", + "
  3. Modeling
  4. \n", + "
  5. Evaluation
  6. \n", + "
  7. Practice
  8. \n", + "
\n", + "
\n", + "
\n", + "
\n" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Collecting scikit-learn\n", + " Downloading scikit_learn-1.7.2-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.metadata (11 kB)\n", + "Collecting numpy>=1.22.0 (from scikit-learn)\n", + " Downloading numpy-2.3.5-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.metadata (62 kB)\n", + "Collecting scipy>=1.8.0 (from scikit-learn)\n", + " Downloading scipy-1.16.3-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.metadata (62 kB)\n", + "Collecting joblib>=1.2.0 (from scikit-learn)\n", + " Downloading joblib-1.5.2-py3-none-any.whl.metadata (5.6 kB)\n", + "Collecting threadpoolctl>=3.1.0 (from scikit-learn)\n", + " Downloading threadpoolctl-3.6.0-py3-none-any.whl.metadata (13 kB)\n", + "Downloading scikit_learn-1.7.2-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (9.5 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m9.5/9.5 MB\u001b[0m \u001b[31m83.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading joblib-1.5.2-py3-none-any.whl (308 kB)\n", + "Downloading numpy-2.3.5-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (16.6 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m16.6/16.6 MB\u001b[0m \u001b[31m182.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading scipy-1.16.3-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (35.7 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m35.7/35.7 MB\u001b[0m \u001b[31m99.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0mta \u001b[36m0:00:01\u001b[0m\n", + "\u001b[?25hDownloading threadpoolctl-3.6.0-py3-none-any.whl (18 kB)\n", + "Installing collected packages: threadpoolctl, numpy, joblib, scipy, scikit-learn\n", + "Successfully installed joblib-1.5.2 numpy-2.3.5 scikit-learn-1.7.2 scipy-1.16.3 threadpoolctl-3.6.0\n", + "Collecting matplotlib\n", + " Downloading matplotlib-3.10.7-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.metadata (11 kB)\n", + "Collecting contourpy>=1.0.1 (from matplotlib)\n", + " Downloading contourpy-1.3.3-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.metadata (5.5 kB)\n", + "Collecting cycler>=0.10 (from matplotlib)\n", + " Downloading cycler-0.12.1-py3-none-any.whl.metadata (3.8 kB)\n", + "Collecting fonttools>=4.22.0 (from matplotlib)\n", + " Downloading fonttools-4.60.1-cp312-cp312-manylinux1_x86_64.manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_5_x86_64.whl.metadata (112 kB)\n", + "Collecting kiwisolver>=1.3.1 (from matplotlib)\n", + " Downloading kiwisolver-1.4.9-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.metadata (6.3 kB)\n", + "Requirement already satisfied: numpy>=1.23 in /opt/conda/lib/python3.12/site-packages (from matplotlib) (2.3.5)\n", + "Requirement already satisfied: packaging>=20.0 in /opt/conda/lib/python3.12/site-packages (from matplotlib) (24.2)\n", + "Collecting pillow>=8 (from matplotlib)\n", + " Downloading pillow-12.0.0-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.metadata (8.8 kB)\n", + "Collecting pyparsing>=3 (from matplotlib)\n", + " Downloading pyparsing-3.2.5-py3-none-any.whl.metadata (5.0 kB)\n", + "Requirement already satisfied: python-dateutil>=2.7 in /opt/conda/lib/python3.12/site-packages (from matplotlib) (2.9.0.post0)\n", + "Requirement already satisfied: six>=1.5 in /opt/conda/lib/python3.12/site-packages (from python-dateutil>=2.7->matplotlib) (1.17.0)\n", + "Downloading matplotlib-3.10.7-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (8.7 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m8.7/8.7 MB\u001b[0m \u001b[31m155.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "Downloading contourpy-1.3.3-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (362 kB)\n", + "Downloading cycler-0.12.1-py3-none-any.whl (8.3 kB)\n", + "Downloading fonttools-4.60.1-cp312-cp312-manylinux1_x86_64.manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_5_x86_64.whl (4.9 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m4.9/4.9 MB\u001b[0m \u001b[31m147.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading kiwisolver-1.4.9-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (1.5 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.5/1.5 MB\u001b[0m \u001b[31m93.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading pillow-12.0.0-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (7.0 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m7.0/7.0 MB\u001b[0m \u001b[31m152.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading pyparsing-3.2.5-py3-none-any.whl (113 kB)\n", + "Installing collected packages: pyparsing, pillow, kiwisolver, fonttools, cycler, contourpy, matplotlib\n", + "Successfully installed contourpy-1.3.3 cycler-0.12.1 fonttools-4.60.1 kiwisolver-1.4.9 matplotlib-3.10.7 pillow-12.0.0 pyparsing-3.2.5\n", + "Collecting pandas\n", + " Downloading pandas-2.3.3-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl.metadata (91 kB)\n", + "Requirement already satisfied: numpy>=1.26.0 in /opt/conda/lib/python3.12/site-packages (from pandas) (2.3.5)\n", + "Requirement already satisfied: python-dateutil>=2.8.2 in /opt/conda/lib/python3.12/site-packages (from pandas) (2.9.0.post0)\n", + "Requirement already satisfied: pytz>=2020.1 in /opt/conda/lib/python3.12/site-packages (from pandas) (2024.2)\n", + "Collecting tzdata>=2022.7 (from pandas)\n", + " Downloading tzdata-2025.2-py2.py3-none-any.whl.metadata (1.4 kB)\n", + "Requirement already satisfied: six>=1.5 in /opt/conda/lib/python3.12/site-packages (from python-dateutil>=2.8.2->pandas) (1.17.0)\n", + "Downloading pandas-2.3.3-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl (12.4 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m12.4/12.4 MB\u001b[0m \u001b[31m134.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading tzdata-2025.2-py2.py3-none-any.whl (347 kB)\n", + "Installing collected packages: tzdata, pandas\n", + "Successfully installed pandas-2.3.3 tzdata-2025.2\n", + "Requirement already satisfied: numpy in /opt/conda/lib/python3.12/site-packages (2.3.5)\n" + ] + } + ], + "source": [ + "!pip install scikit-learn\n", + "!pip install matplotlib\n", + "!pip install pandas \n", + "!pip install numpy \n", + "%matplotlib inline" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "import pylab as pl\n", + "import numpy as np\n", + "import scipy.optimize as opt\n", + "from sklearn import preprocessing\n", + "from sklearn.model_selection import train_test_split\n", + "%matplotlib inline \n", + "import matplotlib.pyplot as plt" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

Load the Cancer data

\n", + "The example is based on a dataset that is publicly available from the UCI Machine Learning Repository (Asuncion and Newman, 2007)[http://mlearn.ics.uci.edu/MLRepository.html]. The dataset consists of several hundred human cell sample records, each of which contains the values of a set of cell characteristics. The fields in each record are:\n", + "\n", + "|Field name|Description|\n", + "|--- |--- |\n", + "|ID|Clump thickness|\n", + "|Clump|Clump thickness|\n", + "|UnifSize|Uniformity of cell size|\n", + "|UnifShape|Uniformity of cell shape|\n", + "|MargAdh|Marginal adhesion|\n", + "|SingEpiSize|Single epithelial cell size|\n", + "|BareNuc|Bare nuclei|\n", + "|BlandChrom|Bland chromatin|\n", + "|NormNucl|Normal nucleoli|\n", + "|Mit|Mitoses|\n", + "|Class|Benign or malignant|\n", + "\n", + "
\n", + "
\n", + "\n", + "For the purposes of this example, we're using a dataset that has a relatively small number of predictors in each record. To download the data, we will use `!wget` to download it from IBM Object Storage. \n" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "--2025-11-19 04:37:48-- https://cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud/IBMDeveloperSkillsNetwork-ML0101EN-SkillsNetwork/labs/Module%203/data/cell_samples.csv\n", + "Resolving cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud (cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud)... 169.63.118.104\n", + "Connecting to cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud (cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud)|169.63.118.104|:443... connected.\n", + "200 OKequest sent, awaiting response... \n", + "Length: 19975 (20K) [text/csv]\n", + "Saving to: ‘cell_samples.csv’\n", + "\n", + "cell_samples.csv 100%[===================>] 19.51K --.-KB/s in 0s \n", + "\n", + "2025-11-19 04:37:48 (73.0 MB/s) - ‘cell_samples.csv’ saved [19975/19975]\n", + "\n" + ] + } + ], + "source": [ + "#Click here and press Shift+Enter\n", + "!wget -O cell_samples.csv https://cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud/IBMDeveloperSkillsNetwork-ML0101EN-SkillsNetwork/labs/Module%203/data/cell_samples.csv" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Load Data From CSV File \n" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
IDClumpUnifSizeUnifShapeMargAdhSingEpiSizeBareNucBlandChromNormNuclMitClass
010000255111213112
1100294554457103212
210154253111223112
310162776881343712
410170234113213112
\n", + "
" + ], + "text/plain": [ + " ID Clump UnifSize UnifShape MargAdh SingEpiSize BareNuc \\\n", + "0 1000025 5 1 1 1 2 1 \n", + "1 1002945 5 4 4 5 7 10 \n", + "2 1015425 3 1 1 1 2 2 \n", + "3 1016277 6 8 8 1 3 4 \n", + "4 1017023 4 1 1 3 2 1 \n", + "\n", + " BlandChrom NormNucl Mit Class \n", + "0 3 1 1 2 \n", + "1 3 2 1 2 \n", + "2 3 1 1 2 \n", + "3 3 7 1 2 \n", + "4 3 1 1 2 " + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "cell_df = pd.read_csv(\"cell_samples.csv\")\n", + "cell_df.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The ID field contains the patient identifiers. The characteristics of the cell samples from each patient are contained in fields Clump to Mit. The values are graded from 1 to 10, with 1 being the closest to benign.\n", + "\n", + "The Class field contains the diagnosis, as confirmed by separate medical procedures, as to whether the samples are benign (value = 2) or malignant (value = 4).\n", + "\n", + "Let's look at the distribution of the classes based on Clump thickness and Uniformity of cell size:\n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjIAAAGwCAYAAACzXI8XAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAOE1JREFUeJzt3Xl4VPWh//HPmAABzEaQJRrISIIgiqJgDLRKSzAoca1aCbai/rRXQUC0FrzFe0UUtWKVllLRFnALVet2VZibIKJiDEHApSpZSAIVkJqEhP3C5Pz+CJkyJGSdzJnvyfv1PPM8zvc7y+d4ZnI+nHNmxmVZliUAAAADnWR3AAAAgNaiyAAAAGNRZAAAgLEoMgAAwFgUGQAAYCyKDAAAMBZFBgAAGCvc7gDtraamRtu3b1dkZKRcLpfdcQAAQDNYlqU9e/YoPj5eJ5104v0uji8y27dvV0JCgt0xAABAK2zbtk2nnXbaCecdX2QiIyMl1f6PiIqKsjkNAABojurqaiUkJPi24yfi+CJTdzgpKiqKIgMAgGGaOi2Ek30BAICxKDIAAMBYFBkAAGAsx58j01xer1eHDx+2OwYCpFOnTgoLC7M7BgCgnXX4ImNZlnbu3Kndu3fbHQUBFhMToz59+vD9QQDgYB2+yNSVmF69eqlbt25s9BzAsizt379fu3btkiT17dvX5kQAgPbSoYuM1+v1lZi4uDi74yCAunbtKknatWuXevXqxWEmAHCoDn2yb905Md26dbM5CdpD3Xrl3CcAcK4OXWTqcDjJmVivAOB8FBkAAGAsW4vMhx9+qMsvv1zx8fFyuVx68803/eYty9IDDzygvn37qmvXrkpLS1NhYaE9YQG0SEFBhVas2KLCwkq7o7SJx1OiOXM+UXZ2qd1RIOesD6e8Px5+OFc//enf9Oijn9qWwdaTffft26dzzjlHt9xyi6655pp6848//rgWLFigZcuWye12a/bs2UpPT9fXX3+tiIgIGxI726RJk7R7925foRw9erTOPfdcPfXUU7bmglkqKg4oM/NdeTylvrH09ERlZWUoNtac921xcaVSUl5SeflB31hcXITy82+U2x1jX7AOyinrwynvj/ffL1Na2quyrNrrq1dv0/33f6wPPrheF13UL6hZbN0jc+mll2ru3Lm6+uqr681ZlqWnnnpKv/3tb3XllVdq6NChev7557V9+/Z6e27QPl5//XU99NBDdsdoUGJiIgUrRGVmvqucnDK/sZycMk2Y8I5NiVrn+I2mJJWXH9SIES/alKhjc8r6cMr749gSU8eypNGjXwl6lpA9R6akpEQ7d+5UWlqabyw6OlopKSnKzc094f0OHTqk6upqv0swOGU34bF69OjR5M+nA8cqKKiQx1Mqr9f/L5zXa8njKTXm/eHxlNTbaNYpLz9o/GEN0zhlfTjl/fHww7n1Skwdy1LQDzOFbJHZuXOnJKl3795+47179/bNNWTevHmKjo72XRISEto1Z0XFAY0b95rOOOOvuuyy1zVw4F80btxrqqxs+E0XKKNHj9Zdd92l6dOnKzY2Vr1799azzz6rffv26eabb1ZkZKSSkpK0YsUKSbXfmXPrrbfK7Xara9euOuOMM/T00083+RzTp0/3Xd+xY4fGjx+vrl27yu126+WXX663Z8Tlcum5557T1VdfrW7duik5OVlvv/22b745OSZNmqSrrrpKTzzxhPr27au4uDhNnjzZ9zHq0aNHq6ysTHfffbdcLhefTgohxcW7G50vKjLjD3Ve3o5G53NztwcpCSTnrA+nvD9Wrdra6Pz//m9Zo/OBFrJFprVmzZqlqqoq32Xbtm3t+nx27iZctmyZevbsqXXr1umuu+7SHXfcoeuuu04jR47Uhg0bdMkll+gXv/iF9u/fr5qaGp122ml69dVX9fXXX+uBBx7Q/fffr1deaf5uwF/+8pfavn27PvjgA/3973/X4sWLfd+ee6wHH3xQ119/vb744gtddtllmjhxoioqKiSp2TlWr16t4uJirV69WsuWLdPSpUu1dOlSSbWHvE477TTNmTNHO3bs0I4djf+RQ/AMGBDT6HxSUmxwgrRRSkrj3wadmhofpCSQnLM+nPL+GDOm8XNgLrmkf5CS1ArZItOnTx9J0vfff+83/v333/vmGtKlSxdFRUX5XdqL3bsJzznnHP32t79VcnKyZs2apYiICPXs2VO33XabkpOT9cADD6i8vFxffPGFOnXqpAcffFDDhw+X2+3WxIkTdfPNNze7yHz77bfKycnRs88+q5SUFJ133nl67rnndODAgXq3nTRpkiZMmKCkpCQ98sgj2rt3r9atWydJzc4RGxurP/7xjxo0aJAyMjI0fvx4rVq1SlLtIa+wsDBFRkaqT58+jb4eEFwDB/ZQenqiwsL895KFhbmUnp6o5GQz/lCnp7sVF9fwiZdxcREaOzYxuIE6OKesD6e8P/7zP1N1oh3hLpc0c+aFQc0TskXG7XarT58+vo2XJFVXVysvL0+pqak2Jvs3u3cTDh061PffYWFhiouL09lnn+0bqzssV7fXZOHChTr//PN1yimn6OSTT9bixYu1dWvjuwjrbN68WeHh4TrvvPN8Y0lJSYqNrf/GOzZX9+7dFRUV5bfnpjk5hgwZ4vezAn379m1w7w9CT1ZWhtLS/P9FlpbWX1lZGTYlap38/BvrbTzrPiWD4HPK+nDK++ODD66vV2ZcrtrxYLP149d79+5VUVGR73pJSYk2bdqkHj16qF+/fpo+fbrmzp2r5ORk38ev4+PjddVVV9kX+hh27ybs1KmT33WXy+U3VnfuSE1NjZYvX657771X8+fPV2pqqiIjI/W73/1OeXl5QclVU1MjSc3O0dhjILTFxkZo5cprVVhYqaKiSiUlxRrzL81jud0x+uGHKcrOLlVu7nalpsYb8y9/J3LK+nDK++Oii/qppuZePfrop/rf/y3TJZf0D/qemDq2Fpn169frJz/5ie/6jBkzJEk33XSTli5dqvvuu0/79u3T7bffrt27d+tHP/qRVq5cGTLfIVO3mzAnp8zv8FJYmEtpaf1D6sW5du1ajRw5UnfeeadvrLi4uNn3P+OMM3TkyBFt3LhR559/viSpqKhIlZUt2+vU1hx1OnfuLK/X2+L7IXiSk838A328sWMTjdxgOpVT1odT3h8zZ15oW4GpY+uhpdGjR8uyrHqXupM6XS6X5syZo507d+rgwYPKycnRwIED7Yxcjym7CZOTk7V+/Xp5PB4VFBRo9uzZys/Pb/b9Bw0apLS0NN1+++1at26dNm7cqNtvv11du3Zt0aeG2pqjTmJioj788EN99913+uGHH1p8fwCAM4TsOTKmqNtNWFBwq9577xoVFNyqlSuvDblvaPzVr36la665Rj//+c+VkpKi8vJyv70izfH888+rd+/euuiii3T11VfrtttuU2RkZIv2kAUihyTNmTNHpaWlGjBggE455ZQW3x8A4AwuyzrR19o4Q3V1taKjo1VVVVXvE0wHDx5USUmJ3G53yByuMsk///lPJSQkKCcnR2PGjLE7Tj2sXwAwV2Pb72PZeo4MzPL+++9r7969Ovvss7Vjxw7dd999SkxM1EUXXWR3NABAB0WRQbMdPnxY999/v7Zs2aLIyEiNHDlSL730Ur1PGAEAECwUGTRbenq60tPT7Y4BAIAPJ/sCAABjUWQAAICxKDIAAMBYFBkAAGAsigwAADAWRcZQo0eP1vTp09v1OSZNmhQyP9AJAEBD+Pg1Tujpp5+Ww7/4GQBgOIoMTig6OtruCAAANIpDSwFTIGmFpMKgPeORI0c0ZcoURUdHq2fPnpo9e7ZvD8qhQ4d077336tRTT1X37t2VkpKiDz74wHffpUuXKiYmRh6PR4MHD9bJJ5+scePGaceOHb7bHH9oac+ePZo4caK6d++uvn376ve//329Q1yJiYl65JFHdMsttygyMlL9+vXT4sWL2/t/BQCgg6LItFmFpHGSzpB0maSBR69XtvszL1u2TOHh4Vq3bp2efvppPfnkk3ruueckSVOmTFFubq6WL1+uL774Qtddd53GjRunwsJ/F639+/friSee0AsvvKAPP/xQW7du1b333nvC55sxY4bWrl2rt99+W9nZ2froo4+0YcOGerebP3++hg8fro0bN+rOO+/UHXfcoc2bNwf+fwAAAJbDVVVVWZKsqqqqenMHDhywvv76a+vAgQNteIZ0y7LCLMvSMZewo+Pt5+KLL7YGDx5s1dTU+MZ+85vfWIMHD7bKysqssLAw67vvvvO7z5gxY6xZs2ZZlmVZS5YssSRZRUVFvvmFCxdavXv39l2/6aabrCuvvNKyLMuqrq62OnXqZL366qu++d27d1vdunWzpk2b5hvr37+/deONN/qu19TUWL169bIWLVoUkOVuicCsXwCAHRrbfh+Lc2TapECSp4Fx79HxQknJ7fbsF154oVwul+96amqq5s+fry+//FJer1cDBw70u/2hQ4cUFxfnu96tWzcNGDDAd71v377atWtXg8+1ZcsWHT58WBdccIFvLDo6WmeccUa92w4dOtT33y6XS3369Dnh4wIA0BYUmTYpbmK+SO1ZZE5k7969CgsL02effaawsDC/uZNPPtn338f/arXL5QrIp5Qaetyampo2Py4AAMejyLTJgCbmk9r12fPy8vyuf/rpp0pOTtawYcPk9Xq1a9cu/fjHPw7Ic51++unq1KmT8vPz1a9fP0lSVVWVCgoKdNFFFwXkOQAAaClO9m2TgZLSJYUdNx52dLx998Zs3bpVM2bM0ObNm5WVlaU//OEPmjZtmgYOHKiJEyfql7/8pV5//XWVlJRo3bp1mjdvnt59991WPVdkZKRuuukm/frXv9bq1av1j3/8Q7feeqtOOukkv8NbAAAEE3tk2ixL0gT5nyuTdnS8ff3yl7/UgQMHdMEFFygsLEzTpk3T7bffLklasmSJ5s6dq3vuuUffffedevbsqQsvvFAZGRmtfr4nn3xS//Ef/6GMjAxFRUXpvvvu07Zt2xQRERGoRQIAoEVcViBOighh1dXVio6OVlVVlaKiovzmDh48qJKSErnd7gBsjAtVe05Mkuw4L8YO+/bt06mnnqr58+fr1ltvtTtOPYFdvwCAYGps+30s9sgETLKcXmA2btyob7/9VhdccIGqqqo0Z84cSdKVV15pczIAQEdFkUGLPPHEE9q8ebM6d+6s888/Xx999JF69uxpdywAQAdFkUGzDRs2TJ999pndMQAA8OFTSwAAwFgUGSkgXwKH0MN6BQDn69BFpu4baPfv329zErSHuvV6/DcNAwCco0OfIxMWFqaYmBjf7wB169aNL3dzAMuytH//fu3atUsxMTH1fqYBAOAcHbrISFKfPn0kiR81dKCYmBjf+gUAOFOHLzIul0t9+/ZVr169dPjwYbvjIEA6derEnhgA6AA6fJGpExYWxoYPAADDdOiTfQEAgNkoMgAAwFgUGQAAYCyKDAAAMBZFBgAAGIsiAwAAjEWRAQAAxqLIAAAAY1FkAACAsSgyAADAWBQZAABgLIoMAAAwFkUGAAAYiyIDAACMRZEBAADGosgAAABjUWQAAICxKDIAAMBYFBkAAGAsigwAADAWRQYAABiLIgMAAIxFkQEAAMaiyAAAAGNRZAAAgLEoMgAAwFgUGQAAYCyKDAAAMBZFBgAAGIsiAwAAjEWRAQAAxqLIAAAAY4V0kfF6vZo9e7bcbre6du2qAQMG6KGHHpJlWXZHA9BhFEhaIanQ7iBtUlBQoRUrtqiwsNLuKEBAhdsdoDGPPfaYFi1apGXLlmnIkCFav369br75ZkVHR2vq1Kl2xwPgaBWSMiV5jhlLl5QlKdaWRK1RUXFAmZnvyuMp9Y2lpycqKytDsbER9gUDAiSk98h88sknuvLKKzV+/HglJibq2muv1SWXXKJ169bZHQ2A42VKyjluLEfSBBuytF5m5rvKySnzG8vJKdOECe/YlAgIrJAuMiNHjtSqVatUUFAgSfr888/18ccf69JLLz3hfQ4dOqTq6mq/CwC0TIFq98R4jxv3Hh034zBTQUGFPJ5Seb3+h+O9XkseTymHmeAIIX1oaebMmaqurtagQYMUFhYmr9erhx9+WBMnTjzhfebNm6cHH3wwiCkBOE9xE/NFkpKDEaRNiot3NzpfVFSp5GRzDpMBDQnpPTKvvPKKXnrpJb388svasGGDli1bpieeeELLli074X1mzZqlqqoq32Xbtm1BTAzAGQY0MZ8UlBRtNWBATKPzSUmUGJgvpPfI/PrXv9bMmTN1ww03SJLOPvtslZWVad68ebrpppsavE+XLl3UpUuXYMYE4DgDVXtib478Dy+FSUqTCXtjJGngwB5KT09UTk6Z3+GlsDCX0tL6szcGjhDSe2T279+vk07yjxgWFqaamhqbEgHoOLJUW1qOlXZ03BxZWRlKS+vvN5aW1l9ZWRk2JQICK6T3yFx++eV6+OGH1a9fPw0ZMkQbN27Uk08+qVtuucXuaAAcL1bSStWe2Fuk2sNJZuyJOVZsbIRWrrxWhYWVKiqqVFJSLHti4CguK4S/XW7Pnj2aPXu23njjDe3atUvx8fGaMGGCHnjgAXXu3LlZj1FdXa3o6GhVVVUpKiqqnRMDAIBAaO72O6SLTCBQZAAAME9zt98hfY4MAABAYygyAADAWBQZAABgLIoMAAAwFkUGAAAYiyIDAACMRZEBAADGosgAAABjUWQAAICxKDIAAMBYFBkAAGAsigwAADAWRQYAABiLIgMAAIxFkQEAAMaiyAAAAGNRZAAAgLEoMgAAwFgUGQAAYCyKDAAAMBZFBgAAGIsiAwAAjEWRAQAAxqLIAAAAY1FkAACAsSgyAADAWOF2BwACpaCgQsXFu5WUFKvk5Fi74wBoB7zPQ4vHU6K8vB1KTY3X2LGJtmSgyMB4FRUHlJn5rjyeUt9YenqisrIyFBsbYV8wAAHD+zy0FBdXKiXlJZWXH/SNxcVFKD//RrndMUHNwqElGC8z813l5JT5jeXklGnChHdsSgQg0Hifh5bjS4wklZcf1IgRLwY9C0UGRisoqJDHUyqv1/Ib93oteTylKiystCkZgEDhfR5aPJ6SeiWmTnn5QWVnlwY1D0UGRisu3t3ofFERf+AA0/E+Dy15eTsanc/N3R6kJLUoMjDagAExjc4nJXEyIGA63uehJSWlb6PzqanxQUpSiyIDow0c2EPp6YkKC3P5jYeFuZSensinGgAH4H0eWtLT3YqLa/gE67i4iKB/eokiA+NlZWUoLa2/31haWn9lZWXYlAhAoPE+Dy35+TfWKzN1n1oKNpdlWVbTNzNXdXW1oqOjVVVVpaioKLvjoB0VFlaqqKiS75cAHIz3eWjJzi5Vbu72dvkemeZuvykyAAAg5DR3+82hJQAAYCyKDAAAMBZFBgAAGIsiAwAAjEWRAQAAxqLIAAAAY1FkAACAsSgyAADAWBQZAABgLIoMAAAwFkUGAAAYiyIDAACMRZEBAADGosgAAABjUWQAAICxKDIAAMBYFBkAAGAsigwAADAWRQYAABiLIgMAAIxFkQEAAMaiyAAAAGNRZAAAgLEoMgAAwFgUGQAAYCyKDAAAMFari8zu3bv13HPPadasWaqoqJAkbdiwQd99913AwgEAADQmvDV3+uKLL5SWlqbo6GiVlpbqtttuU48ePfT6669r69atev755wOdE2hSQUGFiot3KykpVsnJsXbH6fCcsz4KJBVLSpKUbHMWOIVT3h8eT4ny8nYoNTVeY8cm2pKhVUVmxowZmjRpkh5//HFFRkb6xi+77DJlZmYGLJwkfffdd/rNb36jFStWaP/+/UpKStKSJUs0fPjwgD4PzFVRcUCZme/K4yn1jaWnJyorK0OxsRH2BeugnLM+KiRlSvIcM5YuKUuSuRse2Msp74/i4kqlpLyk8vKDvrG4uAjl598otzsmqFladWgpPz9fv/rVr+qNn3rqqdq5c2ebQ9WprKzUqFGj1KlTJ61YsUJff/215s+fr9hY/ojg3zIz31VOTpnfWE5OmSZMeMemRB2bc9ZHpqSc48ZyJE2wIQucwinvj+NLjCSVlx/UiBEvBj1Lq/bIdOnSRdXV1fXGCwoKdMopp7Q5VJ3HHntMCQkJWrJkiW/M7XY3ep9Dhw7p0KFDvusN5YRzFBRU+P3Lpo7Xa8njKVVhYaXRu21N45z1USD/PTF1vEfHC8VhJrSUU94fHk9JvRJTp7z8oLKzS4N6mKlVe2SuuOIKzZkzR4cPH5YkuVwubd26Vb/5zW/0s5/9LGDh3n77bQ0fPlzXXXedevXqpWHDhunZZ59t9D7z5s1TdHS075KQkBCwPAg9xcW7G50vKqoMThBIctL6KG5ivigoKeAsTnl/5OXtaHQ+N3d7kJLUalWRmT9/vvbu3atevXrpwIEDuvjii5WUlKTIyEg9/PDDAQu3ZcsWLVq0SMnJyfJ4PLrjjjs0depULVu27IT3mTVrlqqqqnyXbdu2BSwPQs+AATGNziclhf6/bpzEOetjQBPzSUFJAWdxyvsjJaVvo/OpqfFBSlLLZVmW1do7f/zxx/riiy+0d+9enXfeeUpLSwtkNnXu3FnDhw/XJ5984hubOnWq8vPzlZub26zHqK6uVnR0tKqqqhQVFRXQfAgN48a9ppycMnm9/34ph4W5lJbWXytXXmtjso7JOetjnGrPifEeMxYmKU3SSlsSwXxOeX/07PnHBg8vxcVF6IcfpgTkOZq7/W7VHpmtW7fq0KFD+tGPfqQ777xT9913n9LS0mRZlrZu3drq0Mfr27evzjzzTL+xwYMHB/Q5YL6srAylpfX3G0tL66+srAybEnVszlkfWaotLcdKOzoOtI5T3h/5+TcqLs7/U1Z1n1oKtlbtkTnppJM0ePBgvf322xow4N+7YL///nvFx8fL6/U2cu/my8zM1LZt2/TRRx/5xu6++27l5eX57aVpDHtkOo7CwkoVFVUa/70MTuGc9VGo2nNi+B4ZBI5T3h/Z2aXKzd3eLt8j09ztd6uLzDXXXKPVq1frlVde0ZgxYyTVFpm+ffuqpqam9cmPkZ+fr5EjR+rBBx/U9ddfr3Xr1um2227T4sWLNXHixGY9BkUGAADztOuhJZfLpT/96U/67W9/q/Hjx2vBggV+c4EyYsQIvfHGG8rKytJZZ52lhx56SE899VSzSwwAAHC2Vn2PTN1OnLvvvluDBg3ShAkT9OWXX+qBBx4IaDhJysjIUEaGWccOAQBAcLSqyBzr0ksv1SeffKIrrrhC69atC0QmAACAZmnVoaWLL75YnTt39l0/88wzlZeXp5iYGLXh09wAAAAt0qbvkTEBJ/sCAGCe5m6/m31oqbq62vdATf1+EYUBAAAEQ7OLTGxsrHbs2KFevXopJiamwU8nWZYll8sVsO+RAQAAaEyzi8z777+vHj16SJJWr17dboEAAACai3NkAABAyGmXL8T74YcfVFZW5jf2j3/8QzfffLOuv/56vfzyy61LCwAA0AotKjJ33XWX37f47tq1Sz/+8Y+Vn5+vQ4cOadKkSXrhhRcCHhIAAKAhLSoyn376qa644grf9eeff149evTQpk2b9NZbb+mRRx7RwoULAx4SAACgIS0qMjt37lRiYqLv+vvvv69rrrlG4eG15wxfccUVKiwsDGhAAACAE2lRkYmKitLu3bt919etW6eUlBTfdZfLpUOHDgUsHAAAQGNaVGQuvPBCLViwQDU1NXrttde0Z88e/fSnP/XNFxQUKCEhIeAhAQAAGtKiH4186KGHNGbMGL344os6cuSI7r//fsXGxvrmly9frosvvjjgIQEAABrSoiIzdOhQffPNN1q7dq369Onjd1hJkm644QadeeaZAQ0IAABwIs0+tNSjRw/98MMP6tmzp956660GC8v48ePldrsDGhAAAOBEml1k/u///s/3Y5HLli3TwYMH2y0UAABAczT70FJqaqquuuoqnX/++bIsS1OnTlXXrl0bvO1f//rXgAUEAAA4kWYXmRdffFG///3vVVxcLJfLpaqqKvbKAAAAW7XqRyPdbrfWr1+vuLi49sgUUPxoJAAA5mnu9rtFn1qqU1JS0upgAAAAgdLsIrNgwQLdfvvtioiI8PvhyIZMnTq1zcEAAACa0uxDS8ceTmrsI9Yul0tbtmwJWMC24tASAADmCfihpWMPJ3FoCQAAhIIW/dYSAABAKGnVyb5er1dLly7VqlWrtGvXLtXU1PjNv//++wEJBwAA0JhWFZlp06Zp6dKlGj9+vM466yy5XK5A50IQFRRUqLh4t5KSYpWcHNv0HUKUU5bDKVgfoYX1EVo8nhLl5e1Qamq8xo5NtDtOq4XCcrSqyCxfvlyvvPKKLrvsskDnQRBVVBxQZua78nhKfWPp6YnKyspQbGyEfcFayCnL4RSsj9DC+ggtxcWVSkl5SeXl//5C2bi4COXn3yi3O8a+YC0USsvRqnNkOnfurKSkpEBnQZBlZr6rnJwyv7GcnDJNmPCOTYlaxynL4RSsj9DC+ggtx2/8Jam8/KBGjHjRpkStE0rL0aoic8899+jpp59WK74UGCGioKBCHk+pvF7/dej1WvJ4SlVYWGlTspZxynI4BesjtLA+QovHU1Jv41+nvPygsrNLgxuolUJtOVp1aOnjjz/W6tWrtWLFCg0ZMkSdOnXym3/99dcDEg7tp7h4d6PzRUWVRhxHd8pyOAXrI7SwPkJLXt6ORudzc7cbcb5MqC1Hq4pMTEyMrr766kBnQRANGBDT6HxSkhl/3JyyHE7B+ggtrI/QkpLSt9H51NT4ICVpm1BbjlYVmSVLlgQ6B4Js4MAeSk9PVE5Omd9u57Awl9LS+hvzrzSnLIdTsD5CC+sjtKSnuxUXF9HgYZm4uAgj9sZIobccLTpHJjY2Vj169Kh3cbvdSk9PV3Z2dnvlRDvIyspQWlp/v7G0tP7KysqwKVHrOGU5nIL1EVpYH6ElP/9GxcX5f1qs7tM+Jgml5Wj2by1J0rJlyxoc3717tz777DP97W9/02uvvabLL788YAHbit9aalphYaWKiiqN/34JpyyHU7A+QgvrI7RkZ5cqN3e78d8j057L0dztd4uKTFOefPJJvfbaa/rkk08C9ZBtRpEBAMA8zd1+B/S3ljIyMvTtt98G8iEBAABOKKBF5tChQ+rcuXMgHxIAAOCEAlpk/vKXv+jcc88N5EMCAACcUIs+fj1jxowGx6uqqrRhwwYVFBToww8/DEgwAACAprSoyGzcuLHB8aioKI0dO1avv/663G53QIIBAAA0pUVFZvXq1e2VAwAAoMUCeo4MAABAMFFkAACAsSgyAADAWBQZAABgLIoMAAAwFkUGAAAYiyIDAACMRZEBAADGosgAAABjUWQAAICxKDIAAMBYFBkAAGAsigwAADAWRQYAABiLIgMAAIxFkQEAAMaiyAAAAGNRZAAAgLEoMgAAwFgUGQAAYCyKDAAAMJZRRebRRx+Vy+XS9OnT7Y4CoAklJeuUn/9XlZautzsKJBUUVGjFii0qLKy0O0qbsByhxeMp0Zw5nyg7u9S2DOG2PXML5efn65lnntHQoUPtjgKgEZWV36m4eLyGD/9cbnft2Pr15ygpaYViYvraG64Dqqg4oMzMd+XxlPrG0tMTlZWVodjYCPuCtRDLEVqKiyuVkvKSyssP+sbi4iKUn3+j3O6YoGYxYo/M3r17NXHiRD377LOKjY21Ow6ARhQXj9e5537hN3buuV+oqOhSmxJ1bJmZ7yonp8xvLCenTBMmvGNTotZhOULL8SVGksrLD2rEiBeDnsWIIjN58mSNHz9eaWlpTd720KFDqq6u9rsACI6SknUaPvxzhYdbfuPh4ZaGD/+cw0xBVlBQIY+nVF6v//rwei15PKXGHNZgOUKLx1NSr8TUKS8/GPTDTCFfZJYvX64NGzZo3rx5zbr9vHnzFB0d7bskJCS0c0IAdX744atG5//1ry8anUdgFRfvbnS+qMiMDSfLEVry8nY0Op+buz1ISWqFdJHZtm2bpk2bppdeekkREc07djhr1ixVVVX5Ltu2bWvnlADq9Ox5VqPzp5zCOW7BNGBATKPzSUlmHKpnOUJLSkrj57qlpsYHKUmtkC4yn332mXbt2qXzzjtP4eHhCg8P15o1a7RgwQKFh4fL6/XWu0+XLl0UFRXldwEQHG73BVq//hwdOeLyGz9yxKX1689RYuJwm5J1TAMH9lB6eqLCwvzXR1iYS+npiUpONmPDyXKElvR0t+LiGt65EBcXobFjE4OaJ6SLzJgxY/Tll19q06ZNvsvw4cM1ceJEbdq0SWFhYXZHBHCcpKQV2rTJf8/Lpk1DlZS0wqZEHVtWVobS0vr7jaWl9VdWVoZNiVqH5Qgt+fk31iszdZ9aCjaXZVlW0zcLHaNHj9a5556rp556qlm3r66uVnR0tKqqqtg7AwRRael6/etfX+iUU4ayJyYEFBZWqqioUklJscb8y78hLEdoyc4uVW7udqWmxgd8T0xzt98UGQAAEHKau/025gvx6nzwwQd2RwAAACEipM+RAQAAaAxFBgAAGIsiAwAAjEWRAQAAxqLIAAAAY1FkAACAsSgyAADAWBQZAABgLIoMAAAwFkUGAAAYiyIDAACMRZEBAADGosgAAABjUWQAAICxKDIAAMBYFBkAAGAsigwAADAWRQYAABiLIgMAAIxFkQEAAMaiyAAAAGNRZAAAgLEoMgAAwFgUGQAAYCyKDAAAMBZFBgAAGCvc7gDmKpBULClJUrLNWdqmoKBCxcW7lZQUq+TkWLvjtJpTlsMpFi36m8rKNsrtPl+/+tV1dsdpNae8rjyeEuXl7VBqarzGjk20O06rOWV9OEUovK4oMi1WISlTkueYsXRJWZLMelNVVBxQZua78nhKfWPp6YnKyspQbGyEfcFayCnL4RQffvi59u+/XnfcUeAbW7lyoKKiXtPIkWfbmKxlnPK6Ki6uVErKSyovP+gbi4uLUH7+jXK7Y+wL1kJOWR9OEUqvKw4ttVimpJzjxnIkTbAhS9tkZr6rnJwyv7GcnDJNmPCOTYlaxynL4RT791+vtLRCv7G0tEJVV19rU6LWccrr6viNjSSVlx/UiBEv2pSodZyyPpwilF5XFJkWKVDtnhjvcePeo+OF9e4RqgoKKuTxlMrrtfzGvV5LHk+pCgsrbUrWMk5ZDqdYtOhvGjeuQOHh/usjPNzSuHEFeuaZV21K1jJOeV15PCX1NjZ1yssPKju7NLiBWskp68MpQu11RZFpkeIm5ouCkiIQiot3NzpfVGTGHwanLIdTlJVtbHS+pOSzICVpG6e8rvLydjQ6n5u7PUhJ2sYp68MpQu11RZFpkQFNzCcFJUUgDBgQ0+h8UpIZ5/s4ZTmcon//YY3Ou93nBylJ2zjldZWS0rfR+dTU+CAlaRunrA+nCLXXFUWmRQaq9sTesOPGw46Om/PppYEDeyg9PVFhYS6/8bAwl9LTE435NIBTlsMp7rjj51q5cqCOHPFfH0eOuLRy5UBjPr3klNdVerpbcXENnwgbFxdhzKeXnLI+nCLUXlcUmRbLkpR23Fja0XGzZGVlKC2tv99YWlp/ZWVl2JSodZyyHE4RFfWacnL8S31OTrKiol6zKVHrOOV1lZ9/Y72NTt2nS0zilPXhFKH0unJZlmU1fTNzVVdXKzo6WlVVVYqKigrgIxeq9pwY879HprCwUkVFlcZ/L4NTlsMpnnnmVZWUfGb898g45XWVnV2q3Nztxn+PjFPWh1O05+uqudtvigwAAAg5zd1+c2gJAAAYiyIDAACMRZEBAADGosgAAABjUWQAAICxKDIAAMBYFBkAAGAsigwAADAWRQYAABiLIgMAAIxFkQEAAMaiyAAAAGNRZAAAgLEoMgAAwFgUGQAAYCyKDAAAMBZFBgAAGIsiAwAAjEWRAQAAxqLIAAAAY1FkAACAsSgyAADAWBQZAABgLIoMAAAwFkUGAAAYiyIDAACMRZEBAADGosgAAABjhXSRmTdvnkaMGKHIyEj16tVLV111lTZv3mx3LAcqkLRCUqHdQdqI5QglH320Si+/PF9r1662O0obOWN9OIXHU6I5cz5Rdnap3VEQIsLtDtCYNWvWaPLkyRoxYoSOHDmi+++/X5dccom+/vprde/e3e54DlAhKVOS55ixdElZkmJtSdQ6LEcoKSnZoi1bMjRmzDe+sVWrBisp6T31759oX7AWc8b6cIri4kqlpLyk8vKDvrG4uAjl598otzvGvmCwncuyLMvuEM31r3/9S7169dKaNWt00UUXNes+1dXVio6OVlVVlaKioto5oWnGScqR5D1mLExSmqSVtiRqHZYjlKxadaYuvvhbhYf/+0/LkSMurVkzSGPGfG1jspZyxvpwip49/+hXYurExUXohx+m2JAI7a252++QPrR0vKqqKklSjx49TnibQ4cOqbq62u+ChhSo9l+a3uPGvUfHTdmNznKEko8+WqUxY77xKzGSFB5uacyYbww6zOSM9eEUHk9JgyVGksrLD3KYqYMzpsjU1NRo+vTpGjVqlM4666wT3m7evHmKjo72XRISEoKY0iTFTcwXBSVF27EcoWTbtk2NzpeVbQhOkDZzxvpwiry8HY3O5+ZuD1IShCJjiszkyZP11Vdfafny5Y3ebtasWaqqqvJdtm3bFqSEphnQxHxSUFK0HcsRShISzm10vn//84ITpM2csT6cIiWlb6PzqanxQUqCUGREkZkyZYreeecdrV69Wqeddlqjt+3SpYuioqL8LmjIQNWeuBh23HjY0fHkoCdqHZYjlPz4x2O0atVgHTni8hs/csSlVasGa9Son9iUrKWcsT6cIj3drbi4iAbn4uIiNHZsYnADIaSEdJGxLEtTpkzRG2+8offff19ut9vuSA6TpdoTF4+VdnTcJCxHKElKek9r1gzyG1uzZpCSkt6zKVFrOWN9OEV+/o31ykzdp5bQsYX0p5buvPNOvfzyy3rrrbd0xhln+Majo6PVtWvXZj0Gn1pqjkLVHvNPktn/0mQ5QsnatatVVrZB/fufZ9CemIY4Y304RXZ2qXJztys1NZ49MQ7X3O13SBcZl8vV4PiSJUs0adKkZj0GRQYAAPM0d/sd0l+IF8IdCwAAhICQPkcGAACgMRQZAABgLIoMAAAwFkUGAAAYiyIDAACMRZEBAADGosgAAABjUWQAAICxKDIAAMBYFBkAAGAsigwAADAWRQYAABiLIgMAAIxFkQEAAMaiyAAAAGNRZAAAgLEoMgAAwFgUGQAAYCyKDAAAMBZFBgAAGIsiAwAAjEWRAQAAxqLIAAAAY1FkAACAsSgyAADAWBQZAABgLIpMqyWo9n9fP7uDBMBISd0l/cjuIG10taTekq61O0gbOWU5/iLpF5KW2pyjrQokrZBUaHcQAA2gyLTYTZJckv4pyZK07ej12+0M1UpzVJs9V9J+SWuPXn/UzlCtsEi1ud+UtEvS349e/4uNmVrDKcvxmaTOkv6fpBcl3Xz0+iYbM7VGhaRxks6QdJmkgUevV9oZCsBxXJZlWXaHaE/V1dWKjo5WVVWVoqKiAvCIrkbmTPtf6ZRlYTlCS2dJhxsY7yTp/4KcpS3GScqR5D1mLExSmqSVtiQCOpLmbr/ZI9MiCU3Mm3SYaWQT86YcZrq6iXlTDs84ZTn+ooZLjI6OLw1elDYpkOSRf4nR0esecZgJCB0UmRb5ron5fwYlRWB83sT8xqCkaLtPmpj/KCgp2s4py/FBE/OrghEiAIqbmC8KSgoATaPItMipTcyfFpQUgXFOE/PDgpKi7Zras/TjoKRoO6csx+gm5scEI0QADGhiPikoKQA0jXNkWswp5zFIzlkWliO0cI4MgLbjHJl2c1sLx0PZvBaOh6rnWjgeqpyyHOtUW1qO1enouEmyVFtajpV2dBxAqGCPTKv1U+05MadJ2hrAx7XDj1R7TswwSR/bnKUtrlXtuSQ/lvSazVnawinLsVS158SMkTTJ1iRtU6jac2KSJCXbnAXoOJq7/abIAACAkMOhJQAA4HgUGQAAYCyKDAAAMBZFBgAAGIsiAwAAjEWRAQAAxqLIAAAAY1FkAACAsSgyAADAWBQZAABgrHC7A7S3ul9gqK6utjkJAABorrrtdlO/pOT4IrNnzx5JUkJCgs1JAABAS+3Zs0fR0dEnnHf8j0bW1NRo+/btioyMlMvlsjtOSKqurlZCQoK2bdvGD2uGANZHaGF9hBbWR2hpz/VhWZb27Nmj+Ph4nXTSic+EcfwemZNOOkmnnXaa3TGMEBUVxR+GEML6CC2sj9DC+ggt7bU+GtsTU4eTfQEAgLEoMgAAwFgUGahLly76r//6L3Xp0sXuKBDrI9SwPkIL6yO0hML6cPzJvgAAwLnYIwMAAIxFkQEAAMaiyAAAAGNRZAAAgLEoMh3UvHnzNGLECEVGRqpXr1666qqrtHnzZrtj4ahHH31ULpdL06dPtztKh/bdd9/pxhtvVFxcnLp27aqzzz5b69evtztWh+T1ejV79my53W517dpVAwYM0EMPPdTk7/AgMD788ENdfvnlio+Pl8vl0ptvvuk3b1mWHnjgAfXt21ddu3ZVWlqaCgsLg5KNItNBrVmzRpMnT9ann36q7OxsHT58WJdccon27dtnd7QOLz8/X88884yGDh1qd5QOrbKyUqNGjVKnTp20YsUKff3115o/f75iY2PtjtYhPfbYY1q0aJH++Mc/6ptvvtFjjz2mxx9/XH/4wx/sjtYh7Nu3T+ecc44WLlzY4Pzjjz+uBQsW6M9//rPy8vLUvXt3paen6+DBg+2ejY9fQ5L0r3/9S7169dKaNWt00UUX2R2nw9q7d6/OO+88/elPf9LcuXN17rnn6qmnnrI7Voc0c+ZMrV27Vh999JHdUSApIyNDvXv31l/+8hff2M9+9jN17dpVL774oo3JOh6Xy6U33nhDV111laTavTHx8fG65557dO+990qSqqqq1Lt3by1dulQ33HBDu+Zhjwwk1b7oJKlHjx42J+nYJk+erPHjxystLc3uKB3e22+/reHDh+u6665Tr169NGzYMD377LN2x+qwRo4cqVWrVqmgoECS9Pnnn+vjjz/WpZdeanMylJSUaOfOnX5/t6Kjo5WSkqLc3Nx2f37H/2gkmlZTU6Pp06dr1KhROuuss+yO02EtX75cGzZsUH5+vt1RIGnLli1atGiRZsyYofvvv1/5+fmaOnWqOnfurJtuusnueB3OzJkzVV1drUGDBiksLExer1cPP/ywJk6caHe0Dm/nzp2SpN69e/uN9+7d2zfXnigy0OTJk/XVV1/p448/tjtKh7Vt2zZNmzZN2dnZioiIsDsOVFvwhw8frkceeUSSNGzYMH311Vf685//TJGxwSuvvKKXXnpJL7/8soYMGaJNmzZp+vTpio+PZ310cBxa6uCmTJmid955R6tXr9Zpp51md5wO67PPPtOuXbt03nnnKTw8XOHh4VqzZo0WLFig8PBweb1euyN2OH379tWZZ57pNzZ48GBt3brVpkQd269//WvNnDlTN9xwg84++2z94he/0N1336158+bZHa3D69OnjyTp+++/9xv//vvvfXPtiSLTQVmWpSlTpuiNN97Q+++/L7fbbXekDm3MmDH68ssvtWnTJt9l+PDhmjhxojZt2qSwsDC7I3Y4o0aNqveVBAUFBerfv79NiTq2/fv366ST/DdZYWFhqqmpsSkR6rjdbvXp00erVq3yjVVXVysvL0+pqant/vwcWuqgJk+erJdffllvvfWWIiMjfccxo6Oj1bVrV5vTdTyRkZH1zk/q3r274uLiOG/JJnfffbdGjhypRx55RNdff73WrVunxYsXa/HixXZH65Auv/xyPfzww+rXr5+GDBmijRs36sknn9Qtt9xid7QOYe/evSoqKvJdLykp0aZNm9SjRw/169dP06dP19y5c5WcnCy3263Zs2crPj7e98mmdmWhQ5LU4GXJkiV2R8NRF198sTVt2jS7Y3Ro//M//2OdddZZVpcuXaxBgwZZixcvtjtSh1VdXW1NmzbN6tevnxUREWGdfvrp1n/+539ahw4dsjtah7B69eoGtxk33XSTZVmWVVNTY82ePdvq3bu31aVLF2vMmDHW5s2bg5KN75EBAADG4hwZAABgLIoMAAAwFkUGAAAYiyIDAACMRZEBAADGosgAAABjUWQAAICxKDIAAMBYFBkAIcXlcunNN9+0OwYAQ1BkAATVzp07ddddd+n0009Xly5dlJCQoMsvv9zvB+cAoLn40UgAQVNaWqpRo0YpJiZGv/vd73T22Wfr8OHD8ng8mjx5sr799lu7IwIwDHtkAATNnXfeKZfLpXXr1ulnP/uZBg4cqCFDhmjGjBn69NNP693+gw8+kMvl0u7du31jmzZtksvlUmlpqSRp6dKliomJ0TvvvKMzzjhD3bp107XXXqv9+/dr2bJlSkxMVGxsrKZOnSqv1+t7nMTERD300EOaMGGCunfvrlNPPVULFy5s7/8FAAKMIgMgKCoqKrRy5UpNnjxZ3bt3rzcfExPT6sfev3+/FixYoOXLl2vlypX64IMPdPXVV+u9997Te++9pxdeeEHPPPOMXnvtNb/7/e53v9M555yjjRs3aubMmZo2bZqys7NbnQNA8HFoCUBQFBUVybIsDRo0KOCPffjwYS1atEgDBgyQJF177bV64YUX9P333+vkk0/WmWeeqZ/85CdavXq1fv7zn/vuN2rUKM2cOVOSNHDgQK1du1a///3vNXbs2IBnBNA+2CMDICgsy2q3x+7WrZuvxEhS7969lZiYqJNPPtlvbNeuXX73S01NrXf9m2++abecAAKPIgMgKJKTk+VyuVp0Qu9JJ9X+iTq2BB0+fLje7Tp16uR33eVyNThWU1PTksgADECRARAUPXr0UHp6uhYuXKh9+/bVmz/2hN46p5xyiiRpx44dvrFNmzYFLNPxJxh/+umnGjx4cMAeH0D7o8gACJqFCxfK6/Xqggsu0N///ncVFhbqm2++0YIFC+od5pGkpKQkJSQk6L//+79VWFiod999V/Pnzw9YnrVr1+rxxx9XQUGBFi5cqFdffVXTpk0L2OMDaH8UGQBBc/rpp2vDhg36yU9+onvuuUdnnXWWxo4dq1WrVmnRokX1bt+pUydlZWXp22+/1dChQ/XYY49p7ty5Actzzz33aP369Ro2bJjmzp2rJ598Uunp6QF7fADtz2W15xl4ABCiEhMTNX36dE2fPt3uKADagD0yAADAWBQZAABgLA4tAQAAY7FHBgAAGIsiAwAAjEWRAQAAxqLIAAAAY1FkAACAsSgyAADAWBQZAABgLIoMAAAw1v8HllQG/SRRQtUAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "ax = cell_df[cell_df['Class'] == 4][0:50].plot(kind='scatter', x='Clump', y='UnifSize', color='DarkBlue', label='malignant');\n", + "cell_df[cell_df['Class'] == 2][0:50].plot(kind='scatter', x='Clump', y='UnifSize', color='Yellow', label='benign', ax=ax);\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Data pre-processing and selection\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's first look at columns data types:\n" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "ID int64\n", + "Clump int64\n", + "UnifSize int64\n", + "UnifShape int64\n", + "MargAdh int64\n", + "SingEpiSize int64\n", + "BareNuc object\n", + "BlandChrom int64\n", + "NormNucl int64\n", + "Mit int64\n", + "Class int64\n", + "dtype: object" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "cell_df.dtypes" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "It looks like the __BareNuc__ column includes some values that are not numerical. We can drop those rows:\n" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "ID int64\n", + "Clump int64\n", + "UnifSize int64\n", + "UnifShape int64\n", + "MargAdh int64\n", + "SingEpiSize int64\n", + "BareNuc int64\n", + "BlandChrom int64\n", + "NormNucl int64\n", + "Mit int64\n", + "Class int64\n", + "dtype: object" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "cell_df = cell_df[pd.to_numeric(cell_df['BareNuc'], errors='coerce').notnull()]\n", + "cell_df['BareNuc'] = cell_df['BareNuc'].astype('int')\n", + "cell_df.dtypes" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[ 5, 1, 1, 1, 2, 1, 3, 1, 1],\n", + " [ 5, 4, 4, 5, 7, 10, 3, 2, 1],\n", + " [ 3, 1, 1, 1, 2, 2, 3, 1, 1],\n", + " [ 6, 8, 8, 1, 3, 4, 3, 7, 1],\n", + " [ 4, 1, 1, 3, 2, 1, 3, 1, 1]])" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "feature_df = cell_df[['Clump', 'UnifSize', 'UnifShape', 'MargAdh', 'SingEpiSize', 'BareNuc', 'BlandChrom', 'NormNucl', 'Mit']]\n", + "X = np.asarray(feature_df)\n", + "X[0:5]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We want the model to predict the value of Class (that is, benign (=2) or malignant (=4)).\n" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([2, 2, 2, 2, 2])" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "y = np.asarray(cell_df['Class'])\n", + "y [0:5]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Train/Test dataset\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We split our dataset into train and test set:\n" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Train set: (546, 9) (546,)\n", + "Test set: (137, 9) (137,)\n" + ] + } + ], + "source": [ + "X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.2, random_state=4)\n", + "print ('Train set:', X_train.shape, y_train.shape)\n", + "print ('Test set:', X_test.shape, y_test.shape)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

Modeling (SVM with Scikit-learn)

\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The SVM algorithm offers a choice of kernel functions for performing its processing. Basically, mapping data into a higher dimensional space is called kernelling. The mathematical function used for the transformation is known as the kernel function, and can be of different types, such as:\n", + "\n", + " 1.Linear\n", + " 2.Polynomial\n", + " 3.Radial basis function (RBF)\n", + " 4.Sigmoid\n", + "Each of these functions has its characteristics, its pros and cons, and its equation, but as there's no easy way of knowing which function performs best with any given dataset. We usually choose different functions in turn and compare the results. Let's just use the default, RBF (Radial Basis Function) for this lab.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
SVC()
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" + ], + "text/plain": [ + "SVC()" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from sklearn import svm\n", + "clf = svm.SVC(kernel='rbf')\n", + "clf.fit(X_train, y_train) " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "After being fitted, the model can then be used to predict new values:\n" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([2, 4, 2, 4, 2])" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "yhat = clf.predict(X_test)\n", + "yhat [0:5]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

Evaluation

\n" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.metrics import classification_report, confusion_matrix\n", + "import itertools" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "def plot_confusion_matrix(cm, classes,\n", + " normalize=False,\n", + " title='Confusion matrix',\n", + " cmap=plt.cm.Blues):\n", + " \"\"\"\n", + " This function prints and plots the confusion matrix.\n", + " Normalization can be applied by setting `normalize=True`.\n", + " \"\"\"\n", + " if normalize:\n", + " cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]\n", + " print(\"Normalized confusion matrix\")\n", + " else:\n", + " print('Confusion matrix, without normalization')\n", + "\n", + " print(cm)\n", + "\n", + " plt.imshow(cm, interpolation='nearest', cmap=cmap)\n", + " plt.title(title)\n", + " plt.colorbar()\n", + " tick_marks = np.arange(len(classes))\n", + " plt.xticks(tick_marks, classes, rotation=45)\n", + " plt.yticks(tick_marks, classes)\n", + "\n", + " fmt = '.2f' if normalize else 'd'\n", + " thresh = cm.max() / 2.\n", + " for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):\n", + " plt.text(j, i, format(cm[i, j], fmt),\n", + " horizontalalignment=\"center\",\n", + " color=\"white\" if cm[i, j] > thresh else \"black\")\n", + "\n", + " plt.tight_layout()\n", + " plt.ylabel('True label')\n", + " plt.xlabel('Predicted label')" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " precision recall f1-score support\n", + "\n", + " 2 1.00 0.94 0.97 90\n", + " 4 0.90 1.00 0.95 47\n", + "\n", + " accuracy 0.96 137\n", + " macro avg 0.95 0.97 0.96 137\n", + "weighted avg 0.97 0.96 0.96 137\n", + "\n", + "Confusion matrix, without normalization\n", + "[[85 5]\n", + " [ 0 47]]\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAHpCAYAAACspBc0AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAX65JREFUeJzt3Xl8TNf/x/HXZE+QhCCRSiK22JfypYpaStFSSqv2ULTa1Fq1tLXX2trX1k4p1aK1lBLEvteuqT0UUVQiyCKZ3x9+mZqGNpNEMsb72cd9PMy59577uTri45zPPddgNBqNiIiIiFghu6wOQERERORxlKiIiIiI1VKiIiIiIlZLiYqIiIhYLSUqIiIiYrWUqIiIiIjVUqIiIiIiVkuJioiIiFgtJSoiIiJitZSoiMhjnTp1ildeeQUPDw8MBgMrV67M0P7Pnz+PwWBg3rx5GdqvLShQoADt27fP6jBEspwSFRErd+bMGd577z0KFiyIi4sL7u7uVK1alYkTJ3Lv3r0neu3g4GCOHj3K8OHDWbhwIRUrVnyi17NFJ06cYPDgwZw/fz6rQxF5Khn0rh8R67VmzRreeustnJ2dadeuHaVKlSI+Pp7t27fzww8/0L59e77++usncu179+7h5ubGp59+yueff/5ErmE0GomLi8PR0RF7e/snco2s9v333/PWW2+xefNmatasmerz4uLisLOzw9HR8ckFJ/IUcMjqAETk0c6dO0eLFi0ICAhg06ZN5MuXz7QvJCSE06dPs2bNmid2/T///BMAT0/PJ3YNg8GAi4vLE+v/aWM0GomNjcXV1RVnZ+esDkfEKmjqR8RKjRkzhpiYGGbPnm2WpCQrXLgw3bt3N32+f/8+w4YNo1ChQjg7O1OgQAE++eQT4uLizM4rUKAADRs2ZPv27VSqVAkXFxcKFizIggULTMcMHjyYgIAAAD7++GMMBgMFChQAoH379qZfP2zw4MEYDAaztg0bNlCtWjU8PT3Jnj07QUFBfPLJJ6b9j6tR2bRpE9WrVydbtmx4enrSuHFjTp48+cjrnT59mvbt2+Pp6YmHhwcdOnTg7t27j/+N/X81a9akVKlSHDlyhBo1auDm5kbhwoX5/vvvAQgLC6Ny5cq4uroSFBTExo0bzc6/cOECH3zwAUFBQbi6uuLl5cVbb71lNsUzb9483nrrLQBq1aqFwWDAYDCwZcsW4O//F+vXr6dixYq4urry1VdfmfYl16gYjUZq1apFnjx5uHbtmqn/+Ph4SpcuTaFChbhz585/3rPI00iJioiVWrVqFQULFuTFF19M1fGdOnVi4MCBPP/884wfP54aNWowcuRIWrRokeLY06dP8+abb1K3bl3Gjh1Lzpw5ad++PcePHwegadOmjB8/HoCWLVuycOFCJkyYYFH8x48fp2HDhsTFxTF06FDGjh3L66+/zo4dO/71vI0bN1KvXj2uXbvG4MGD6dWrFzt37qRq1aqPrPNo3rw5t2/fZuTIkTRv3px58+YxZMiQVMX4119/0bBhQypXrsyYMWNwdnamRYsWLF26lBYtWvDqq68yatQo7ty5w5tvvsnt27dN5+7bt4+dO3fSokULJk2aRJcuXQgNDaVmzZqmROmll16iW7duAHzyyScsXLiQhQsXUrx4cVM/4eHhtGzZkrp16zJx4kTKlSuXIk6DwcCcOXOIjY2lS5cupvZBgwZx/Phx5s6dS7Zs2VJ1zyJPHaOIWJ2oqCgjYGzcuHGqjj906JARMHbq1MmsvXfv3kbAuGnTJlNbQECAETBu3brV1Hbt2jWjs7Oz8aOPPjK1nTt3zggYv/jiC7M+g4ODjQEBASliGDRokPHhHynjx483AsY///zzsXEnX2Pu3LmmtnLlyhnz5s1rvHHjhqnt8OHDRjs7O2O7du1SXO+dd94x6/ONN94wenl5PfaayWrUqGEEjIsXLza1/fbbb0bAaGdnZ9y9e7epff369SnivHv3boo+d+3aZQSMCxYsMLUtW7bMCBg3b96c4vjk/xfr1q175L7g4GCztq+++soIGL/55hvj7t27jfb29sYePXr8572KPM00oiJihaKjowHIkSNHqo5fu3YtAL169TJr/+ijjwBS1LKUKFGC6tWrmz7nyZOHoKAgzp49m+aY/ym5tuXHH38kKSkpVedcuXKFQ4cO0b59e3LlymVqL1OmDHXr1jXd58MeHmEAqF69Ojdu3DD9Hv6b7Nmzm404BQUF4enpSfHixalcubKpPfnXD//+uLq6mn6dkJDAjRs3KFy4MJ6enhw8eDAVd/tAYGAg9erVS9Wx7777LvXq1aNr1660bduWQoUKMWLEiFRfS+RppERFxAq5u7sDmE01/JsLFy5gZ2dH4cKFzdp9fHzw9PTkwoULZu3+/v4p+siZMyd//fVXGiNO6e2336Zq1ap06tQJb29vWrRowXffffevSUtynEFBQSn2FS9enOvXr6eoxfjnveTMmRMgVfeSP3/+FHU1Hh4e+Pn5pWj7Z5/37t1j4MCB+Pn54ezsTO7cucmTJw+3bt0iKirqP6+dLDAwMNXHAsyePZu7d+9y6tQp5s2bZ5YwidgiJSoiVsjd3R1fX1+OHTtm0Xn//Ev3cR73KLAxFasVPO4aiYmJZp9dXV3ZunUrGzdupG3bthw5coS3336bunXrpjg2PdJzL487NzV9du3aleHDh9O8eXO+++47fvnlFzZs2ICXl1eqR5AAixONLVu2mAqkjx49atG5Ik8jJSoiVqphw4acOXOGXbt2/eexAQEBJCUlcerUKbP2yMhIbt26ZXqCJyPkzJmTW7dupWj/56gNgJ2dHS+//DLjxo3jxIkTDB8+nE2bNrF58+ZH9p0cZ3h4eIp9v/32G7lz57aaotHvv/+e4OBgxo4daypMrlatWorfm9Qmj6lx5coVunbtyiuvvELDhg3p3bv3I3/fRWyJEhURK9WnTx+yZctGp06diIyMTLH/zJkzTJw4EYBXX30VIMWTOePGjQPgtddey7C4ChUqRFRUFEeOHDG1XblyhRUrVpgdd/PmzRTnJj/R8s9HppPly5ePcuXKMX/+fLO/8I8dO8Yvv/xiuk9rYG9vn2LUZvLkySlGi5ITq0cld5bq3LkzSUlJzJ49m6+//hoHBwc6duyYqtEjkaeVFnwTsVKFChVi8eLFvP322xQvXtxsZdqdO3eybNky0zobZcuWJTg4mK+//ppbt25Ro0YN9u7dy/z582nSpAm1atXKsLhatGhB3759eeONN+jWrRt3795l+vTpFC1a1KyIdOjQoWzdupXXXnuNgIAArl27xrRp08ifPz/VqlV7bP9ffPEFDRo0oEqVKnTs2JF79+4xefJkPDw8GDx4cIbdR3o1bNiQhQsX4uHhQYkSJdi1axcbN27Ey8vL7Lhy5cphb2/P6NGjiYqKwtnZmdq1a5M3b16Lrjd37lzWrFnDvHnzyJ8/P/AgMWrTpg3Tp0/ngw8+yLB7E7EmSlRErNjrr7/OkSNH+OKLL/jxxx+ZPn06zs7OlClThrFjx9K5c2fTsbNmzaJgwYLMmzePFStW4OPjQ//+/Rk0aFCGxuTl5cWKFSvo1asXffr0ITAwkJEjR3Lq1CmzROX111/n/PnzzJkzh+vXr5M7d25q1KjBkCFDTMWpj1KnTh3WrVvHoEGDGDhwII6OjtSoUYPRo0dbXHj6JE2cOBF7e3sWLVpEbGwsVatWNa0B8zAfHx9mzJjByJEj6dixI4mJiWzevNmiROXSpUv07NmTRo0aERwcbGpv3bo1P/zwA3369KFBgwZW9fsjklH0rh8RERGxWqpREREREaulREVERESslhIVERERsVpKVERERMRqKVERERERq6VERURERKyW1lF5hiUlJXH58mVy5MiRoct8i4jIg3dD3b59G19fX+zsnvy4QGxsLPHx8enqw8nJCRcXlwyKKGMoUXmGXb58OcVbYkVEJGNdvHjRtJrwkxIbG4trDi+4fzdd/fj4+HDu3DmrSlaUqDzDcuTIAYBTiWAM9k5ZHI1I6pxcNyqrQxBJldu3oylbLND0s/ZJio+Ph/t3cS7ZAdL68zwxnqvH5xIfH69ERaxD8nSPwd5JiYo8NXK4u2d1CCIWydSpdQcnDPbOaTrVaKUVACqmFREREaulERURERFbYbB7sKX1XCukREVERMRWGAwPtrSea4WsM30SERERQSMqIiIitkNTPyIiImK1bHDqR4mKiIiIzUjHiIqVVoNYZ1QiIiIiaERFRETEdmjqR0RERKyWimlFRETEatngiIp1pk8iIiIiaERFRETEdtjg1I91RiUiIiKWS576SetmgcTERAYMGEBgYCCurq4UKlSIYcOGYTQaTccYjUYGDhxIvnz5cHV1pU6dOpw6dcqi6yhRERERsRXJIypp3SwwevRopk+fzpQpUzh58iSjR49mzJgxTJ482XTMmDFjmDRpEjNmzGDPnj1ky5aNevXqERsbm+rraOpHRERELLZz504aN27Ma6+9BkCBAgX49ttv2bt3L/BgNGXChAl89tlnNG7cGIAFCxbg7e3NypUradGiRaquoxEVERERW2EwpGNE5cHUT3R0tNkWFxf3yEu9+OKLhIaG8vvvvwNw+PBhtm/fToMGDQA4d+4cV69epU6dOqZzPDw8qFy5Mrt27Ur1LWlERURExFbYGR5saT0X8PPzM2seNGgQgwcPTnF4v379iI6OplixYtjb25OYmMjw4cNp3bo1AFevXgXA29vb7Dxvb2/TvtRQoiIiImIrMuCpn4sXL+Lu7m5qdnZ2fuTh3333HYsWLWLx4sWULFmSQ4cO0aNHD3x9fQkODk5bDI+gREVERERM3N3dzRKVx/n444/p16+fqdakdOnSXLhwgZEjRxIcHIyPjw8AkZGR5MuXz3ReZGQk5cqVS3U8qlERERGxFZn4ePLdu3exszNPI+zt7UlKSgIgMDAQHx8fQkNDTfujo6PZs2cPVapUSfV1NKIiIiJiKzJxwbdGjRoxfPhw/P39KVmyJL/++ivjxo3jnXfeedCdwUCPHj34/PPPKVKkCIGBgQwYMABfX1+aNGmS6usoUREREbEVmfiun8mTJzNgwAA++OADrl27hq+vL++99x4DBw40HdOnTx/u3LnDu+++y61bt6hWrRrr1q3DxcUl9WEZH15CTp4p0dHReHh44Fy6MwZ7p6wORyRVLm6bkNUhiKTK7ehoCj7nRVRUVKpqPtLD9PO85mAMDqlPAh5mvB9L3JbBmRKvJTSiIiIiYits8F0/SlRERERsRSZO/WQWJSoiIiK2wgZHVKwzKhERERE0oiIiImI7NPUjIiIi1isdUz9WOslinVGJiIiIoBEVERER26GpHxEREbFaBkM6nvpRoiIiIiJPkh5PFhEREck8GlERERGxFapREREREatlg1M/SlRERERshQ2OqFhn+iQiIiKCRlRERERsh6Z+RERExGrZ4NSPEhUREREbYTAYMNhYomKd4zwiIiIiaERFRETEZtjiiIoSFREREVth+P8tredaISUqIiIiNsIWR1RUoyIiIiJWSyMqIiIiNsIWR1SUqIiIiNgIJSoiIiJitWwxUVGNioiIiFgtjaiIiIjYCj2eLCIiItbKFqd+lKiIiIjYiAfvJExropKxsWQU1aiIiIiIxQoUKGAawXl4CwkJASA2NpaQkBC8vLzInj07zZo1IzIy0uLrKFERERGxEQZSJg6p3iwcUtm3bx9XrlwxbRs2bADgrbfeAqBnz56sWrWKZcuWERYWxuXLl2natKnF96SpHxERERuRmTUqefLkMfs8atQoChUqRI0aNYiKimL27NksXryY2rVrAzB37lyKFy/O7t27eeGFF1J9HY2oiIiIiEl0dLTZFhcX95/nxMfH88033/DOO+9gMBg4cOAACQkJ1KlTx3RMsWLF8Pf3Z9euXRbFo0RFRETEVhjSuQF+fn54eHiYtpEjR/7nZVeuXMmtW7do3749AFevXsXJyQlPT0+z47y9vbl69apFt6SpHxEREVuRjqkf4/+fd/HiRdzd3U3tzs7O/3nu7NmzadCgAb6+vmm69r9RoiIiImIj0lOjknyeu7u7WaLyXy5cuMDGjRtZvny5qc3Hx4f4+Hhu3bplNqoSGRmJj4+PRXFp6kdERETSbO7cueTNm5fXXnvN1FahQgUcHR0JDQ01tYWHhxMREUGVKlUs6l8jKiIiIjYiI0ZULJGUlMTcuXMJDg7GweHvlMLDw4OOHTvSq1cvcuXKhbu7O127dqVKlSoWPfEDSlRERERsRya/62fjxo1ERETwzjvvpNg3fvx47OzsaNasGXFxcdSrV49p06ZZfA0lKiIiIjYis0dUXnnlFYxG4yP3ubi4MHXqVKZOnZqmeJKpRkVERESslkZUREREbERmj6hkBiUqIiIiNkKJioiIiFgtW0xUVKMiIiIiVksjKiIiIrYikx9PzgxKVERERGyELU79KFERERGxEbaYqKhGRURERKyWRlRE0sDOzsBnXV6l5av/w9vLnSt/RrFw1R5GzVxnOubrIW1o+7r5Oy1+2XGCxh9avoS0yJMwZsRQvhg5zKytcJEgdh08lkURSXrZ4oiKEhWRNPiofV06v1mdzgMXcuLMFSqU9OerwW2IjrnHtG/DTMet33Gc9wZ9Y/ocF38/K8IVeaxixUvy/aq/E2wHe/218FRTMa2IALxQtiCrw46wbvtxACKu3KR5/YpULBlgdlx8/H0ib9zOihBFUsXewR5vb5+sDkMyiC2OqKhGRSQNdh8+S61KQRT2zwtA6aLPUaVcQX7ZccLsuOoVi3AhdCSHVwxg4idvk8sjW1aEK/JY586cplQRfyqWLkqXjm25dDEiq0MSMaMRlTQoUKAAPXr0oEePHhned9u2bSlevDiffPJJqo6/fv06JUqU4ODBg+TPnz/D45FH+3LuBtyzu3B4xWckJhqxtzcwaOpqlvy833TMhp0n+XHTYc7/cYOC+XMzpGsjfpzyPjWCx5KU9Oi3jYpkpucrVmLSjNkULlKUyKtX+XLkMBrVq8W2PYfIniNHVocnaaARFSvXvn170/8kg8GAl5cX9evX58iRIxl6nX379vHuu+9maJ8Ahw8fZu3atXTr1g2AhIQE+vbtS+nSpcmWLRu+vr60a9eOy5cvm87JnTs37dq1Y9CgQRkejzzem688T4sG/6P9J/Op0mo0nQYupEfbl2ndqLLpmGXrD7Am7CjHT19m1ZYjNO02g4qlCvBSxSJZGLnI3+q8Up/Gb7xJyVJlqF3nFb79YRVRUbdYuXxZVocmaWTAYPb3oEWblRap2FSiAlC/fn2uXLnClStXCA0NxcHBgYYNG2boNfLkyYObm1uG9gkwefJk3nrrLbJnzw7A3bt3OXjwIAMGDODgwYMsX76c8PBwXn/9dbPzOnTowKJFi7h582aGxySPNqJHE76cu4Fl6w9w/PRlvl2zj8mLNvFxh7qPPef8Hzf486/bFPLLk4mRiqSeh6cnhQoX4dzZM1kdiqRRmpOUdIzEPGk2l6g4Ozvj4+ODj48P5cqVo1+/fly8eJE///wTgIsXL9K8eXM8PT3JlSsXjRs35vz586bz27dvT5MmTfjyyy/Jly8fXl5ehISEkJCQYDqmQIECTJgwwfT5t99+o1q1ari4uFCiRAk2btyIwWBg5cqVAJw/fx6DwcDy5cupVasWbm5ulC1bll27dpn6SExM5Pvvv6dRo0amNg8PDzZs2EDz5s0JCgrihRdeYMqUKRw4cICIiL/nkUuWLImvry8rVqzI4N9NeRxXFyeSjElmbYlJRuzsHv9H6rm8nnh5ZOPq9egnHZ5ImsTExHD+3Fm8fVRcK9bD5hKVh8XExPDNN99QuHBhvLy8SEhIoF69euTIkYNt27axY8cOsmfPTv369YmPjzedt3nzZs6cOcPmzZuZP38+8+bNY968eY+8RmJiIk2aNMHNzY09e/bw9ddf8+mnnz7y2E8//ZTevXtz6NAhihYtSsuWLbl//8HjqkeOHCEqKoqKFSv+6z1FRUVhMBjw9PQ0a69UqRLbtm3713Pj4uKIjo422yRt1m49St+O9ahfrST++XLxeq0ydGtTi582HQYgm6sTI3o0oVLpAvjny0XNSkX5bvy7nLl4nQ07T2Zx9CIPDPqkDzu2byXiwnn27t5J+1ZvYm9nT9M3W2R1aJJWhnRuVsjmimlXr15tmjq5c+cO+fLlY/Xq1djZ2bF48WKSkpKYNWuWaYhr7ty5eHp6smXLFl555RUAcubMyZQpU7C3t6dYsWK89tprhIaG0rlz5xTX27BhA2fOnGHLli34/P+/QoYPH07duimnAHr37s1rr70GwJAhQyhZsiSnT5+mWLFiXLhwAXt7e/LmzfvYe4uNjaVv3760bNkSd3d3s32+vr78+uuv//p7M3LkSIYMGfKvx0jq9Bq9jEEfNGTiJ2+TJ2d2rvwZxezvdzDi65+BB6MrpYo8R+tGlfHM4cqVP6PYuOs3hk5bTXyC1lIR63D58h+816ENf928gVfuPFSuUpWfN20ndx5NTz6tbLGY1uYSlVq1ajF9+nQA/vrrL6ZNm0aDBg3Yu3cvhw8f5vTp0+T4RzV7bGwsZ878PSdbsmRJ7O3tTZ/z5cvH0aNHH3m98PBw/Pz8TEkKPBjdeJQyZcqY9Qlw7do1ihUrxr1793B2dn7sFyUhIYHmzZtjNBpN9/cwV1dX7t69+8hzk/Xv359evXqZPkdHR+Pn5/ev58ijxdyN4+Mvf+DjL3945P7YuAReD5mayVGJWGbmvEVZHYJkMCUqT4Fs2bJRuHBh0+dZs2bh4eHBzJkziYmJoUKFCixalPIPZ56H/gXh6Ohots9gMJCUlPTPUyz2cL/JX4jkfnPnzs3du3eJj4/HycnJ7LzkJOXChQts2rQpxWgKwM2bN83u4VGcnZ1xdnZO722IiIhkGptLVP7JYDBgZ2fHvXv3eP7551m6dCl58+Z95F/2aREUFMTFixeJjIzE29sbePD4sqXKlSsHwIkTJ0y/hr+TlFOnTrF582a8vLweef6xY8eoWbOmxdcVERHbYTA82NJ6rjWyuWLauLg4rl69ytWrVzl58iRdu3YlJiaGRo0a0bp1a3Lnzk3jxo3Ztm0b586dY8uWLXTr1o1Lly6l6Xp169alUKFCBAcHc+TIEXbs2MFnn30GWDaMlidPHp5//nm2b99uaktISODNN99k//79LFq0iMTERNO9PVz8e/fuXQ4cOGCqsRERkWfTg0QlrY8nZ3X0j2Zzicq6devIly8f+fLlo3Llyuzbt49ly5ZRs2ZN3Nzc2Lp1K/7+/jRt2pTixYvTsWNHYmNj0zzCYm9vz8qVK4mJieF///sfnTp1Mj314+LiYlFfnTp1MpuW+uOPP/jpp5+4dOkS5cqVM91Xvnz52Llzp+m4H3/8EX9/f6pXr56mexAREbFWBqPRqLW8M9iOHTuoVq0ap0+fplChQqk+7969ewQFBbF06VKqVKmS6vNeeOEFunXrRqtWrSyKMzo6Gg8PD5xLd8Zg7/TfJ4hYgYvbJmR1CCKpcjs6moLPeREVFZVh5QaPk/zzvGC377F3Tts7xRLj7nB20puZEq8lbL5GJTOsWLGC7NmzU6RIEU6fPk337t2pWrWqRUkKPHhyZ8GCBVy/fj3V51y/fp2mTZvSsmVLS8MWEREbo6d+5JFu375N3759iYiIIHfu3NSpU4exY8emqS9LC2Jz585Nnz590nQtERGxLbZYTKtEJQO0a9eOdu3aZXUYIiIiNkeJioiIiI2wszNgZ5e2oRFjGs970mzuqR8REZFnVfLUT1o3S/3xxx+0adMGLy8vXF1dKV26NPv37zftNxqNDBw4kHz58uHq6kqdOnU4deqURddQoiIiImIj0r6GiuVFuH/99RdVq1bF0dGRn3/+mRMnTjB27Fhy5sxpOmbMmDFMmjSJGTNmsGfPHrJly0a9evWIjY1N9XU09SMiIiIWGz16NH5+fsydO9fUFhgYaPq10WhkwoQJfPbZZzRu3BiABQsW4O3tzcqVK2nRInVv6daIioiIiI3IiKmf6Ohosy0uLu6R1/rpp5+oWLEib731Fnnz5qV8+fLMnDnTtP/cuXNcvXqVOnXqmNo8PDyoXLkyu3btSvU9KVERERGxERkx9ePn54eHh4dpGzly5COvdfbsWaZPn06RIkVYv34977//Pt26dWP+/PkAXL16FcD0Hrxk3t7epn2poakfERERG5ERC75dvHjRbGVaZ2fnRx6flJRExYoVGTFiBADly5fn2LFjzJgxg+Dg4DTF8CgaURERERETd3d3s+1xiUq+fPkoUaKEWVvx4sWJiIgAwMfHB4DIyEizYyIjI037UkOJioiIiI3IzMeTq1atSnh4uFnb77//TkBAAPCgsNbHx4fQ0FDT/ujoaPbs2WPR++w09SMiImIjDKRj6gfLzuvZsycvvvgiI0aMoHnz5uzdu5evv/6ar7/++kF/BgM9evTg888/p0iRIgQGBjJgwAB8fX1p0qRJqq+jREVERMRGZOa7fv73v/+xYsUK+vfvz9ChQwkMDGTChAm0bt3adEyfPn24c+cO7777Lrdu3aJatWqsW7cOFxeXVF9HiYqIiIikScOGDWnYsOFj9xsMBoYOHcrQoUPTfA0lKiIiIjYiI576sTZKVERERGxEZk79ZBYlKiIiIjbCFkdU9HiyiIiIWC2NqIiIiNgITf2IiIiI1bLFqR8lKiIiIrYiHSMqFq73lmlUoyIiIiJWSyMqIiIiNkJTPyIiImK1bLGYVlM/IiIiYrU0oiIiImIjNPUjIiIiVssWp36UqIiIiNgIWxxRUY2KiIiIWC2NqIiIiNgIWxxRUaIiIiJiI1SjIiIiIlbLFkdUVKMiIiIiVksjKiIiIjZCUz8iIiJitWxx6keJioiIiI0wkI4RlQyNJOOoRkVERESslkZUREREbISdwYBdGodU0nrek6ZERURExEaomFZERESsli0W06pGRURERKyWRlRERERshJ3hwZbWc62REhURERFbYUjHFI4SFREREXmSbLGYVjUqIiIiYrHBgwebineTt2LFipn2x8bGEhISgpeXF9mzZ6dZs2ZERkZafB0lKiIiIjbCkM7/LFWyZEmuXLli2rZv327a17NnT1atWsWyZcsICwvj8uXLNG3a1OJraOpHRETERmR2Ma2DgwM+Pj4p2qOiopg9ezaLFy+mdu3aAMydO5fixYuze/duXnjhhdRfIzUH/fTTT6nu8PXXX0/1sSIiIpJxMmIdlejoaLN2Z2dnnJ2dH3nOqVOn8PX1xcXFhSpVqjBy5Ej8/f05cOAACQkJ1KlTx3RssWLF8Pf3Z9euXRmfqDRp0iRVnRkMBhITE1N9cREREbEufn5+Zp8HDRrE4MGDUxxXuXJl5s2bR1BQEFeuXGHIkCFUr16dY8eOcfXqVZycnPD09DQ7x9vbm6tXr1oUT6oSlaSkJIs6FRERkcyXEU/9XLx4EXd3d1P740ZTGjRoYPp1mTJlqFy5MgEBAXz33Xe4urqmLYhHSFcxbWxsbEbFISIiIumU/FLCtG4A7u7uZtvjEpV/8vT0pGjRopw+fRofHx/i4+O5deuW2TGRkZGPrGn513uy6GggMTGRYcOG8dxzz5E9e3bOnj0LwIABA5g9e7al3YmIiIgNiImJ4cyZM+TLl48KFSrg6OhIaGioaX94eDgRERFUqVLFon4tTlSGDx/OvHnzGDNmDE5OTqb2UqVKMWvWLEu7ExERkQySPPWT1s0SvXv3JiwsjPPnz7Nz507eeOMN7O3tadmyJR4eHnTs2JFevXqxefNmDhw4QIcOHahSpYpFhbSQhseTFyxYwNdff83LL79Mly5dTO1ly5blt99+s7Q7ERERySCZ+fbkS5cu0bJlS27cuEGePHmoVq0au3fvJk+ePACMHz8eOzs7mjVrRlxcHPXq1WPatGkWx2VxovLHH39QuHDhFO1JSUkkJCRYHICIiIhkjMxcQn/JkiX/ut/FxYWpU6cyderUtAX0/yye+ilRogTbtm1L0f79999Tvnz5dAUjIiIi8jCLR1QGDhxIcHAwf/zxB0lJSSxfvpzw8HAWLFjA6tWrn0SMIiIikgoPP72TlnOtkcUjKo0bN2bVqlVs3LiRbNmyMXDgQE6ePMmqVauoW7fuk4hRREREUsGQzs0apeldP9WrV2fDhg0ZHYuIiIikQ2YW02aWNL+UcP/+/Zw8eRJ4ULdSoUKFDAtKREREBNKQqCQ/jrRjxw7TGv63bt3ixRdfZMmSJeTPnz+jYxQREZFUyOy3J2cGi2tUOnXqREJCAidPnuTmzZvcvHmTkydPkpSURKdOnZ5EjCIiIpIKyVM/ad2skcUjKmFhYezcuZOgoCBTW1BQEJMnT6Z69eoZGpyIiIhYxkrzjTSzeETFz8/vkQu7JSYm4uvrmyFBiYiIiEAaEpUvvviCrl27sn//flPb/v376d69O19++WWGBiciIiKp98xO/eTMmdPsBu7cuUPlypVxcHhw+v3793FwcOCdd96hSZMmTyRQERER+Xe2WEybqkRlwoQJTzgMERERSa9ndh2V4ODgJx2HiIiISAppXvANIDY2lvj4eLM2d3f3dAUkIiIiaZOepfCtczwlDcW0d+7c4cMPPyRv3rxky5aNnDlzmm0iIiKSNZJfSpjWzRpZnKj06dOHTZs2MX36dJydnZk1axZDhgzB19eXBQsWPIkYRUREJBUMhvRt1sjiqZ9Vq1axYMECatasSYcOHahevTqFCxcmICCARYsW0bp16ycRp4iIiDyDLB5RuXnzJgULFgQe1KPcvHkTgGrVqrF169aMjU5ERERSzRbXUbE4USlYsCDnzp0DoFixYnz33XfAg5GW5JcUioiISOazxakfixOVDh06cPjwYQD69evH1KlTcXFxoWfPnnz88ccZHqCIiIikji0W01pco9KzZ0/Tr+vUqcNvv/3GgQMHKFy4MGXKlMnQ4EREROTZlq51VAACAgIICAjIiFhEREQkHdIzhWOlAyqpS1QmTZqU6g67deuW5mBEREQk7Z7ZJfTHjx+fqs4MBoMSladQxJYvtaKwPDXe+fZQVocgkioJ92KyOgSbkKpEJfkpHxEREbFedqThKZmHzrVG6a5REREREevwzE79iIiIiPUzGMDOxopprXWkR0REREQjKiIiIrbCLh0jKmk970lToiIiImIjbLFGJU1TP9u2baNNmzZUqVKFP/74A4CFCxeyffv2DA1OREREUi95RCWtW3qMGjUKg8FAjx49TG2xsbGEhITg5eVF9uzZadasGZGRkZbdk6WB/PDDD9SrVw9XV1d+/fVX4uLiAIiKimLEiBGWdiciIiJPuX379vHVV1+leJVOz549WbVqFcuWLSMsLIzLly/TtGlTi/q2OFH5/PPPmTFjBjNnzsTR0dHUXrVqVQ4ePGhpdyIiIpJBsuLtyTExMbRu3ZqZM2eSM2dOU3tUVBSzZ89m3Lhx1K5dmwoVKjB37lx27tzJ7t27U92/xYlKeHg4L730Uop2Dw8Pbt26ZWl3IiIikkEy4u3J0dHRZlvyzMnjhISE8Nprr1GnTh2z9gMHDpCQkGDWXqxYMfz9/dm1a1fq78mC+wfAx8eH06dPp2jfvn07BQsWtLQ7ERERySB26dwA/Pz88PDwMG0jR4587PWWLFnCwYMHH3nM1atXcXJywtPT06zd29ubq1evpvqeLH7qp3PnznTv3p05c+ZgMBi4fPkyu3btonfv3gwYMMDS7kRERMSKXLx40ez9b87Ozo89rnv37mzYsAEXF5cnFo/FiUq/fv1ISkri5Zdf5u7du7z00ks4OzvTu3dvunbt+iRiFBERkVRIT61J8nnu7u6pelHtgQMHuHbtGs8//7ypLTExka1btzJlyhTWr19PfHw8t27dMhtViYyMxMfHJ9VxWZyoGAwGPv30Uz7++GNOnz5NTEwMJUqUIHv27JZ2JSIiIhnIjr9rTdJyriVefvlljh49atbWoUMHihUrRt++ffHz88PR0ZHQ0FCaNWsGPKhzjYiIoEqVKqm+TpoXfHNycqJEiRJpPV1EREQyWEaMqKRWjhw5KFWqlFlbtmzZ8PLyMrV37NiRXr16kStXLtzd3enatStVqlThhRdeSPV1LE5UatWq9a+r123atMnSLkVERMQGjR8/Hjs7O5o1a0ZcXBz16tVj2rRpFvVhcaJSrlw5s88JCQkcOnSIY8eOERwcbGl3IiIikkGy+l0/W7ZsMfvs4uLC1KlTmTp1apr7tDhRGT9+/CPbBw8eTExMTJoDERERkfQxGEhzjYqVvuonbe/6eZQ2bdowZ86cjOpORERELJQVK9M+aRmWqOzateuJPkctIiIizx6Lp37++TIho9HIlStX2L9/vxZ8ExERyUJZXaPyJFicqHh4eJh9trOzIygoiKFDh/LKK69kWGAiIiJiGcP//5fWc62RRYlKYmIiHTp0oHTp0mZvSBQREZGsZ4sjKhbVqNjb2/PKK6/oLckiIiKSKSwupi1VqhRnz559ErGIiIhIOiSPqKR1s0YWJyqff/45vXv3ZvXq1Vy5coXo6GizTURERLKGwWBI12aNUl2jMnToUD766CNeffVVAF5//XWzmzIajRgMBhITEzM+ShEREXkmpTpRGTJkCF26dGHz5s1PMh4RERFJI1sspk11omI0GgGoUaPGEwtGRERE0i4z356cWSx6PNla569ERETkwXt+0vqun7Se96RZlKgULVr0P5OVmzdvpisgERERkWQWJSpDhgxJsTKtiIiIWIdnukYFoEWLFuTNm/dJxSIiIiLpkZ63ID/tiYrqU0RERKybHQbs0phxpPW8Jy3VC74lP/UjIiIikllSPaKSlJT0JOMQERGRdHrmH08WERER6/XMF9OKiIiI9bLFdVQsfimhiIiISGbRiIqIiIiNUI2KiIiIWC070jH1Y6WPJytRERERsRG2OKKiGhURERGxWhpRERERsRF2pH0EwlpHLpSoiIiI2AiDwZDmV95Y66tylKiIiIjYCANpf7egdaYp1jvSIyIiIlZs+vTplClTBnd3d9zd3alSpQo///yzaX9sbCwhISF4eXmRPXt2mjVrRmRkpMXXUaIiIiJiI5JXpk3rZon8+fMzatQoDhw4wP79+6lduzaNGzfm+PHjAPTs2ZNVq1axbNkywsLCuHz5Mk2bNrX4njT1IyIiYkMyawqnUaNGZp+HDx/O9OnT2b17N/nz52f27NksXryY2rVrAzB37lyKFy/O7t27eeGFF1J9HY2oiIiI2IjkdVTSugFER0ebbXFxcf953cTERJYsWcKdO3eoUqUKBw4cICEhgTp16piOKVasGP7+/uzatcuie1KiIiIiIiZ+fn54eHiYtpEjRz722KNHj5I9e3acnZ3p0qULK1asoESJEly9ehUnJyc8PT3Njvf29ubq1asWxaOpHxERERuREY8nX7x4EXd3d1O7s7PzY88JCgri0KFDREVF8f333xMcHExYWFiarv84SlRERERsREYs+Jb8FE9qODk5UbhwYQAqVKjAvn37mDhxIm+//Tbx8fHcunXLbFQlMjISHx+fNMUlIiIiT7nkEZW0bumVlJREXFwcFSpUwNHRkdDQUNO+8PBwIiIiqFKlikV9akRFRERELNa/f38aNGiAv78/t2/fZvHixWzZsoX169fj4eFBx44d6dWrF7ly5cLd3Z2uXbtSpUoVi574ASUqIiIiNiMzV6a9du0a7dq148qVK3h4eFCmTBnWr19P3bp1ARg/fjx2dnY0a9aMuLg46tWrx7Rp0yyOS4mKiIiIjcjMd/3Mnj37X/e7uLgwdepUpk6dmqZ4kqlGRURERKyWRlRERERsREY89WNtlKiIiIjYiMyc+sksSlRERERsRGYW02YWax3pEREREdGIioiIiK14+OWCaTnXGilRERERsRF2GLBL4yROWs970pSoiIiI2AhbHFFRjYqIiIhYLY2oiIiI2AjD//+X1nOtkRIVERERG2GLUz9KVERERGyEIR3FtNY6oqIaFREREbFaGlERERGxEZr6EREREaulREVERESsli0+9aMaFREREbFaGlERERGxEXaGB1taz7VGSlRERERshC1O/ShREclgM6ZNZfy4L4i8epXSZcoybsJk/lepUlaHJWKmUcm8tHzel59P/snC/X+QO5sTk5qWeOSxE8POsSciKpMjlLRQMa2I/Ktl3y2l78e9mDx1Bv+rVJkpkybw+mv1OHw8nLx582Z1eCIAFPRy5eWiXly4ec/UduNuPO8vO2Z2XO0iXjQsmZdDl29ndogiJiqmFclAkyaMo0PHzrRr34HiJUowedoMXN3cmD9vTlaHJgKAs4MdIdUCmLXrInfiE03tRiNExd432/7n78HuC7eIu5+UhRGLJQz8Pf1j+X/WSYmKSAaJj4/n14MHqP1yHVObnZ0dtWvXYe/uXVkYmcjfOlTKz69/RHPsasy/HheYy5UCudzYcvpGJkUmGSG5mDatmzVSoiKSQa5fv05iYiJ583qbtef19ubq1atZFJXI36oU8KRALleWHrzyn8fWLOzFpVuxnPrzbiZEJhkl7aMp1jumYjOJyvnz5zEYDBw6dAiALVu2YDAYuHXrVpbGZanw8HB8fHy4fTv1c8L9+vWja9euTzAqEXna5XJzpF3F55i6/QIJScZ/PdbR3sCLgTk1miJWIUsTlfbt22MwGOjSpUuKfSEhIRgMBtq3b5+mvl988UWuXLmCh4dHOqPMePPmzcPT0/OR+/r370/Xrl3JkSNHin2nT58mR44cKc7t3bs38+fP5+zZs08gWkmt3LlzY29vz7VrkWbt1yIj8fHxyaKoRB4o6OWGh6sjI14LYmHrsixsXZYSPtmpVyw3C1uXNXvio7K/J872BradvZl1AUuaJD/1k9bNGmX5iIqfnx9Llizh3r2/q89jY2NZvHgx/v7+ae7XyckJHx8fDNb6O/8IERERrF69+pHJWUJCAi1btqR69eop9uXOnZt69eoxffr0TIhSHsfJyYnyz1dg86ZQU1tSUhKbN4dS6YUqWRiZCBy7cps+q36j/5pw03bm+l12nPuL/mvCMT40yFKzsBcHLkVzOy7x8R2KVTKkc7NGWZ6oPP/88/j5+bF8+XJT2/Lly/H396d8+fKmtnXr1lGtWjU8PT3x8vKiYcOGnDlz5rH9PmrqZ+bMmfj5+eHm5sYbb7zBuHHjzEYnBg8eTLly5Vi4cCEFChTAw8ODFi1amE3D/FccyVNQy5cvp1atWri5uVG2bFl27dpliqtDhw5ERUVhMBgwGAwMHjwYgO+++46yZcvy3HPPpbifzz77jGLFitG8efNH3m+jRo1YsmTJY38/JHN069GLubNn8s2C+fx28iTdQt7n7p07tAvukNWhyTMu9n4Sl27Fmm1x95OIiUvk0q1Y03HeOZwo5p2NzZr2ESuR5YkKwDvvvMPcuXNNn+fMmUOHDuY/2O/cuUOvXr3Yv38/oaGh2NnZ8cYbb5CUlLrH5nbs2EGXLl3o3r07hw4dom7dugwfPjzFcWfOnGHlypWsXr2a1atXExYWxqhRoyyO49NPP6V3794cOnSIokWL0rJlS+7fv8+LL77IhAkTcHd358qVK1y5coXevXsDsG3bNipWrJgipk2bNrFs2TKmTp362PurVKkSly5d4vz58489Ji4ujujoaLNNMtZbzd9m5OgvGTpkIJUrluPw4UP8uHod3t7e/32yiBWoWciLm3cTOKq1U55KdhiwM6Rxs9IxFatY8K1Nmzb079+fCxcuAA+SiiVLlrBlyxbTMc2aNTM7Z86cOeTJk4cTJ05QqlSp/7zG5MmTadCggSkpKFq0KDt37mT16tVmxyUlJTFv3jxTjUjbtm0JDQ01JTWpjaN379689tprAAwZMoSSJUty+vRpihUrhoeHBwaDIUXdwoULF1IkKjdu3KB9+/Z88803uLu7P/b+fH19TX0UKFDgkceMHDmSIUOGPLYPyRjvh3zI+yEfZnUYIv/p8w2nU7QtPXSFpYf++6kgsU7pmcKxzjTFSkZU8uTJw2uvvca8efOYO3cur732Grlz5zY75tSpU7Rs2ZKCBQvi7u5u+ss4IiIiVdcIDw+n0j+WMf/nZ4ACBQqYFbLmy5ePa9euWRxHmTJlzPoAzPp5lHv37uHi4mLW1rlzZ1q1asVLL730r+e6uroCcPfu4x8l7N+/P1FRUabt4sWL/9qniIg8ZTKxSGXkyJH873//I0eOHOTNm5cmTZoQHh5udkxsbCwhISF4eXmRPXt2mjVrRmRk5GN6fDSrSFTgwfTPvHnzmD9/Pu+8806K/Y0aNeLmzZvMnDmTPXv2sGfPHuDBIlsZydHR0eyzwWAwm9ZJbRwP95Nc0Ptf01S5c+fmr7/+MmvbtGkTX375JQ4ODjg4ONCxY0eioqJwcHBgzpy/Vzu9efNBdX6ePHke27+zszPu7u5mm4iISFqEhYUREhLC7t272bBhAwkJCbzyyivcuXPHdEzPnj1ZtWoVy5YtIywsjMuXL9O0aVOLrmMVUz8A9evXJz4+HoPBQL169cz23bhxg/DwcGbOnGl66mX79u0W9R8UFMS+ffvM2v75+b9kRBzw4OmQxMSU1fTly5fnxIkTZm27du0yO/bHH39k9OjR7Ny506zo9tixYzg6OlKyZEmL4xEREduQmW9PXrdundnnefPmkTdvXg4cOMBLL71EVFQUs2fPZvHixdSuXRuAuXPnUrx4cXbv3s0LL7yQqutYTaJib2/PyZMnTb9+WM6cOfHy8uLrr78mX758RERE0K9fP4v679q1Ky+99BLjxo2jUaNGbNq0iZ9//tmix5czIg54ML0UExNDaGgoZcuWxc3NDTc3N+rVq0enTp1ITEw0/R4UL17c7Nz9+/djZ2eXoi5n27ZtVK9e3TQFJCIiz6D0rIfy/+f980ELZ2dnnJ2d//P0qKgHb9jOlSsXAAcOHCAhIYE6df5+rUixYsXw9/dn165dqU5UrGbqB3jsdISdnR1LlizhwIEDlCpVip49e/LFF19Y1HfVqlWZMWMG48aNo2zZsqxbt46ePXumqAn5NxkRBzxYjK5Lly68/fbb5MmThzFjxgDQoEEDHBwc2Lhxo8V9LlmyhM6dO1t8noiI2I6MKFHx8/PDw8PDtI0cOfI/r5uUlESPHj2oWrWq6R/SV69excnJKcUipd4WvlbEYDQa/30tZRvWuXNnfvvtN7Zt25bVoZhMnTqVn376ifXr16f6nJ9//pmPPvqII0eO4OCQ+kGy6OhoPDw8iLwRpXoVeWq88+2hrA5BJFUS7sXw/XvViYp68j9jk3+ebzoUQfYcabtWzO1oapfz5+LFi2bxpmZE5f333+fnn39m+/bt5M+fH4DFixfToUMH4uLizI6tVKkStWrVYvTo0amKy2qmfjLDl19+Sd26dcmWLRs///wz8+fPZ9q0aVkdlpn33nuPW7ducfv27Ucuo/8od+7cYe7cuRYlKSIiYoMy4PlkSx+2+PDDD1m9ejVbt241JSkAPj4+xMfHc+vWLbNRlUgLXyvyTP3NtnfvXsaMGcPt27cpWLAgkyZNolOnTlkdlhkHBwc+/fRTi8558803n1A0IiLyNMnMYlqj0UjXrl1ZsWIFW7ZsITAw0Gx/hQoVcHR0JDQ01LQGWXh4OBEREVSpkvrXijxTicp3332X1SGIiIg8Mel5uaCl54WEhLB48WJ+/PFHcuTIYao78fDwwNXVFQ8PDzp27EivXr3IlSsX7u7udO3alSpVqqS6kBaesURFREREMkbyi3Br1qxp1j537lzTy3XHjx+PnZ0dzZo1Iy4ujnr16llccqFERURExEZk5hL6qXkWx8XFhalTp/7ru+r+ixIVERERW2GDL/tRoiIiImIjMrOYNrNY1YJvIiIiIg/TiIqIiIiNyMynfjKLEhUREREbYYMlKkpUREREbIYNZiqqURERERGrpREVERERG2GLT/0oUREREbERKqYVERERq2WDJSqqURERERHrpREVERERW2GDQypKVERERGyELRbTaupHRERErJZGVERERGyEnvoRERERq2WDJSpKVERERGyGDWYqqlERERERq6URFRERERthi0/9KFERERGxESqmFREREatlgyUqqlERERER66URFREREVthg0MqSlRERERshIppRURExHqlo5jWSvMU1aiIiIiI9dKIioiIiI2wwRIVJSoiIiI2wwYzFSUqIiIiNsIWi2lVoyIiIiJWS4mKiIiIjUheQj+tm6W2bt1Ko0aN8PX1xWAwsHLlSrP9RqORgQMHki9fPlxdXalTpw6nTp2y6BpKVERERGyEIZ2bpe7cuUPZsmWZOnXqI/ePGTOGSZMmMWPGDPbs2UO2bNmoV68esbGxqb6GalRERERsRSYX0zZo0IAGDRo8cp/RaGTChAl89tlnNG7cGIAFCxbg7e3NypUradGiRaquoREVERERMYmOjjbb4uLi0tTPuXPnuHr1KnXq1DG1eXh4ULlyZXbt2pXqfpSoiIiI2AhDOv8D8PPzw8PDw7SNHDkyTbFcvXoVAG9vb7N2b29v077U0NSPiIiIjTCQ9iX0k0+7ePEi7u7upnZnZ+d0x5UeGlERERGxERlRTOvu7m62pTVR8fHxASAyMtKsPTIy0rQvNZSoiIiISIYLDAzEx8eH0NBQU1t0dDR79uyhSpUqqe5HUz8iIiI2Iq3roSSfa6mYmBhOnz5t+nzu3DkOHTpErly58Pf3p0ePHnz++ecUKVKEwMBABgwYgK+vL02aNEn1NZSoiIiI2IzMfT55//791KpVy/S5V69eAAQHBzNv3jz69OnDnTt3ePfdd7l16xbVqlVj3bp1uLi4pPoaSlREREQkTWrWrInRaHzsfoPBwNChQxk6dGiar6FERURExEZk9tRPZlCiIiIiYiMyeWHaTKFERURExEbY4oiKHk8WERERq6URFRERERvx8FL4aTnXGilRERERsRU2WKSiREVERMRG2GCeohoVERERsV4aUREREbERtvjUjxIVERERG6FiWhEREbFeNlikohoVERERsVoaUREREbERNjigokRFRETEVqiYVkRERKxY2otprXVMRTUqIiIiYrU0oiIiImIjbHHqRyMqIiIiYrU0oiIiImIjNKIiIiIikok0oiIiImIjtIS+iIiIWC1bnPpRoiIiImIjbHFlWtWoiIiIiNXSiIqIiIitsMEhFSUqIiIiNkLFtCIiImK1bLGYVjUqIiIiYrU0oiIiImIjbLBERSMqIiIiNsOQzi0Npk6dSoECBXBxcaFy5crs3bs3nTdhTomKiIiIpMnSpUvp1asXgwYN4uDBg5QtW5Z69epx7dq1DLuGEhUREREbYUjnf5YaN24cnTt3pkOHDpQoUYIZM2bg5ubGnDlzMuyeVKPyDDMajQDcjo7O4khEUi/hXkxWhyCSKgn37gB//6zNDLdvR6f56Z3btx/8XRD9j78TnJ2dcXZ2TnF8fHw8Bw4coH///qY2Ozs76tSpw65du9IWxCMoUXmG3b59G4DCgX5ZHImIiO26ffs2Hh4eT/QaTk5O+Pj4UCSdP8+zZ8+On595H4MGDWLw4MEpjr1+/TqJiYl4e3ubtXt7e/Pbb7+lK46HKVF5hvn6+nLx4kVy5MiBwVofoH8KRUdH4+fnx8WLF3F3d8/qcET+k76zT4bRaOT27dv4+vo+8Wu5uLhw7tw54uPj09WP0WhM8ffBo0ZTMpMSlWeYnZ0d+fPnz+owbJa7u7t+6MtTRd/ZjPekR1Ie5uLigouLS6ZdL3fu3Njb2xMZGWnWHhkZiY+PT4ZdR8W0IiIiYjEnJycqVKhAaGioqS0pKYnQ0FCqVKmSYdfRiIqIiIikSa9evQgODqZixYpUqlSJCRMmcOfOHTp06JBh11CiIpLBnJ2dGTRoUJbP64qklr6zklZvv/02f/75JwMHDuTq1auUK1eOdevWpSiwTQ+DMTOfmxIRERGxgGpURERExGopURERERGrpURFRERErJYSFREREbFaSlRERETEailREREREaulREXESmnlALFV+m6LJZSoiFip5BeDJSUlZXEkIunzzTffsG7dOtNng8Gg77WkmhIVESvTtWtXateuTdeuXQkPD8fOTn9M5em1d+9edu/eTatWrWjdujVDhgwB0PdaUk0r04pYmZs3b/Lzzz+zYcMGVqxYwXvvvUejRo2oXr16VocmkmanTp3ihx9+YP78+bi7uzN//nyCgoJMI4cij6NERcSKJCYmYm9vb/q8YMECFi1aRGxsLCEhITRv3jwLoxOxXFJSEklJSTg4OJCQkMAff/xBixYtuHbtGgsWLKBatWpZHaJYOSUqIlbo/v37ODg8eGfo7t27+frrr9m/fz9DhgzhjTfeyOLoRP7bihUryJUrFzVq1DDVozw83VO7dm0uXbrEzp07yZ07N0lJSZoOkkdSoiJiBbZv386JEyeIiIigY8eOBAYGmiUrR44c4csvvyQqKorRo0dTrFixLI5Y5PEOHz5M+fLlsbe3Z82aNbzyyiumJ32SkpKwt7fn/v37PP/88/j5+bFmzZosjlismdJXkSw2Z84cWrZsycKFC1m6dCnly5fn1KlTODg4kJiYCECZMmUIDg7m3LlzhIWFAZj2iVib3LlzU7FiRdq1a8fbb7/NunXrMBgMGAwG09Smg4MDU6ZM4c8//2TlypVZG7BYNSUqIllo1apV9OnTh/Hjx7N+/XpOnjxJtWrV6NGjB4mJiWZD4S+//DJt27Zl0KBB3Lx506yWRcSa5MiRg8TERBo1akSzZs1o2bIlu3fvBiA0NJT4+HjgQQIeEBDArl27sjJcsXJKVESyyI0bN1iwYAHvv/8+b775Jm5ubjg4OFC3bl2uX7+Ovb296YmI5GHzbt26UaFCBfbu3ZuVoYukkFyHcv/+fVxcXPDz86Nw4cIMGTKE1q1b06BBA/LmzcuPP/5oKrD19PTk/fffZ+XKlURERGTxHYi1UqIiksn2798PgJeXF+XLl6do0aJm+8uWLcu1a9e4c+cOCQkJwN+Lvzk7O+Pt7c2xY8cyN2iRx+jSpQuRkZGm0T8HBwecnJzImzcvoaGhPPfcc4SEhODg4MCtW7d48cUXcXFxAR4kN+XLlyckJIRs2bJl5W2IFXPI6gBEniWzZs3i119/pWLFigB88sknKY6xt7c3jaA4OjoCsGvXLsqXL4+Liwtjx47lxIkTmRe0yL84f/48O3fu5I033iApKclUi5ItWzauXbsGQMuWLSlYsCBBQUF07doVV1dXGjduDEDOnDlp0qQJXl5eWXkbYsU0oiKSiQIDA1m2bBnHjx83a3/44buEhAQcHR1N/8J86aWX6Nu3L87OzsCDH+xVq1bNvKBF/kX+/Pn5/vvvgQePHyd/lxs3bsy5c+coVqwY7u7urF+/nqFDh1KzZk2mT58O/D1d5O/vnzXBy1NBiYpIJqpWrRp169Zl8+bNZsnJw6tz2tnZYTAYuHv3LvXr1+f69ets3LhRK3iKVUn+/vbr149NmzYxf/584O+1Utzc3FiyZAkFChRg2bJleHp6UqBAAcaPH8/atWvNjhX5N/qWiGQiZ2dnihQpwhdffMHVq1eBB8WHD3Nzc+P+/fvUrl2bU6dOcfjwYZycnFIcJ5IVjEYj9+/fNyXOhQsXpnnz5ixfvpx9+/aZjqtUqRIHDx5k4cKFeHt7m9rz58+PnZ2dXkooqaZERSSTJP8LdPDgweTPn5+GDRsCD4oPH05CoqOjOX/+PHZ2dvz22284OjqaLf4mkpViYmJM38W1a9dy+/ZtmjdvzqVLl5g1a5ZZ/VS5cuXIkyfPI/vRaIqklr4pIk/Qw/9qfHjqZsqUKcTExFCjRg0AsySkdu3aDBs2jK1btypJEauyZcsWihcvTmxsLB9//DHdunXjzp07VK1alU8//ZSNGzcyduxYNm/ebHaeFkCX9NAS+iJPyMPvLtm4cSN3794lMDCQ0qVLk5SUxJYtWwgJCSEpKYlvvvmGoKAg3N3dzfpQkiLWZN++fXzyySccOXKEhIQEjhw5Qv78+TEajRgMBn766ScmT57M3bt3adiwIf379zf9OUg+RsRSSlREnrC+ffsyffp08ubNy4ULFxg3bhwhISHY2dlx+fJlunTpwrlz56hcuTJNmzalVq1auLq6ZnXYIo/Uq1cvJkyYgJ+fH7/++iu5cuUiPj4eJycnAI4fP05YWBjDhw+ndOnSBAQEMHz4cHLnzp3FkcvTSomKSAZ7+F+Ohw8fpn379nz11Vd4e3uzcuVKevbsyeeff06vXr1MC18tWbKEY8eOMX/+fPr160fDhg0JCAjIytsQAf7+PievkbJ161auXbvGnDlzOHXqFJs2bcLf35/Y2FjT9xke1LL88ssvXLx4kbJly1KzZs2suwl5qilREXlCxowZQ2RkJPfv32fixImm9unTpxMSEsKIESMICQkhR44cpn0XL17E2dmZvHnzZkXIImYenr7866+/gAfr+ADs3buX/v37c+HCBcLCwnjuuecA+Oabb6hVq5bps0h6qZhWJIP8M+e/fPky48eP5+jRo8TGxpra33//faZOncqAAQMYNWqU2T4/Pz8lKWI1kpOUQYMGUbduXSpWrMjQoUO5f/8+lSpVYvTo0RQoUIAXXniB1atXU7duXaZOnUq+fPmyOHKxJUpURDJI8nTPzZs3AZgwYQLDhg0jLCyMJUuWmB37/vvvM3LkSMLCwkwrzopYi4efVps2bRqzZs2ibdu2tGnThlGjRtGxY0du3bpFxYoVmThxIpUrV6Zbt27Y2dmxdetWsxVqRdJLUz8i6fTw8PiECRNYsWIF06dPp0SJEgD079+fsWPHMmfOHNq0aWN2bvL8v56IEGu0d+9eduzYQUBAAE2bNgVg27Zt1K9fn2bNmjFp0iQ8PT0BOHfuHAEBAdjZ2elpNclQ+iaJpMPDScrOnTtJSEhg27ZtDBs2jCFDhlC0aFFGjhyJ0WikY8eO2NnZ0apVK9P5SlLEWh0/fpwXXngBgDlz5gAPEuvq1auzbt06GjRogJ2dHaNHj8bb25vAwEDgwZ8JJSmSkTT1I5IOyUlK3759eeutt4iLi6Ndu3asWbOG7t278/vvvwMwatQoPvroI9q0acMvv/xi1oeSFLFGJUuWZNmyZbi5ubF7927i4uJMiXX16tVZv349CxYsYObMmWbnacVZyWia+hGx0D8fw9y3bx8NGjRg2bJl1KpVC3jwWHKtWrV44YUXGD9+PEFBQcCDJ346d+6sf3GKVXl4ZPCfvv32W9q2bUvfvn0ZMmQIDg4OplHAI0eOUKJECX2f5YlS6itigZYtW7J+/Xqztvv37+Pi4mJ6VX1CQgJly5Zl7dq1bNq0iWHDhhEeHg48KKL957t9RLLSw0nK8uXL+eqrrxg3bhzx8fHAg+/8/PnzGT16NIMGDTJ7IWGZMmX0fZYnTmmwiAUCAwNp0KAB8CAhcXR0xMfHh+vXrxMWFkahQoVM/+IsXLgwgYGBLF26lNjYWJYtW2b6Aa9/gYo1MBqNpiSlX79+LFy4kKJFi3L27FmWLVvGhAkTqFixIq1btwagY8eOREdHM2HCBOzt7U396PssT5JGVERSIflxzREjRuDk5MT06dOZOXMmUVFRBAYG0qtXLwYPHsz333+PwWDAYDDg4uJCnTp1WLt2LatXr+arr77K4rsQMZecOE+cOJGFCxeyevVqNm/ezKRJk9izZw/vv/8+e/bsITExkdatWzN58mQOHz6sOhTJVEqDRVLhnz+Yf/75Z06cOEG2bNlo2bIlXbp04a+//uLdd99l//795M+fnxUrVpj+9VmpUiWOHz+eRdGLPN7Nmze5ePEio0aNonz58ixfvpx33nmHKVOmMHPmTD788EMmT55M5cqV6dy5M507dwbQ02qSaZSoiPyHRxUa/vTTT7Rt25YRI0ZgNBpp27YtQ4cOpUSJEkycOJHcuXOTJ08e1q1bh729PXZ2dvj4+GTRHYj87Z8JRs6cOalfvz5lypTh6NGj9OvXj6FDh/LBBx+QL18+mjVrRsuWLVmzZg2lS5c2nackRTKLnvoR+RcPJymHDh0ie/bsuLq6mt5j0qpVKw4cOED//v15++23cXV1JSYmBjc3N7NHlxctWsSWLVsoXLhwlt2LyOOe7klOXubOncu8efNYunQpPj4+/PDDD+zcuZOoqCi++uors7oUkcyiERWRf/FwsrF06VKioqKoU6cOLVu2pGnTpixevJhWrVoxevRoAN544w08PDwAOHjwIAsXLuS7775j9erVSlIkyyV/n6dOncq+ffvInz8/DRo0oGrVqgCcOXOGiIgIYmNjuXnzJvPmzaNatWqMHTsWgMTERCUrkuk0oiLyCA8Pj2/atInOnTszZ84czp8/z9q1azl37hzdu3c3PQ3Rtm1b1qxZw8KFC3nttdcAuH37Ntu2baNkyZIEBARk2b2IPDySMnDgQKZNm0bNmjW5ePEit2/f5vPPP6dp06bcuHGDcuXKERsbS/bs2XF3d2f//v04Ojpm8R3Is0yJisi/WLFiBb/88gsBAQH069cPeDBSMnHiRE6cOEGPHj1MycqQIUP47LPPsLe3V6GhWKXjx48zf/58mjVrRuXKlTly5AjTpk1jzZo1jB07lubNmxMdHc2CBQtwd3enVatWpnVS9AiyZBUlKiKPcfbsWTp06MCRI0fo1KkTX3zxhWnfwYMHmTRpEr/99hsdO3Y0PQkBGh4X6/Tjjz/y/vvvkytXLtauXWtaoPDkyZNMnDiRtWvXMnbsWN566y2z8/R9lqymh+FF/t8/c/aCBQvy6aefUrFiRVasWMHGjRtN+55//nm6d+9O3rx52b17t9n5+qEu1iB57Z/k76WLiwsvvvgiZ8+e5ezZs6bjihcvTvfu3WnYsCGtWrUiLCzMrB99nyWraURFBPM5/D///JPY2Fj8/PyAB29F/vzzz7l//z79+vWjdu3apvN+//13ChcurAWwxKo8PPW4du1aXn31VQB27NjBqFGjOHv2LNOnT+ell14ynXP06FHWrVtHr169lJyIVVGiIs+8h3+oDxs2jFWrVnH9+nVy587NZ599xuuvv86mTZtM7z/p37+/6eWDyf7tpW4imenh7+KJEycoVaoUvXv3ZsyYMQBs2bKFadOmER4ezpQpU6hevXqKPjTdI9ZEP1nlmZecpAwZMoSpU6fy8ccfs2/fPu7evUv//v05d+4ctWvXpkePHri4uPDRRx9x8OBBsz6UpIg1ePjdPRMmTGDixIl4eXnx5Zdf0qNHDwBq1qzJBx98QFBQED169CA0NDRFP0pSxJqojFueeYmJidy4cYN169YxdepUmjVrRmhoKBEREXz55ZcEBgYCUKdOHWJjYwkLC6NcuXJZG7TIQ5JHBZOT7sGDBzN58mRmzZpF/fr1CQsLY8GCBdy/f58pU6ZQs2ZNDAYDw4YNY+HChbz88stZfAcij6epH3kmxcfHc//+fdzc3AC4cOECdevW5ejRo2zZsoU333yTL774gi5dunDnzh0WLlxIy5YtTYu5gaZ7xDr89ddf5MyZ0+xz48aNadGiBR988AEAN27c4Ntvv6V///506dLF9ATbwYMHKVeunL7HYtX07ZRnzg8//EDLli2pVq0an3/+OQABAQHkzJmT1q1b89ZbbzF+/Hi6dOkCwJUrV1i0aBHbtm0z60c/3CWrvfvuu7Rr186szdnZmT/++IPz58+b2ry8vGjVqhXVq1dn7Nix9O7dG3jw9JqdnZ3pCSERa6SftPJM+eqrr3jnnXcICAigRo0aDB48mKlTpwLQpk0bdu7cycsvv0ynTp0AuHfvHj169MDV1ZUGDRpkZegiKXz22Wf88MMPANy9exd48BhykyZNOHbsmFktVa5cuShfvjwNGzZk5cqVTJw40bRPSbdYM3075Zkxa9Ysunbtyvz58xk3bhzjx4+nefPmJCYmcvv2bZo0aUKTJk04ffo0r776Ku+99x716tUjIiKCNWvWYG9vr395ilX48ccfAfD398fJyYk5c+aQP39+IiMjsbOzo379+kRERDBjxgz27t0LQExMDCdPnqRevXrUqlWLX375hZiYmKy8DZFUUaIiz4QtW7bw7rvv8tlnn9GkSRNT+4kTJ5g1axa+vr506dIFHx8fBg4ciKOjI/Hx8dSqVYuDBw/i6OjI/fv39S9PyXI///wzb7zxBmPHjjUt5vbiiy9SsGBBXnrpJSIjI6lbty7Dhg3jwIEDdO7cmWrVqlG9enV+//13QkJCCAoKIiIiQt9neSroqR95Jjz33HNUq1aNAwcOsH//fipWrEizZs24c+cOw4cPx93dnY8++ojLly/TsWPHRy4jrnediDVo0KABkydPpkePHhiNRnr37k2xYsVYsmQJbdq04cUXX2Tnzp288cYb+Pv7Ex4eTlhYGIGBgfTq1Qt4sGx+8eLFlajIU0FP/cgz49SpU3Tr1g17e3tu3brFvXv3+OGHHyhQoADw4AmIihUrsnz5crNRFxFrNHXqVLp27cqoUaPo06cPAKdPn6Zt27ZERkayc+dOfHx8zM75/fffmTNnDl999RXbtm2jVKlSWRG6iEWUTsszo0iRIkyaNIm4uDiOHTtGv379KFCgAElJSaYh9OLFi5MnT54sjlTkv4WEhDB58mT69etnWnW2cOHCLFy4EB8fH2rUqMHly5dNx9+/f5+5c+fyyy+/sGXLFiUp8tTQiIo8c86cOUNISAh2dnb079/ftIR4o0aNiImJITQ0VEPiYlX+bc2eKVOm0K1bN7ORlTNnzlCvXj0qVKjA0qVLTQvCxcXFERUVRd68eTMzfJF0UaIiz6TkaaDkZGX8+PEcO3aMY8eO4ejoqMXcxGo8/F1ctWoVf/31F3FxcXTu3Nl0THKyMnr0aD7++GMA/vjjD3x8fEzL4es7LU8rJSryzDp16hQ9e/bkl19+oWDBghw9etT0dI8KZ8UaPJxc9OvXj4ULF1KgQAFOnTpF+fLlGT16NGXKlMHOzo4pU6bQq1cv+vbty7Bhw0x96AWD8rTTT2N5ZhUpUoQvv/ySadOmMW7cOBwcHJSkiFVJTlLGjRvHwoUL+emnn6hQoQJLliyhVatW3Lt3j4kTJ1KuXDk+/PBDYmJiWLNmjdkbwZWkyNNOIyoi/09JiliLX375hZs3b9KiRQuioqLo168f1apVo3Xr1ixfvpyOHTsyYMAApk2bhq+vL+PGjTMth5+cpDycrIg8zfRTWeT/KUkRa7Bjxw7q169PhQoVSEpKolWrVrz11luULFmSQ4cO0adPH4YMGUK3bt3IkycPwcHBBAcHs2LFCooWLaokRWyOfjKLiFiR69evA+Dm5saSJUuwt7fn7bffBuC7774jICCAli1bAmAwGPjggw+4ceMGhQoVMvWhJEVsiUrARUSsSOPGjWnTpg0GgwFHR0dmzJjBwoULgQdv8r506RKJiYlER0ezdOlSihcvzrfffou9vT2JiYlZHL1IxlONioiIlYiLi8PZ2ZlFixYRFhZGx44dGTNmDH/++Sd9+vShUqVKlCtXDgBXV1eyZcvGgQMHcHR0zNrARZ4gJSoiIllo8+bNnD17lo4dO5rarly5wv/+9z+GDRtGgwYNCAkJ4dq1a/Tr148XX3yRb775BgcHBzp37qyn1cTmKVEREckimzdv5uWXXwbglVdeoUmTJlSrVo1SpUqxZMkSFi9ezOLFi7lw4QKDBg3i+vXrvPvuu7Rq1crUh9ZJEVunGhURkSzi5+dH9erVqVWrFnFxcZw4cYKaNWsyceJErly5wp07dzh06BAlS5Zk6NChGAwGdu7cadaHkhSxdRpRERHJQr///jv9+/cnISGBbt26kZiYyNdff829e/dYt24djRs35vvvv8fe3p7z58/j7++vpfDlmaJERUQki4WHh9OjRw+SkpKYOHEiRYoUITw8nHHjxtG1a1fKli1rtjaK3tsjzxIlKiIiVuDUqVN8+OGHAHz22Wemt3qDEhN5tumbLyJiBYoUKcKUKVOws7NjxIgRbN++3bRPSYo8y/TtFxGxEkWKFGHSpEnY29vTs2dPjhw5ktUhiWQ5JSoiIlakSJEifPHFF7z00kuUKlUqq8MRyXKqURERsWKqT5FnnRIVERERsVpK00VERMRqKVERERERq6VERURERKyWEhURERGxWkpURERExGopURERERGrpURFRDJU+/btadKkielzzZo16dGjR6bHsWXLFgwGA7du3XrsMQaDgZUrV6a6z8GDB1OuXLl0xXX+/HkMBgOHDh1KVz8izwolKiLPgPbt22MwGDAYDDg5OVG4cGGGDh3K/fv3n/i1ly9fzrBhw1J1bGqSCxF5tjhkdQAikjnq16/P3LlziYuLY+3atYSEhODo6Ej//v1THBsfH4+Tk1OGXDdXrlwZ0o+IPJs0oiLyjHB2dsbHx4eAgADef/996tSpw08//QT8PV0zfPhwfH19CQoKAuDixYs0b94cT09PcuXKRePGjTl//rypz8TERHr16oWnpydeXl706dOHfy52/c+pn7i4OPr27Yufnx/Ozs4ULlyY2bNnc/78eWrVqgVAzpw5MRgMtG/fHniwjPzIkSMJDAzE1dWVsmXL8v3335tdZ+3atRQtWhRXV1dq1aplFmdq9e3bl6JFi+Lm5kbBggUZMGAACQkJKY776quv8PPzw83NjebNmxMVFWW2f9asWRQvXhwXFxeKFSvGtGnTLI5FRB5QoiLyjHJ1dSU+Pt70OTQ0lPDwcDZs2MDq1atJSEigXr165MiRg23btrFjxw6yZ89O/fr1TeeNHTuWefPmMWfOHLZv387NmzdZsWLFv163Xbt2fPvtt0yaNImTJ0/y1VdfkT17dvz8/Pjhhx8ACA8P58qVK0ycOBGAkSNHsmDBAmbMmMHx48fp2bMnbdq0ISwsDHiQUDVt2pRGjRpx6NAhOnXqRL9+/Sz+PcmRIwfz5s3jxIkTTJw4kZkzZzJ+/HizY06fPs13333HqlWrWLduHb/++isffPCBaf+iRYsYOHAgw4cP5+TJk4wYMYIBAwYwf/58i+MREcAoIjYvODjY2LhxY6PRaDQmJSUZN2zYYHR2djb27t3btN/b29sYFxdnOmfhwoXGoKAgY1JSkqktLi7O6Orqaly/fr3RaDQa8+XLZxwzZoxpf0JCgjF//vymaxmNRmONGjWM3bt3NxqNRmN4eLgRMG7YsOGRcW7evNkIGP/66y9TW2xsrNHNzc24c+dOs2M7duxobNmypdFoNBr79+9vLFGihNn+vn37pujrnwDjihUrHrv/iy++MFaoUMH0edCgQUZ7e3vjpUuXTG0///yz0c7OznjlyhWj0Wg0FipUyLh48WKzfoYNG2asUqWK0Wg0Gs+dO2cEjL/++utjrysif1ONisgzYvXq1WTPnp2EhASSkpJo1aoVgwcPNu0vXbq0WV3K4cOHOX36NDly5DDrJzY2ljNnzhAVFcWVK1eoXLmyaZ+DgwMVK1ZMMf2T7NChQ9jb21OjRo1Ux3369Gnu3r1L3bp1zdrj4+MpX748ACdPnjSLA6BKlSqpvkaypUuXMmnSJM6cOUNMTAz379/H3d3d7Bh/f3+ee+45s+skJSURHh5Ojhw5OHPmDB07dqRz586mY+7fv4+Hh4fF8YiIimlFnhm1atVi+vTpODk54evri4OD+R//bNmymX2OiYmhQoUKLFq0KEVfefLkSVMMrq6uFp8TExMDwJo1a8wSBHhQd5NRdu3aRevWrRkyZAj16tXDw8ODJUuWMHbsWItjnTlzZorEyd7ePsNiFXmWKFEReUZky5aNwoULp/r4559/nqVLl5I3b94UowrJ8uXLx549e3jppZeAByMHBw4c4Pnnn3/k8aVLlyYpKYmwsDDq1KmTYn/yiE5iYqKprUSJEjg7OxMREfHYkZjixYubCoOT7d69+79v8iE7d+4kICCATz/91NR24cKFFMdFRERw+fJlfH19Tdexs7MjKCgIb29vfH19OXv2LK1bt7bo+iLyaCqmFZFHat26Nblz56Zx48Zs27aNc+fOsWXLFrp168alS5cA6N69O6NGjWLlypX89ttvfPDBB/+6BkqBAgUIDg7mnXfeYeXKlaY+v/vuOwACAgIwGAysXr2aP//8k5iYGHLkyEHv3r3p2bMn8+fP58yZMxw8eJDJkyebClS7dOnCqVOn+PjjjwkPD2fx4sXMmzfPovstUqQIERERLFmyhDNnzjBp0qRHFga7uLgQHBzM4cOH2bZtG926daN58+b4+PgAMGTIEEaOHMmkSZP4/fffOXr0KHPnzmXcuHEWxSMiDyhREZFHcnNzY+vWrfj7+9O0aVOKFy9Ox44diY2NNY2wfPTRR7Rt25bg4GCqVKlCjhw5eOONN/613+nTp/Pmm2/ywQcfUKxYMTp37sydO3cAeO655xgyZAj9+vXD29ubDz/8EIBhw4YxYMAARo4cSfHixalfvz5r1qwhMDAQeFA38sMPP7By5UrKli3LjBkzGDFihEX3+/rrr9OzZ08+/PBDypUrx86dOxkwYECK4woXLkzTpk159dVXeeWVVyhTpozZ48edOnVi1qxZzJ07l9KlS1OjRg3mzZtnilVELGMwPq7qTURERCSLaURFRERErJYSFREREbFaSlRERETEailREREREaulREVERESslhIVERERsVpKVERERMRqKVERERERq6VERURERKyWEhURERGxWkpURERExGr9H2zovDUKkiJaAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Compute confusion matrix\n", + "cnf_matrix = confusion_matrix(y_test, yhat, labels=[2,4])\n", + "np.set_printoptions(precision=2)\n", + "\n", + "print (classification_report(y_test, yhat))\n", + "\n", + "# Plot non-normalized confusion matrix\n", + "plt.figure()\n", + "plot_confusion_matrix(cnf_matrix, classes=['Benign(2)','Malignant(4)'],normalize= False, title='Confusion matrix')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You can also easily use the __f1_score__ from sklearn library:\n" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.9639038982104676" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from sklearn.metrics import f1_score\n", + "f1_score(y_test, yhat, average='weighted') " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's try the jaccard index for accuracy:\n" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.9444444444444444" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from sklearn.metrics import jaccard_score\n", + "jaccard_score(y_test, yhat,pos_label=2)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

Practice

\n", + "Can you rebuild the model, but this time with a __linear__ kernel? You can use __kernel='linear'__ option, when you define the svm. How the accuracy changes with the new kernel function?\n" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Avg F1-score: 0.9639038982104676\n", + "Jaccard score: 0.9038461538461539\n", + "\n", + "Classification Report:\n", + "\n", + " precision recall f1-score support\n", + "\n", + " 0 1.00 0.94 0.97 90\n", + " 1 0.90 1.00 0.95 47\n", + "\n", + " accuracy 0.96 137\n", + " macro avg 0.95 0.97 0.96 137\n", + "weighted avg 0.97 0.96 0.96 137\n", + "\n" + ] + } + ], + "source": [ + "import pandas as pd\n", + "import numpy as np\n", + "from sklearn import preprocessing\n", + "from sklearn.model_selection import train_test_split\n", + "from sklearn import svm\n", + "from sklearn.metrics import classification_report, f1_score\n", + "\n", + "# Fungsi hitung Jaccard manual (untuk sklearn lama)\n", + "def jaccard_manual(y_true, y_pred):\n", + " intersection = np.logical_and(y_true == 1, y_pred == 1).sum()\n", + " union = np.logical_or(y_true == 1, y_pred == 1).sum()\n", + " return intersection / union if union != 0 else 0\n", + "\n", + "# ================================\n", + "# 1. Load Data\n", + "# ================================\n", + "cell_df = pd.read_csv(\"cell_samples.csv\")\n", + "\n", + "# ================================\n", + "# 2. Bersihkan Kolom BareNuc\n", + "# ================================\n", + "cell_df = cell_df[pd.to_numeric(cell_df['BareNuc'], errors='coerce').notnull()]\n", + "cell_df['BareNuc'] = cell_df['BareNuc'].astype('int')\n", + "\n", + "# ================================\n", + "# 3. Buat Feature dan Label\n", + "# ================================\n", + "feature_df = cell_df[['Clump','UnifSize','UnifShape','MargAdh',\n", + " 'SingEpiSize','BareNuc','BlandChrom','NormNucl','Mit']].astype(float)\n", + "\n", + "X = np.asarray(feature_df)\n", + "y = np.where(cell_df['Class'] == 2, 0, 1) # 0 = Benign, 1 = Malignant\n", + "\n", + "# ================================\n", + "# 4. Split Train/Test\n", + "# ================================\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=4)\n", + "\n", + "# ================================\n", + "# 5. Model SVM Kernel LINEAR\n", + "# ================================\n", + "model = svm.SVC(kernel='linear')\n", + "model.fit(X_train, y_train)\n", + "\n", + "# ================================\n", + "# 6. Prediksi\n", + "# ================================\n", + "y_pred = model.predict(X_test)\n", + "\n", + "# ================================\n", + "# 7. Evaluasi\n", + "# ================================\n", + "print(\"Avg F1-score:\", f1_score(y_test, y_pred, average='weighted'))\n", + "print(\"Jaccard score:\", jaccard_manual(y_test, y_pred))\n", + "print(\"\\nClassification Report:\\n\")\n", + "print(classification_report(y_test, y_pred))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
Click here for the solution\n", + "\n", + "```python\n", + "clf2 = svm.SVC(kernel='linear')\n", + "clf2.fit(X_train, y_train) \n", + "yhat2 = clf2.predict(X_test)\n", + "print(\"Avg F1-score: %.4f\" % f1_score(y_test, yhat2, average='weighted'))\n", + "print(\"Jaccard score: %.4f\" % jaccard_score(y_test, yhat2,pos_label=2))\n", + "\n", + "```\n", + "\n", + "
\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Thank you for completing this lab!\n", + "\n", + "\n", + "## Author\n", + "\n", + "Saeed Aghabozorgi\n", + "\n", + "\n", + "### Other Contributors\n", + "\n", + "Joseph Santarcangelo\n", + "\n", + "##

© IBM Corporation 2020. All rights reserved.

\n", + "\n", + "\n", + "\n", + "\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.8" + }, + "prev_pub_hash": "33c7dcfb268d8bbcaef711e72c89e89dc7bc1929452f1913b971040b140900c5" + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/Tugas.Classification/Eva Yusfika Hidayah_202310715012_F5A2_ML0101EN-Clas-Decision-Trees-drug.ipynb b/Tugas.Classification/Eva Yusfika Hidayah_202310715012_F5A2_ML0101EN-Clas-Decision-Trees-drug.ipynb new file mode 100644 index 0000000..c98beda --- /dev/null +++ b/Tugas.Classification/Eva Yusfika Hidayah_202310715012_F5A2_ML0101EN-Clas-Decision-Trees-drug.ipynb @@ -0,0 +1,788 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

\n", + " \n", + " \"Skills\n", + " \n", + "

\n", + "\n", + "# Decision Trees\n", + "\n", + "Estimated time needed: **15** minutes\n", + "\n", + "## Objectives\n", + "\n", + "After completing this lab you will be able to:\n", + "\n", + "* Develop a classification model using Decision Tree Algorithm\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In this lab exercise, you will learn a popular machine learning algorithm, Decision Trees. You will use this classification algorithm to build a model from the historical data of patients, and their response to different medications. Then you will use the trained decision tree to predict the class of an unknown patient, or to find a proper drug for a new patient.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

Table of contents

\n", + "\n", + "
\n", + "
    \n", + "
  1. About the dataset
  2. \n", + "
  3. Downloading the Data
  4. \n", + "
  5. Pre-processing
  6. \n", + "
  7. Setting up the Decision Tree
  8. \n", + "
  9. Modeling
  10. \n", + "
  11. Prediction
  12. \n", + "
  13. Evaluation
  14. \n", + "
  15. Visualization
  16. \n", + "
\n", + "
\n", + "
\n", + "
\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Import the Following Libraries:\n", + "\n", + "
    \n", + "
  • numpy (as np)
  • \n", + "
  • pandas
  • \n", + "
  • DecisionTreeClassifier from sklearn.tree
  • \n", + "
\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "if you uisng you own version comment out\n" + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "metadata": {}, + "outputs": [], + "source": [ + "# Surpress warnings:\n", + "def warn(*args, **kwargs):\n", + " pass\n", + "import warnings\n", + "warnings.warn = warn" + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "metadata": {}, + "outputs": [], + "source": [ + "import sys\n", + "import numpy as np \n", + "import pandas as pd\n", + "from sklearn.tree import DecisionTreeClassifier\n", + "import sklearn.tree as tree" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "

About the dataset

\n", + " Imagine that you are a medical researcher compiling data for a study. You have collected data about a set of patients, all of whom suffered from the same illness. During their course of treatment, each patient responded to one of 5 medications, Drug A, Drug B, Drug c, Drug x and y. \n", + "
\n", + "
\n", + " Part of your job is to build a model to find out which drug might be appropriate for a future patient with the same illness. The features of this dataset are Age, Sex, Blood Pressure, and the Cholesterol of the patients, and the target is the drug that each patient responded to.\n", + "
\n", + "
\n", + " It is a sample of multiclass classifier, and you can use the training part of the dataset \n", + " to build a decision tree, and then use it to predict the class of an unknown patient, or to prescribe a drug to a new patient.\n", + "
\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "

Downloading the Data

\n", + " To download the data, we will use pandas library to read itdirectly into a dataframe from IBM Object Storage.\n", + "
\n" + ] + }, + { + "cell_type": "code", + "execution_count": 51, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
AgeSexBPCholesterolNa_to_KDrug
023FHIGHHIGH25.355drugY
147MLOWHIGH13.093drugC
247MLOWHIGH10.114drugC
328FNORMALHIGH7.798drugX
461FLOWHIGH18.043drugY
\n", + "
" + ], + "text/plain": [ + " Age Sex BP Cholesterol Na_to_K Drug\n", + "0 23 F HIGH HIGH 25.355 drugY\n", + "1 47 M LOW HIGH 13.093 drugC\n", + "2 47 M LOW HIGH 10.114 drugC\n", + "3 28 F NORMAL HIGH 7.798 drugX\n", + "4 61 F LOW HIGH 18.043 drugY" + ] + }, + "execution_count": 51, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "my_data = pd.read_csv('https://cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud/IBMDeveloperSkillsNetwork-ML0101EN-SkillsNetwork/labs/Module%203/data/drug200.csv', delimiter=\",\")\n", + "my_data.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "

Practice

\n", + " What is the size of data? \n", + "
\n" + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Shape of data: (200, 6)\n", + "Number of rows: 200\n", + "Number of columns: 6\n" + ] + } + ], + "source": [ + "# Menampilkan ukuran data\n", + "print(\"Shape of data:\", my_data.shape)\n", + "\n", + "# Menampilkan jumlah baris dan kolom secara terpisah\n", + "print(\"Number of rows:\", my_data.shape[0])\n", + "print(\"Number of columns:\", my_data.shape[1])\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
Click here for the solution\n", + "\n", + "```python\n", + "my_data.shape\n", + "\n", + "```\n", + "\n", + "
\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "

Pre-processing

\n", + "
\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Using my_data as the Drug.csv data read by pandas, declare the following variables:
\n", + "\n", + "
    \n", + "
  • X as the Feature Matrix (data of my_data)
  • \n", + "
  • y as the response vector (target)
  • \n", + "
\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Remove the column containing the target name since it doesn't contain numeric values.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 53, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[23, 'F', 'HIGH', 'HIGH', 25.355],\n", + " [47, 'M', 'LOW', 'HIGH', 13.093],\n", + " [47, 'M', 'LOW', 'HIGH', 10.114],\n", + " [28, 'F', 'NORMAL', 'HIGH', 7.798],\n", + " [61, 'F', 'LOW', 'HIGH', 18.043]], dtype=object)" + ] + }, + "execution_count": 53, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "X = my_data[['Age', 'Sex', 'BP', 'Cholesterol', 'Na_to_K']].values\n", + "X[0:5]\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As you may figure out, some features in this dataset are categorical, such as **Sex** or **BP**. Unfortunately, Sklearn Decision Trees does not handle categorical variables. We can still convert these features to numerical values using the **LabelEncoder() method**\n", + "to convert the categorical variable into dummy/indicator variables.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 54, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[23, 0, 0, 0, 25.355],\n", + " [47, 1, 1, 0, 13.093],\n", + " [47, 1, 1, 0, 10.114],\n", + " [28, 0, 2, 0, 7.798],\n", + " [61, 0, 1, 0, 18.043]], dtype=object)" + ] + }, + "execution_count": 54, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from sklearn import preprocessing\n", + "le_sex = preprocessing.LabelEncoder()\n", + "le_sex.fit(['F','M'])\n", + "X[:,1] = le_sex.transform(X[:,1]) \n", + "\n", + "\n", + "le_BP = preprocessing.LabelEncoder()\n", + "le_BP.fit([ 'LOW', 'NORMAL', 'HIGH'])\n", + "X[:,2] = le_BP.transform(X[:,2])\n", + "\n", + "\n", + "le_Chol = preprocessing.LabelEncoder()\n", + "le_Chol.fit([ 'NORMAL', 'HIGH'])\n", + "X[:,3] = le_Chol.transform(X[:,3]) \n", + "\n", + "X[0:5]\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now we can fill the target variable.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 55, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0 drugY\n", + "1 drugC\n", + "2 drugC\n", + "3 drugX\n", + "4 drugY\n", + "Name: Drug, dtype: object" + ] + }, + "execution_count": 55, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "y = my_data[\"Drug\"]\n", + "y[0:5]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "\n", + "
\n", + "

Setting up the Decision Tree

\n", + " We will be using train/test split on our decision tree. Let's import train_test_split from sklearn.cross_validation.\n", + "
\n" + ] + }, + { + "cell_type": "code", + "execution_count": 56, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.model_selection import train_test_split" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now train_test_split will return 4 different parameters. We will name them:
\n", + "X_trainset, X_testset, y_trainset, y_testset

\n", + "The train_test_split will need the parameters:
\n", + "X, y, test_size=0.3, and random_state=3.

\n", + "The X and y are the arrays required before the split, the test_size represents the ratio of the testing dataset, and the random_state ensures that we obtain the same splits.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 57, + "metadata": {}, + "outputs": [], + "source": [ + "X_trainset, X_testset, y_trainset, y_testset = train_test_split(X, y, test_size=0.3, random_state=3)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

Practice

\n", + "Print the shape of X_trainset and y_trainset. Ensure that the dimensions match.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 58, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Shape of X training set (140, 5) & Size of Y training set (140,)\n" + ] + } + ], + "source": [ + "print('Shape of X training set {}'.format(X_trainset.shape),'&',' Size of Y training set {}'.format(y_trainset.shape))\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
Click here for the solution\n", + "\n", + "```python\n", + "print('Shape of X training set {}'.format(X_trainset.shape),'&',' Size of Y training set {}'.format(y_trainset.shape))\n", + "\n", + "```\n", + "\n", + "
\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Print the shape of X_testset and y_testset. Ensure that the dimensions match.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 59, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Shape of X test set (60, 5) & Size of y test set (60,)\n" + ] + } + ], + "source": [ + "print('Shape of X test set {}'.format(X_testset.shape),'&','Size of y test set {}'.format(y_testset.shape))\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
Click here for the solution\n", + "\n", + "```python\n", + "print('Shape of X test set {}'.format(X_testset.shape),'&','Size of y test set {}'.format(y_testset.shape))\n", + "\n", + "```\n", + "\n", + "
\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "\n", + "
\n", + "

Modeling

\n", + " We will first create an instance of the DecisionTreeClassifier called drugTree.
\n", + " Inside of the classifier, specify criterion=\"entropy\" so we can see the information gain of each node.\n", + "
\n" + ] + }, + { + "cell_type": "code", + "execution_count": 60, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "DecisionTreeClassifier(class_weight=None, criterion='entropy', max_depth=4,\n", + " max_features=None, max_leaf_nodes=None,\n", + " min_impurity_decrease=0.0, min_impurity_split=None,\n", + " min_samples_leaf=1, min_samples_split=2,\n", + " min_weight_fraction_leaf=0.0, presort=False, random_state=None,\n", + " splitter='best')" + ] + }, + "execution_count": 60, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "drugTree = DecisionTreeClassifier(criterion=\"entropy\", max_depth = 4)\n", + "drugTree # it shows the default parameters" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Next, we will fit the data with the training feature matrix X_trainset and training response vector y_trainset \n" + ] + }, + { + "cell_type": "code", + "execution_count": 67, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "DecisionTreeClassifier(class_weight=None, criterion='entropy', max_depth=4,\n", + " max_features=None, max_leaf_nodes=None,\n", + " min_impurity_decrease=0.0, min_impurity_split=None,\n", + " min_samples_leaf=1, min_samples_split=2,\n", + " min_weight_fraction_leaf=0.0, presort=False, random_state=None,\n", + " splitter='best')" + ] + }, + "execution_count": 67, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "drugTree.fit(X_trainset,y_trainset)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "\n", + "
\n", + "

Prediction

\n", + " Let's make some predictions on the testing dataset and store it into a variable called predTree.\n", + "
\n" + ] + }, + { + "cell_type": "code", + "execution_count": 68, + "metadata": {}, + "outputs": [], + "source": [ + "predTree = drugTree.predict(X_testset)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You can print out predTree and y_testset if you want to visually compare the predictions to the actual values.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 63, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "['drugY' 'drugX' 'drugX' 'drugX' 'drugX']\n", + "40 drugY\n", + "51 drugX\n", + "139 drugX\n", + "197 drugX\n", + "170 drugX\n", + "Name: Drug, dtype: object\n" + ] + } + ], + "source": [ + "print (predTree [0:5])\n", + "print (y_testset [0:5])\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "\n", + "
\n", + "

Evaluation

\n", + " Next, let's import metrics from sklearn and check the accuracy of our model.\n", + "
\n" + ] + }, + { + "cell_type": "code", + "execution_count": 64, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "DecisionTrees's Accuracy: 0.9833333333333333\n" + ] + } + ], + "source": [ + "from sklearn import metrics\n", + "import matplotlib.pyplot as plt\n", + "print(\"DecisionTrees's Accuracy: \", metrics.accuracy_score(y_testset, predTree))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Accuracy classification score** computes subset accuracy: the set of labels predicted for a sample must exactly match the corresponding set of labels in y_true.\n", + "\n", + "In multilabel classification, the function returns the subset accuracy. If the entire set of predicted labels for a sample strictly matches with the true set of labels, then the subset accuracy is 1.0; otherwise it is 0.0.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "\n", + "
\n", + "

Visualization

\n", + "\n", + "Let's visualize the tree\n", + "\n", + "
\n" + ] + }, + { + "cell_type": "code", + "execution_count": 65, + "metadata": {}, + "outputs": [], + "source": [ + "# Notice: You might need to uncomment and install the pydotplus and graphviz libraries if you have not installed these before\n", + "#!conda install -c conda-forge pydotplus -y\n", + "#!conda install -c conda-forge python-graphviz -y\n", + "\n", + "#After executing the code below, a file named 'tree.png' would be generated which contains the decision tree image." + ] + }, + { + "cell_type": "code", + "execution_count": 66, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.tree import export_graphviz\n", + "export_graphviz(drugTree, out_file='tree.dot', filled=True, feature_names=['Age', 'Sex', 'BP', 'Cholesterol', 'Na_to_K'])\n", + "!dot -Tpng tree.dot -o tree.png\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Thank you for completing this lab!\n", + "\n", + "## Author\n", + "\n", + "Saeed Aghabozorgi\n", + "\n", + "### Other Contributors\n", + "\n", + "Joseph Santarcangelo\n", + "\n", + "Richard Ye\n", + "\n", + "##

© IBM Corporation 2020. All rights reserved.

\n", + " \n", + "\n", + "\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python", + "language": "python", + "name": "conda-env-python-py" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.12" + }, + "prev_pub_hash": "1228bf81fd1be0f6e7dda62256f4ffcb19b064217fc51f2e012abde9b84c2b0d" + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/Tugas.Classification/Eva Yusfika Hidayah_202310715012_F5A2_ML0101EN-Clas-K-Nearest-neighbors-CustCat.ipynb b/Tugas.Classification/Eva Yusfika Hidayah_202310715012_F5A2_ML0101EN-Clas-K-Nearest-neighbors-CustCat.ipynb new file mode 100644 index 0000000..f30f35f --- /dev/null +++ b/Tugas.Classification/Eva Yusfika Hidayah_202310715012_F5A2_ML0101EN-Clas-K-Nearest-neighbors-CustCat.ipynb @@ -0,0 +1,890 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

\n", + " \n", + " \"Skills\n", + " \n", + "

\n", + "\n", + "# K-Nearest Neighbors\n", + "\n", + "Estimated time needed: **25** minutes\n", + "\n", + "## Objectives\n", + "\n", + "After completing this lab you will be able to:\n", + "\n", + "* Use K Nearest neighbors to classify data\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In this Lab you will load a customer dataset, fit the data, and use K-Nearest Neighbors to predict a data point. But what is **K-Nearest Neighbors**?\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**K-Nearest Neighbors** is a supervised learning algorithm. Where the data is 'trained' with data points corresponding to their classification. To predict the class of a given data point, it takes into account the classes of the 'K' nearest data points and chooses the class in which the majority of the 'K' nearest data points belong to as the predicted class.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Here's an visualization of the K-Nearest Neighbors algorithm.\n", + "\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In this case, we have data points of Class A and B. We want to predict what the star (test data point) is. If we consider a k value of 3 (3 nearest data points), we will obtain a prediction of Class B. Yet if we consider a k value of 6, we will obtain a prediction of Class A.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In this sense, it is important to consider the value of k. Hopefully from this diagram, you should get a sense of what the K-Nearest Neighbors algorithm is. It considers the 'K' Nearest Neighbors (data points) when it predicts the classification of the test point.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

Table of contents

\n", + "\n", + "
\n", + "
    \n", + "
  1. About the dataset
  2. \n", + "
  3. Data Visualization and Analysis
  4. \n", + "
  5. Classification
  6. \n", + "
\n", + "
\n", + "
\n", + "
\n" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Requirement already satisfied: scikit-learn==0.23.1 in /home/jupyterlab/conda/envs/python/lib/python3.7/site-packages (0.23.1)\n", + "Requirement already satisfied: numpy>=1.13.3 in /home/jupyterlab/conda/envs/python/lib/python3.7/site-packages (from scikit-learn==0.23.1) (1.21.6)\n", + "Requirement already satisfied: scipy>=0.19.1 in /home/jupyterlab/conda/envs/python/lib/python3.7/site-packages (from scikit-learn==0.23.1) (1.7.3)\n", + "Requirement already satisfied: joblib>=0.11 in /home/jupyterlab/conda/envs/python/lib/python3.7/site-packages (from scikit-learn==0.23.1) (1.3.2)\n", + "Requirement already satisfied: threadpoolctl>=2.0.0 in /home/jupyterlab/conda/envs/python/lib/python3.7/site-packages (from scikit-learn==0.23.1) (3.1.0)\n" + ] + } + ], + "source": [ + "!pip install scikit-learn==0.23.1" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's load required libraries\n" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "import pandas as pd\n", + "import numpy as np\n", + "from sklearn import preprocessing\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "

About the dataset

\n", + "
\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Imagine a telecommunications provider has segmented its customer base by service usage patterns, categorizing the customers into four groups. If demographic data can be used to predict group membership, the company can customize offers for individual prospective customers. It is a classification problem. That is, given the dataset, with predefined labels, we need to build a model to be used to predict class of a new or unknown case.\n", + "\n", + "The example focuses on using demographic data, such as region, age, and marital, to predict usage patterns.\n", + "\n", + "The target field, called **custcat**, has four possible values that correspond to the four customer groups, as follows:\n", + "1- Basic Service\n", + "2- E-Service\n", + "3- Plus Service\n", + "4- Total Service\n", + "\n", + "Our objective is to build a classifier, to predict the class of unknown cases. We will use a specific type of classification called K nearest neighbour.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Load Data \n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's read the data using pandas library and print the first five rows.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
regiontenureagemaritaladdressincomeedemployretiregenderresidecustcat
0213441964.0450.0021
13113317136.0550.0064
236852124116.01290.0123
32333301233.0200.0111
4223301930.0120.0043
\n", + "
" + ], + "text/plain": [ + " region tenure age marital address income ed employ retire gender \\\n", + "0 2 13 44 1 9 64.0 4 5 0.0 0 \n", + "1 3 11 33 1 7 136.0 5 5 0.0 0 \n", + "2 3 68 52 1 24 116.0 1 29 0.0 1 \n", + "3 2 33 33 0 12 33.0 2 0 0.0 1 \n", + "4 2 23 30 1 9 30.0 1 2 0.0 0 \n", + "\n", + " reside custcat \n", + "0 2 1 \n", + "1 6 4 \n", + "2 2 3 \n", + "3 1 1 \n", + "4 4 3 " + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df = pd.read_csv('https://cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud/IBMDeveloperSkillsNetwork-ML0101EN-SkillsNetwork/labs/Module%203/data/teleCust1000t.csv')\n", + "df.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "

Data Visualization and Analysis

\n", + "
\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Let’s see how many of each class is in our data set\n" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "3 281\n", + "1 266\n", + "4 236\n", + "2 217\n", + "Name: custcat, dtype: int64" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df['custcat'].value_counts()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### 281 Plus Service, 266 Basic-service, 236 Total Service, and 217 E-Service customers\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You can easily explore your data using visualization techniques:\n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[]], dtype=object)" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjkAAAGxCAYAAACA4KdFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAoVElEQVR4nO3df1DU94H/8ddGlxUIUIHCQkRDUm2vAW2C0WiTSFQwJMZ0bGtyGmvubM6cPy6MOome03HttGjNt8YbbExytWpqPZKbi17utAZslJQSU4LaqLnapCUaGxAPEVBwWeH9/cNjx4/gD3QFefN8zOzovve9nx+vvte+8mGXdRljjAAAACxzS3cfAAAAwI1AyQEAAFai5AAAACtRcgAAgJUoOQAAwEqUHAAAYCVKDgAAsBIlBwAAWImSAwAArETJAXBZGzZskMvl0meffdbdhwIAneLiax0AXM6JEyf05z//WXfffbc8Hk93Hw4AXDVKDgAAsBI/rgJwWRf/uCozM1NpaWkqKyvTAw88oIiICN1xxx1asWKFWltbHc89deqUFixYoDvuuEMej0cJCQl65JFH9Mc//jE45+TJk5o9e7Zuu+02hYWF6Y477tCSJUvk9/sd23K5XJo7d67Wr1+vr371qwoPD9fw4cO1Z88eGWP04osvKjU1VbfeeqvGjh2rTz/9tN257Ny5U+PGjVN0dLQiIiL0zW9+U7/5zW9CHxqAmwIlB0CnVVVVadq0aXrqqaf09ttvKycnR4sXL9amTZuCcxoaGnT//ffr1Vdf1d/93d/pv/7rv/TKK69oyJAhqqyslCSdPXtWDz30kF5//XXNnz9f27Zt01NPPaWVK1dq8uTJ7fb73//93/r5z3+uFStW6N/+7d/U0NCgRx99VAsWLNDvfvc7rVmzRq+99po+/vhjffvb39aFF6o3bdqk7OxsRUdHa+PGjXrzzTcVGxurCRMmUHQAWxkAuIz169cbSaaiosIYY8yYMWOMJPPBBx845n396183EyZMCN7/4Q9/aCSZoqKiS277lVdeMZLMm2++6Rj/yU9+YiSZwsLC4Jgk4/V6zenTp4NjW7duNZLMN77xDdPa2hocX716tZFkPvroI2OMMWfOnDGxsbHmsccec+ynpaXFDBs2zIwYMeIq0wDQk3AlB0Cneb1ejRgxwjE2dOhQHTlyJHj/17/+tYYMGaLx48dfcjvvvvuuIiMj9Z3vfMcx/vTTT0tSuyssDz30kCIjI4P3/+Zv/kaSlJOTI5fL1W687XhKS0t18uRJzZgxQ+fOnQveWltb9fDDD6usrExnzpy52tMH0EP07e4DANDzxMXFtRvzeDxqamoK3j9x4oQGDhx42e3U1NTI6/U6CookJSQkqG/fvqqpqXGMx8bGOu6HhYVddvzs2bOSpOPHj0tSuzJ1oZMnTzoKFICej5ID4Ib48pe/rGPHjl12TlxcnD744AMZYxxFp7q6WufOnVN8fHxIjqVtO/n5+brvvvs6nJOYmBiSfQG4efDjKgA3RE5Ojv70pz/p3XffveSccePG6fTp09q6datj/PXXXw8+Hgrf/OY39aUvfUkff/yxhg8f3uGt7eoPAHtwJQfADZGbm6s33nhDjz/+uBYtWqQRI0aoqalJxcXFmjhxoh566CF973vf089+9jPNmDFDn332mdLT01VSUqK8vDw98sgjl30/T2fceuutys/P14wZM3Ty5El95zvfUUJCgk6cOKE//OEPOnHihNauXRuSfQG4eVByANwQUVFRKikpkc/n02uvvaZly5apf//+uvfee/UP//APkqR+/fpp165dWrJkiV588UWdOHFCt912mxYuXKilS5eG9HieeuopDRw4UCtXrtSsWbPU0NCghIQEfeMb3wi+0RmAXfiNxwAAwEq8JwcAAFiJkgMAAKxEyQEAAFai5AAAACtRcgAAgJUoOQAAwEo98vfktLa26osvvlBUVFS777wBAAA3J2OMGhoalJycrFtuufHXWXpkyfniiy+UkpLS3YcBAACuweeff64BAwbc8P30yJITFRUl6XxI0dHR1729QCCgwsJCZWdny+12X/f2ejrycCIPJ/JwIg8n8nAiD6eTJ08qNTU1+P/jN1qPLDltP6KKjo4OWcmJiIhQdHQ0i1DkcTHycCIPJ/JwIg8n8nAKBAKS1GVvNeGNxwAAwEqUHAAAYCVKDgAAsBIlBwAAWImSAwAArETJAQAAVqLkAAAAK1FyAACAlSg5AADASpQcAABgJUoOAACwEiUHAABYiZIDAACsRMkBAABW6tvdB3Azun3RtivO+WzFo11wJAAA4FpxJQcAAFiJkgMAAKxEyQEAAFai5AAAACtRcgAAgJUoOQAAwEqUHAAAYCVKDgAAsBIlBwAAWImSAwAArETJAQAAVqLkAAAAK1FyAACAlSg5AADASpQcAABgJUoOAACwEiUHAABYiZIDAACsRMkBAABWouQAAAArUXIAAICVKDkAAMBKlBwAAGAlSg4AALASJQcAAFiJkgMAAKxEyQEAAFai5AAAACtRcgAAgJUoOQAAwEqUHAAAYKXrKjnLly+Xy+VSbm5ucMwYI5/Pp+TkZIWHhyszM1OHDh1yPM/v92vevHmKj49XZGSkJk2apGPHjl3PoQAAADhcc8kpKyvTa6+9pqFDhzrGV65cqVWrVmnNmjUqKyuT1+tVVlaWGhoagnNyc3O1ZcsWFRQUqKSkRKdPn9bEiRPV0tJy7WcCAABwgWsqOadPn9a0adP0r//6r+rfv39w3Bij1atXa8mSJZo8ebLS0tK0ceNGNTY2avPmzZKkuro6rVu3Tj/96U81fvx43X333dq0aZMOHDignTt3huasAABAr9f3Wp40Z84cPfrooxo/frx+9KMfBccrKipUVVWl7Ozs4JjH49GYMWNUWlqqWbNmqby8XIFAwDEnOTlZaWlpKi0t1YQJE9rtz+/3y+/3B+/X19dLkgKBgAKBwLWcgkPbNtr+9PQxV/0cG12cR29HHk7k4UQeTuThRB5OXZ1Dp0tOQUGB9u7dq7KysnaPVVVVSZISExMd44mJiTpy5EhwTlhYmOMKUNuctudfbPny5Vq2bFm78cLCQkVERHT2FC6pqKhIkrRyxJXnbt++PWT7vVm15YHzyMOJPJzIw4k8nMjjvMbGxi7dX6dKzueff67nnntOhYWF6tev3yXnuVwux31jTLuxi11uzuLFizV//vzg/fr6eqWkpCg7O1vR0dGdOIOOBQIBFRUVKSsrS263W2m+d674nIO+9lecbHFxHr0deTiRhxN5OJGHE3k41dTUdOn+OlVyysvLVV1drYyMjOBYS0uL3nvvPa1Zs0aHDx+WdP5qTVJSUnBOdXV18OqO1+tVc3OzamtrHVdzqqurNXr06A736/F45PF42o273e6QLpq27flbLl/I2ubaLtT59nTk4UQeTuThRB5O5HFeV2fQqTcejxs3TgcOHND+/fuDt+HDh2vatGnav3+/7rjjDnm9XsdluebmZhUXFwcLTEZGhtxut2NOZWWlDh48eMmSAwAA0FmdupITFRWltLQ0x1hkZKTi4uKC47m5ucrLy9PgwYM1ePBg5eXlKSIiQlOnTpUkxcTEaObMmVqwYIHi4uIUGxurhQsXKj09XePHjw/RaQEAgN7umj5ddTnPP/+8mpqaNHv2bNXW1mrkyJEqLCxUVFRUcM5LL72kvn37asqUKWpqatK4ceO0YcMG9enTJ9SHAwAAeqnrLjm7d+923He5XPL5fPL5fJd8Tr9+/ZSfn6/8/Pzr3T0AAECH+O4qAABgJUoOAACwEiUHAABYiZIDAACsRMkBAABWouQAAAArUXIAAICVKDkAAMBKlBwAAGAlSg4AALASJQcAAFiJkgMAAKxEyQEAAFai5AAAACtRcgAAgJUoOQAAwEqUHAAAYCVKDgAAsBIlBwAAWImSAwAArETJAQAAVqLkAAAAK1FyAACAlSg5AADASpQcAABgJUoOAACwEiUHAABYiZIDAACsRMkBAABWouQAAAArUXIAAICVKDkAAMBKlBwAAGAlSg4AALASJQcAAFiJkgMAAKxEyQEAAFai5AAAACtRcgAAgJUoOQAAwEqUHAAAYCVKDgAAsBIlBwAAWImSAwAArETJAQAAVqLkAAAAK1FyAACAlSg5AADASpQcAABgJUoOAACwEiUHAABYiZIDAACsRMkBAABWouQAAAArUXIAAICVKDkAAMBKlBwAAGAlSg4AALASJQcAAFiJkgMAAKxEyQEAAFai5AAAACtRcgAAgJUoOQAAwEqUHAAAYCVKDgAAsBIlBwAAWImSAwAArNSpkrN27VoNHTpU0dHRio6O1qhRo/TrX/86+LgxRj6fT8nJyQoPD1dmZqYOHTrk2Ibf79e8efMUHx+vyMhITZo0SceOHQvN2QAAAPyfTpWcAQMGaMWKFfrwww/14YcfauzYsXr88ceDRWblypVatWqV1qxZo7KyMnm9XmVlZamhoSG4jdzcXG3ZskUFBQUqKSnR6dOnNXHiRLW0tIT2zAAAQK/WqZLz2GOP6ZFHHtGQIUM0ZMgQ/fjHP9att96qPXv2yBij1atXa8mSJZo8ebLS0tK0ceNGNTY2avPmzZKkuro6rVu3Tj/96U81fvx43X333dq0aZMOHDignTt33pATBAAAvVPfa31iS0uL/v3f/11nzpzRqFGjVFFRoaqqKmVnZwfneDwejRkzRqWlpZo1a5bKy8sVCAQcc5KTk5WWlqbS0lJNmDChw335/X75/f7g/fr6eklSIBBQIBC41lMIattG25+ePuaqn2Oji/Po7cjDiTycyMOJPJzIw6mrc+h0yTlw4IBGjRqls2fP6tZbb9WWLVv09a9/XaWlpZKkxMREx/zExEQdOXJEklRVVaWwsDD179+/3ZyqqqpL7nP58uVatmxZu/HCwkJFRER09hQuqaioSJK0csSV527fvj1k+71ZteWB88jDiTycyMOJPJzI47zGxsYu3V+nS85Xv/pV7d+/X6dOndJ//Md/aMaMGSouLg4+7nK5HPONMe3GLnalOYsXL9b8+fOD9+vr65WSkqLs7GxFR0d39hTaCQQCKioqUlZWltxut9J871zxOQd9HV91ssHFefR25OFEHk7k4UQeTuThVFNT06X763TJCQsL01e+8hVJ0vDhw1VWVqZ/+Zd/0QsvvCDp/NWapKSk4Pzq6urg1R2v16vm5mbV1tY6ruZUV1dr9OjRl9ynx+ORx+NpN+52u0O6aNq252+5fClrm2u7UOfb05GHE3k4kYcTeTiRx3ldncF1/54cY4z8fr9SU1Pl9Xodl+Sam5tVXFwcLDAZGRlyu92OOZWVlTp48OBlSw4AAEBndepKzj//8z8rJydHKSkpamhoUEFBgXbv3q0dO3bI5XIpNzdXeXl5Gjx4sAYPHqy8vDxFRERo6tSpkqSYmBjNnDlTCxYsUFxcnGJjY7Vw4UKlp6dr/PjxN+QEAQBA79SpknP8+HFNnz5dlZWViomJ0dChQ7Vjxw5lZWVJkp5//nk1NTVp9uzZqq2t1ciRI1VYWKioqKjgNl566SX17dtXU6ZMUVNTk8aNG6cNGzaoT58+oT0zAADQq3Wq5Kxbt+6yj7tcLvl8Pvl8vkvO6devn/Lz85Wfn9+ZXQMAAHQK310FAACsRMkBAABWouQAAAArUXIAAICVKDkAAMBKlBwAAGAlSg4AALASJQcAAFiJkgMAAKxEyQEAAFai5AAAACtRcgAAgJUoOQAAwEqUHAAAYCVKDgAAsBIlBwAAWImSAwAArETJAQAAVqLkAAAAK/Xt7gPoqW5ftO2Kcz5b8WgXHAkAAOgIV3IAAICVKDkAAMBKlBwAAGAlSg4AALASJQcAAFiJkgMAAKxEyQEAAFai5AAAACtRcgAAgJUoOQAAwEqUHAAAYCVKDgAAsBIlBwAAWImSAwAArETJAQAAVqLkAAAAK1FyAACAlSg5AADASpQcAABgJUoOAACwEiUHAABYiZIDAACsRMkBAABWouQAAAArUXIAAICVKDkAAMBKlBwAAGAlSg4AALASJQcAAFiJkgMAAKxEyQEAAFai5AAAACtRcgAAgJUoOQAAwEqUHAAAYCVKDgAAsBIlBwAAWImSAwAArETJAQAAVqLkAAAAK1FyAACAlSg5AADASpQcAABgJUoOAACwEiUHAABYiZIDAACsRMkBAABWouQAAAArdarkLF++XPfee6+ioqKUkJCgb33rWzp8+LBjjjFGPp9PycnJCg8PV2Zmpg4dOuSY4/f7NW/ePMXHxysyMlKTJk3SsWPHrv9sAAAA/k+nSk5xcbHmzJmjPXv2qKioSOfOnVN2drbOnDkTnLNy5UqtWrVKa9asUVlZmbxer7KystTQ0BCck5ubqy1btqigoEAlJSU6ffq0Jk6cqJaWltCdGQAA6NX6dmbyjh07HPfXr1+vhIQElZeX68EHH5QxRqtXr9aSJUs0efJkSdLGjRuVmJiozZs3a9asWaqrq9O6dev0y1/+UuPHj5ckbdq0SSkpKdq5c6cmTJgQolMDAAC9WadKzsXq6uokSbGxsZKkiooKVVVVKTs7OzjH4/FozJgxKi0t1axZs1ReXq5AIOCYk5ycrLS0NJWWlnZYcvx+v/x+f/B+fX29JCkQCCgQCFzPKQS3c+Gfnj7murd54fZ6movz6O3Iw4k8nMjDiTycyMOpq3O45pJjjNH8+fN1//33Ky0tTZJUVVUlSUpMTHTMTUxM1JEjR4JzwsLC1L9//3Zz2p5/seXLl2vZsmXtxgsLCxUREXGtp9BOUVGRJGnliNBsb/v27aHZUDdpywPnkYcTeTiRhxN5OJHHeY2NjV26v2suOXPnztVHH32kkpKSdo+5XC7HfWNMu7GLXW7O4sWLNX/+/OD9+vp6paSkKDs7W9HR0ddw9E6BQEBFRUXKysqS2+1Wmu+d696mJB309cwfvV2cR29HHk7k4UQeTuThRB5ONTU1Xbq/ayo58+bN09tvv6333ntPAwYMCI57vV5J56/WJCUlBcerq6uDV3e8Xq+am5tVW1vruJpTXV2t0aNHd7g/j8cjj8fTbtztdod00bRtz99y+ULWme31ZKHOt6cjDyfycCIPJ/JwIo/zujqDTn26yhijuXPn6q233tK7776r1NRUx+Opqanyer2Oy3LNzc0qLi4OFpiMjAy53W7HnMrKSh08ePCSJQcAAKCzOnUlZ86cOdq8ebP+8z//U1FRUcH30MTExCg8PFwul0u5ubnKy8vT4MGDNXjwYOXl5SkiIkJTp04Nzp05c6YWLFiguLg4xcbGauHChUpPTw9+2goAAOB6darkrF27VpKUmZnpGF+/fr2efvppSdLzzz+vpqYmzZ49W7W1tRo5cqQKCwsVFRUVnP/SSy+pb9++mjJlipqamjRu3Dht2LBBffr0ub6zAQAA+D+dKjnGXPmj1S6XSz6fTz6f75Jz+vXrp/z8fOXn53dm9wAAAFeN764CAABWouQAAAArUXIAAICVKDkAAMBKlBwAAGAlSg4AALASJQcAAFiJkgMAAKxEyQEAAFai5AAAACtRcgAAgJUoOQAAwEqUHAAAYCVKDgAAsBIlBwAAWImSAwAArETJAQAAVqLkAAAAK1FyAACAlSg5AADASpQcAABgJUoOAACwEiUHAABYiZIDAACsRMkBAABWouQAAAArUXIAAICVKDkAAMBKlBwAAGAlSg4AALASJQcAAFiJkgMAAKxEyQEAAFai5AAAACtRcgAAgJUoOQAAwEqUHAAAYCVKDgAAsBIlBwAAWImSAwAArETJAQAAVqLkAAAAK1FyAACAlSg5AADASpQcAABgJUoOAACwEiUHAABYiZIDAACsRMkBAABWouQAAAArUXIAAICVKDkAAMBKlBwAAGAlSg4AALASJQcAAFiJkgMAAKxEyQEAAFai5AAAACtRcgAAgJUoOQAAwEp9u/sAbHb7om1XnPPZike74EgAAOh9uJIDAACsRMkBAABWouQAAAArUXIAAICVKDkAAMBKlBwAAGAlSg4AALBSp0vOe++9p8cee0zJyclyuVzaunWr43FjjHw+n5KTkxUeHq7MzEwdOnTIMcfv92vevHmKj49XZGSkJk2apGPHjl3XiQAAAFyo0yXnzJkzGjZsmNasWdPh4ytXrtSqVau0Zs0alZWVyev1KisrSw0NDcE5ubm52rJliwoKClRSUqLTp09r4sSJamlpufYzAQAAuECnf+NxTk6OcnJyOnzMGKPVq1dryZIlmjx5siRp48aNSkxM1ObNmzVr1izV1dVp3bp1+uUvf6nx48dLkjZt2qSUlBTt3LlTEyZMuI7TAQAAOC+kX+tQUVGhqqoqZWdnB8c8Ho/GjBmj0tJSzZo1S+Xl5QoEAo45ycnJSktLU2lpaYclx+/3y+/3B+/X19dLkgKBgAKBwHUfd9s22v709DHXvc3O7vtmcnEevR15OJGHE3k4kYcTeTh1dQ4hLTlVVVWSpMTERMd4YmKijhw5EpwTFham/v37t5vT9vyLLV++XMuWLWs3XlhYqIiIiFAcuiSpqKhIkrRyRMg2eUXbt2/vup11UlseOI88nMjDiTycyMOJPM5rbGzs0v3dkC/odLlcjvvGmHZjF7vcnMWLF2v+/PnB+/X19UpJSVF2draio6Ov+3gDgYCKioqUlZUlt9utNN87173Nq3XQd/P9eO7iPHo78nAiDyfycCIPJ/Jwqqmp6dL9hbTkeL1eSeev1iQlJQXHq6urg1d3vF6vmpubVVtb67iaU11drdGjR3e4XY/HI4/H027c7XaHdNG0bc/fcvlCFko386IPdb49HXk4kYcTeTiRhxN5nNfVGYT09+SkpqbK6/U6Lss1NzeruLg4WGAyMjLkdrsdcyorK3Xw4MFLlhwAAIDO6vSVnNOnT+vTTz8N3q+oqND+/fsVGxurgQMHKjc3V3l5eRo8eLAGDx6svLw8RUREaOrUqZKkmJgYzZw5UwsWLFBcXJxiY2O1cOFCpaenBz9tBQAAcL06XXI+/PBDPfTQQ8H7be+VmTFjhjZs2KDnn39eTU1Nmj17tmprazVy5EgVFhYqKioq+JyXXnpJffv21ZQpU9TU1KRx48Zpw4YN6tOnTwhOCQAA4BpKTmZmpoy59EesXS6XfD6ffD7fJef069dP+fn5ys/P7+zuAQAArgrfXQUAAKxEyQEAAFai5AAAACtRcgAAgJUoOQAAwEqUHAAAYCVKDgAAsBIlBwAAWImSAwAArETJAQAAVqLkAAAAK1FyAACAlSg5AADASpQcAABgJUoOAACwEiUHAABYiZIDAACsRMkBAABWouQAAAArUXIAAICVKDkAAMBKlBwAAGAlSg4AALASJQcAAFiJkgMAAKxEyQEAAFai5AAAACtRcgAAgJUoOQAAwEqUHAAAYCVKDgAAsFLf7j6A3u72RduuOOezFY92wZEAAGAXruQAAAArUXIAAICVKDkAAMBKlBwAAGAlSg4AALASJQcAAFiJkgMAAKxEyQEAAFai5AAAACvxG497AH4rMgAAnceVHAAAYCVKDgAAsBIlBwAAWImSAwAArETJAQAAVqLkAAAAK1FyAACAlSg5AADASpQcAABgJUoOAACwEiUHAABYiZIDAACsRMkBAABW4lvILcE3lQMA4MSVHAAAYCVKDgAAsBIlBwAAWImSAwAArMQbj+Fw+6Jt8vQxWjlCSvO9I3+Lq90c3sAMAOgJuJIDAACsRMkBAABW4sdVvcjV/C4dAABswZUcAABgJUoOAACwEiUHAABYiZIDAACs1K1vPH755Zf14osvqrKyUnfddZdWr16tBx54oDsPCVehK9/AzO/kAQBcq267kvPGG28oNzdXS5Ys0b59+/TAAw8oJydHR48e7a5DAgAAFum2KzmrVq3SzJkz9f3vf1+StHr1ar3zzjtau3atli9f3l2HhR7oaq4scUUIAHqfbik5zc3NKi8v16JFixzj2dnZKi0tbTff7/fL7/cH79fV1UmSTp48qUAgcN3HEwgE1NjYqJqaGrndbvU9d+a6t9mT9W01amxsVd/ALWppbf+1Dl3pKwvfvOKcq1nEV7OdDxaP63D8wvVx//9775q3c6GRy39zxTlXozv2dfHr5WbWFTl3Rx5Xe15Xsz5CrSetj65ws+ZxNWvoRqyfkydPSpKMMSHfdodMN/jrX/9qJJnf/e53jvEf//jHZsiQIe3mL1261Ejixo0bN27cuFlw+/Of/9wlfaNb33jscjmvEhhj2o1J0uLFizV//vzg/dbWVp08eVJxcXEdzu+s+vp6paSk6PPPP1d0dPR1b6+nIw8n8nAiDyfycCIPJ/Jwqqur08CBAxUbG9sl++uWkhMfH68+ffqoqqrKMV5dXa3ExMR28z0ejzwej2PsS1/6UsiPKzo6mkV4AfJwIg8n8nAiDyfycCIPp1tu6ZrPPXXLp6vCwsKUkZGhoqIix3hRUZFGjx7dHYcEAAAs020/rpo/f76mT5+u4cOHa9SoUXrttdd09OhRPfvss911SAAAwCLdVnKeeOIJ1dTU6Ic//KEqKyuVlpam7du3a9CgQV1+LB6PR0uXLm33I7HeijycyMOJPJzIw4k8nMjDqavzcBnTVZ/jAgAA6Dp8dxUAALASJQcAAFiJkgMAAKxEyQEAAFai5AAAACtRciS9/PLLSk1NVb9+/ZSRkaHf/va33X1IIbd8+XLde++9ioqKUkJCgr71rW/p8OHDjjlPP/20XC6X43bfffc55vj9fs2bN0/x8fGKjIzUpEmTdOzYsa48lZDw+XztztXr9QYfN8bI5/MpOTlZ4eHhyszM1KFDhxzbsCULSbr99tvb5eFyuTRnzhxJ9q+N9957T4899piSk5Plcrm0detWx+OhWg+1tbWaPn26YmJiFBMTo+nTp+vUqVM3+Ow673J5BAIBvfDCC0pPT1dkZKSSk5P1ve99T1988YVjG5mZme3WzJNPPumYY0MeUuheH7bk0dG/JS6XSy+++GJwTletj15fct544w3l5uZqyZIl2rdvnx544AHl5OTo6NGj3X1oIVVcXKw5c+Zoz549Kioq0rlz55Sdna0zZ5zfuP7www+rsrIyeNu+fbvj8dzcXG3ZskUFBQUqKSnR6dOnNXHiRLW0tHTl6YTEXXfd5TjXAwcOBB9buXKlVq1apTVr1qisrExer1dZWVlqaGgIzrEpi7KyMkcWbb+N/Lvf/W5wjs1r48yZMxo2bJjWrFnT4eOhWg9Tp07V/v37tWPHDu3YsUP79+/X9OnTb/j5ddbl8mhsbNTevXv1gx/8QHv37tVbb72lP/3pT5o0aVK7uc8884xjzbz66quOx23Io00oXh+25HFhDpWVlfrFL34hl8ulb3/72455XbI+uuRrQG9iI0aMMM8++6xj7Gtf+5pZtGhRNx1R16iurjaSTHFxcXBsxowZ5vHHH7/kc06dOmXcbrcpKCgIjv31r381t9xyi9mxY8eNPNyQW7p0qRk2bFiHj7W2thqv12tWrFgRHDt79qyJiYkxr7zyijHGriw68txzz5k777zTtLa2GmN619qQZLZs2RK8H6r18PHHHxtJZs+ePcE577//vpFk/vjHP97gs7p2F+fRkd///vdGkjly5EhwbMyYMea555675HNsyiMUrw+b8rjY448/bsaOHesY66r10auv5DQ3N6u8vFzZ2dmO8ezsbJWWlnbTUXWNuro6SWr3TbC7d+9WQkKChgwZomeeeUbV1dXBx8rLyxUIBBx5JScnKy0trUfm9cknnyg5OVmpqal68skn9Ze//EWSVFFRoaqqKsd5ejwejRkzJnietmVxoebmZm3atEl///d/L5fLFRzvTWvjQqFaD++//75iYmI0cuTI4Jz77rtPMTExPT6juro6uVyudl+c/Ktf/Urx8fG66667tHDhQseVL9vyuN7Xh215tDl+/Li2bdummTNntnusK9ZHt32tw83gf//3f9XS0tLum88TExPbfUO6TYwxmj9/vu6//36lpaUFx3NycvTd735XgwYNUkVFhX7wgx9o7NixKi8vl8fjUVVVlcLCwtS/f3/H9npiXiNHjtTrr7+uIUOG6Pjx4/rRj36k0aNH69ChQ8Fz6WhdHDlyRJKsyuJiW7du1alTp/T0008Hx3rT2rhYqNZDVVWVEhIS2m0/ISGhR2d09uxZLVq0SFOnTnV8y/a0adOUmpoqr9ergwcPavHixfrDH/4Q/FGoTXmE4vVhUx4X2rhxo6KiojR58mTHeFetj15dctpc+F+r0vkScPGYTebOnauPPvpIJSUljvEnnngi+Pe0tDQNHz5cgwYN0rZt29ot0Av1xLxycnKCf09PT9eoUaN05513auPGjcE3DF7LuuiJWVxs3bp1ysnJUXJycnCsN62NSwnFeuhofk/OKBAI6Mknn1Rra6tefvllx2PPPPNM8O9paWkaPHiwhg8frr179+qee+6RZE8eoXp92JLHhX7xi19o2rRp6tevn2O8q9ZHr/5xVXx8vPr06dOuFVZXV7f7rzZbzJs3T2+//bZ27dqlAQMGXHZuUlKSBg0apE8++USS5PV61dzcrNraWsc8G/KKjIxUenq6Pvnkk+CnrC63LmzN4siRI9q5c6e+//3vX3Zeb1oboVoPXq9Xx48fb7f9EydO9MiMAoGApkyZooqKChUVFTmu4nTknnvukdvtdqwZm/K40LW8PmzM47e//a0OHz58xX9PpBu3Pnp1yQkLC1NGRkbw8liboqIijR49upuO6sYwxmju3Ll666239O677yo1NfWKz6mpqdHnn3+upKQkSVJGRobcbrcjr8rKSh08eLDH5+X3+/U///M/SkpKCl5CvfA8m5ubVVxcHDxPW7NYv369EhIS9Oijj152Xm9aG6FaD6NGjVJdXZ1+//vfB+d88MEHqqur63EZtRWcTz75RDt37lRcXNwVn3Po0CEFAoHgmrEpj4tdy+vDxjzWrVunjIwMDRs27Ipzb9j6uOq3KFuqoKDAuN1us27dOvPxxx+b3NxcExkZaT777LPuPrSQ+sd//EcTExNjdu/ebSorK4O3xsZGY4wxDQ0NZsGCBaa0tNRUVFSYXbt2mVGjRpnbbrvN1NfXB7fz7LPPmgEDBpidO3eavXv3mrFjx5phw4aZc+fOddepXZMFCxaY3bt3m7/85S9mz549ZuLEiSYqKir4v/uKFStMTEyMeeutt8yBAwfM3/7t35qkpCQrs2jT0tJiBg4caF544QXHeG9YGw0NDWbfvn1m3759RpJZtWqV2bdvX/DTQqFaDw8//LAZOnSoef/99837779v0tPTzcSJE7v8fK/kcnkEAgEzadIkM2DAALN//37Hvyd+v98YY8ynn35qli1bZsrKykxFRYXZtm2b+drXvmbuvvtu6/II5evDhjza1NXVmYiICLN27dp2z+/K9dHrS44xxvzsZz8zgwYNMmFhYeaee+5xfKzaFpI6vK1fv94YY0xjY6PJzs42X/7yl43b7TYDBw40M2bMMEePHnVsp6mpycydO9fExsaa8PBwM3HixHZzeoInnnjCJCUlGbfbbZKTk83kyZPNoUOHgo+3traapUuXGq/Xazwej3nwwQfNgQMHHNuwJYs277zzjpFkDh8+7BjvDWtj165dHb4+ZsyYYYwJ3Xqoqakx06ZNM1FRUSYqKspMmzbN1NbWdtFZXr3L5VFRUXHJf0927dpljDHm6NGj5sEHHzSxsbEmLCzM3Hnnneaf/umfTE1NjWM/NuQRyteHDXm0efXVV014eLg5depUu+d35fpwGWPM1V/3AQAA6Bl69XtyAACAvSg5AADASpQcAABgJUoOAACwEiUHAABYiZIDAACsRMkBAABWouQAAAArUXIAAICVKDkAAMBKlBwAAGCl/w81p+JqPaH0LgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "df.hist(column='income', bins=50)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Feature set\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's define feature sets, X:\n" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Index(['region', 'tenure', 'age', 'marital', 'address', 'income', 'ed',\n", + " 'employ', 'retire', 'gender', 'reside', 'custcat'],\n", + " dtype='object')" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.columns" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To use scikit-learn library, we have to convert the Pandas data frame to a Numpy array:\n" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[ 2., 13., 44., 1., 9., 64., 4., 5., 0., 0., 2.],\n", + " [ 3., 11., 33., 1., 7., 136., 5., 5., 0., 0., 6.],\n", + " [ 3., 68., 52., 1., 24., 116., 1., 29., 0., 1., 2.],\n", + " [ 2., 33., 33., 0., 12., 33., 2., 0., 0., 1., 1.],\n", + " [ 2., 23., 30., 1., 9., 30., 1., 2., 0., 0., 4.]])" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "X = df[['region', 'tenure','age', 'marital', 'address', 'income', 'ed', 'employ','retire', 'gender', 'reside']] .values #.astype(float)\n", + "X[0:5]\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "What are our labels?\n" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([1, 4, 3, 1, 3])" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "y = df['custcat'].values\n", + "y[0:5]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Normalize Data\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Data Standardization gives the data zero mean and unit variance, it is good practice, especially for algorithms such as KNN which is based on the distance of data points:\n" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[-0.02696767, -1.055125 , 0.18450456, 1.0100505 , -0.25303431,\n", + " -0.12650641, 1.0877526 , -0.5941226 , -0.22207644, -1.03459817,\n", + " -0.23065004],\n", + " [ 1.19883553, -1.14880563, -0.69181243, 1.0100505 , -0.4514148 ,\n", + " 0.54644972, 1.9062271 , -0.5941226 , -0.22207644, -1.03459817,\n", + " 2.55666158],\n", + " [ 1.19883553, 1.52109247, 0.82182601, 1.0100505 , 1.23481934,\n", + " 0.35951747, -1.36767088, 1.78752803, -0.22207644, 0.96655883,\n", + " -0.23065004],\n", + " [-0.02696767, -0.11831864, -0.69181243, -0.9900495 , 0.04453642,\n", + " -0.41625141, -0.54919639, -1.09029981, -0.22207644, 0.96655883,\n", + " -0.92747794],\n", + " [-0.02696767, -0.58672182, -0.93080797, 1.0100505 , -0.25303431,\n", + " -0.44429125, -1.36767088, -0.89182893, -0.22207644, -1.03459817,\n", + " 1.16300577]])" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "X = preprocessing.StandardScaler().fit(X).transform(X.astype(float))\n", + "X[0:5]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Train Test Split\n", + "\n", + "Out of Sample Accuracy is the percentage of correct predictions that the model makes on data that the model has NOT been trained on. Doing a train and test on the same dataset will most likely have low out-of-sample accuracy, due to the likelihood of our model overfitting.\n", + "\n", + "It is important that our models have a high, out-of-sample accuracy, because the purpose of any model, of course, is to make correct predictions on unknown data. So how can we improve out-of-sample accuracy? One way is to use an evaluation approach called Train/Test Split.\n", + "Train/Test Split involves splitting the dataset into training and testing sets respectively, which are mutually exclusive. After which, you train with the training set and test with the testing set.\n", + "\n", + "This will provide a more accurate evaluation on out-of-sample accuracy because the testing dataset is not part of the dataset that has been used to train the model. It is more realistic for the real world problems.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Train set: (800, 11) (800,)\n", + "Test set: (200, 11) (200,)\n" + ] + } + ], + "source": [ + "from sklearn.model_selection import train_test_split\n", + "X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.2, random_state=4)\n", + "print ('Train set:', X_train.shape, y_train.shape)\n", + "print ('Test set:', X_test.shape, y_test.shape)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "

Classification

\n", + "
\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "

K nearest neighbor (KNN)

\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Import library\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Classifier implementing the k-nearest neighbors vote.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.neighbors import KNeighborsClassifier" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Training\n", + "\n", + "Let's start the algorithm with k=4 for now:\n" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "KNeighborsClassifier(n_neighbors=4)" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "k = 4\n", + "#Train Model and Predict \n", + "neigh = KNeighborsClassifier(n_neighbors = k).fit(X_train,y_train)\n", + "neigh" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Predicting\n", + "\n", + "We can use the model to make predictions on the test set:\n" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([1, 1, 3, 2, 4])" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "yhat = neigh.predict(X_test)\n", + "yhat[0:5]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Accuracy evaluation\n", + "\n", + "In multilabel classification, **accuracy classification score** is a function that computes subset accuracy. This function is equal to the jaccard_score function. Essentially, it calculates how closely the actual labels and predicted labels are matched in the test set.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Train set Accuracy: 0.5475\n", + "Test set Accuracy: 0.32\n" + ] + } + ], + "source": [ + "from sklearn import metrics\n", + "print(\"Train set Accuracy: \", metrics.accuracy_score(y_train, neigh.predict(X_train)))\n", + "print(\"Test set Accuracy: \", metrics.accuracy_score(y_test, yhat))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Practice\n", + "\n", + "Can you build the model again, but this time with k=6?\n" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "# write your code here\n", + "\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
Click here for the solution\n", + "\n", + "```python\n", + "k = 6\n", + "neigh6 = KNeighborsClassifier(n_neighbors = k).fit(X_train,y_train)\n", + "yhat6 = neigh6.predict(X_test)\n", + "print(\"Train set Accuracy: \", metrics.accuracy_score(y_train, neigh6.predict(X_train)))\n", + "print(\"Test set Accuracy: \", metrics.accuracy_score(y_test, yhat6))\n", + "\n", + "```\n", + "\n", + "
\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### What about other K?\n", + "\n", + "K in KNN, is the number of nearest neighbors to examine. It is supposed to be specified by the user. So, how can we choose right value for K?\n", + "The general solution is to reserve a part of your data for testing the accuracy of the model. Then choose k =1, use the training part for modeling, and calculate the accuracy of prediction using all samples in your test set. Repeat this process, increasing the k, and see which k is the best for your model.\n", + "\n", + "We can calculate the accuracy of KNN for different values of k.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([0.3 , 0.29 , 0.315, 0.32 , 0.315, 0.31 , 0.335, 0.325, 0.34 ])" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "Ks = 10\n", + "mean_acc = np.zeros((Ks-1))\n", + "std_acc = np.zeros((Ks-1))\n", + "\n", + "for n in range(1,Ks):\n", + " \n", + " #Train Model and Predict \n", + " neigh = KNeighborsClassifier(n_neighbors = n).fit(X_train,y_train)\n", + " yhat=neigh.predict(X_test)\n", + " mean_acc[n-1] = metrics.accuracy_score(y_test, yhat)\n", + "\n", + " \n", + " std_acc[n-1]=np.std(yhat==y_test)/np.sqrt(yhat.shape[0])\n", + "\n", + "mean_acc" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Plot the model accuracy for a different number of neighbors.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHVCAYAAAB8NLYkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAACA1ElEQVR4nO3dd3wUZf4H8M/MbE1PCEmooQvSe0dUiooIlhP1RBE9GyKIp4INsCH2cuLJnYIV0Z9SVFRATwHpJYiCCIgEIQESQupmy8zz+2OzQzYFkrDJbHY/b1/7IpmdnX1mAfPhKd9HEkIIEBEREVG9JxvdACIiIiIKDAY7IiIiohDBYEdEREQUIhjsiIiIiEIEgx0RERFRiGCwIyIiIgoRDHZEREREIYLBjoiIiChEMNgRERERhQiT0Q0IRpqm4ejRo4iOjoYkSUY3h4iIiMKYEAL5+flo3LgxZPksfXLCYG+88YZo0aKFsFqtokePHmLNmjVVet26deuEoiiia9eufscXLFggAJR7OByOKrfp8OHDFV6DDz744IMPPvjgw6jH4cOHz5phDO2xW7x4MaZOnYp58+Zh4MCBeOutt3DppZdi9+7daN68eaWvy83NxU033YSLL74Yx44dK/d8TEwM9u7d63fMZrNVuV3R0dEAgMOHDyMmJqbKryMiIiIKtLy8PDRr1kzPJ2ciCSFEHbSpQn379kWPHj3w5ptv6sc6dOiAsWPHYs6cOZW+7rrrrkPbtm2hKAqWLl2KtLQ0/bmFCxdi6tSpOHXqVI3blZeXh9jYWOTm5jLYERERkaGqk0sMWzzhcrmwbds2jBgxwu/4iBEjsH79+kpft2DBAhw4cAAzZ86s9JyCggKkpqaiadOmuPzyy7Fjx44ztsXpdCIvL8/vQURERFTfGBbssrKyoKoqkpOT/Y4nJycjMzOzwtfs27cP06dPx4cffgiTqeJR5Pbt22PhwoVYvnw5Fi1aBJvNhoEDB2Lfvn2VtmXOnDmIjY3VH82aNav5jREREREZxPByJ2VXnQohKlyJqqoqbrjhBsyePRvt2rWr9Hr9+vXDjTfeiK5du2Lw4MH45JNP0K5dO7z++uuVvmbGjBnIzc3VH4cPH675DREREREZxLDFE4mJiVAUpVzv3PHjx8v14gFAfn4+tm7dih07duCee+4B4C1LIoSAyWTCypUrcdFFF5V7nSzL6N279xl77KxWK6xW6zneERERUd0RQsDj8UBVVaObQudIURSYTKaAlFgzLNhZLBb07NkTq1atwpVXXqkfX7VqFcaMGVPu/JiYGOzatcvv2Lx58/D999/j//7v/9CyZcsK30cIgbS0NHTu3DmwN0BERGQQl8uFjIwMFBUVGd0UCpCIiAg0atQIFovlnK5jaLmTadOmYfz48ejVqxf69++P+fPnIz09HXfeeScA7xDpkSNH8N5770GWZXTq1Mnv9UlJSbDZbH7HZ8+ejX79+qFt27bIy8vDa6+9hrS0NLzxxht1em9ERES1QdM0HDx4EIqioHHjxrBYLCymX48JIeByuXDixAkcPHgQbdu2PXsR4jMwNNiNGzcO2dnZeOKJJ5CRkYFOnTphxYoVSE1NBQBkZGQgPT29Wtc8deoUbr/9dmRmZiI2Nhbdu3fHmjVr0KdPn9q4BSIiojrlcrmgaRqaNWuGiIgIo5tDAWC322E2m3Ho0CG4XK5q1d4ty9A6dsGKdeyIiChYFRcX4+DBg2jZsuU5BQAKLmf6fa0XdeyIiIiIKLAY7IiIiIhCBIMdERERUYhgsCMiIqI6tX79eiiKgksuucTopoQcBjsiIiKqU++88w4mT56MdevWVbv6RaC53W5D3z/QGOyIiIjqOSEECl2FhjyqW1yjsLAQn3zyCe666y5cfvnlWLhwYblzli9fjl69esFmsyExMRFXXXWV/pzT6cSDDz6IZs2awWq1om3btnj77bcBAAsXLkRcXJzftZYuXepX52/WrFno1q0b3nnnHbRq1QpWqxVCCHzzzTcYNGgQ4uLi0KBBA1x++eU4cOCA37X++usvXHfddUhISEBkZCR69eqFTZs24c8//4Qsy9i6davf+a+//jpSU1Or/RmdC0Pr2BEREdG5K3IXIWpOlCHvXTCjAJGWyCqfv3jxYpx33nk477zzcOONN2Ly5Ml47LHH9PD11Vdf4aqrrsIjjzyC999/Hy6XC1999ZX++ptuugkbNmzAa6+9hq5du+LgwYPIysqqVpv379+PTz75BJ999hkURQHgDZzTpk1D586dUVhYiMcffxxXXnkl0tLSIMsyCgoKcMEFF6BJkyZYvnw5UlJSsH37dmiahtTUVAwbNgwLFixAr1699PdZsGABJkyYUKcFpBnsiIiIqM68/fbbuPHGGwEAl1xyCQoKCvDdd99h2LBhAICnn34a1113HWbPnq2/pmvXrgCA33//HZ988glWrVqln9+qVatqt8HlcuH9999Hw4YN9WNXX311uXYmJSVh9+7d6NSpEz766COcOHECW7ZsQUJCAoQQaNmqJTShwaW6cOutt+Kuu+7CSy+9BKvVip07dyItLQ2ff/55tdt3LhjsiIiI6rkIcwQKZhQY9t5VtXfvXmzevFkPOyaTCePGjcM777yjB7W0tDT84x//qPD1aWlpUBQFF1xwwTm1OTU11S/UAcCBAwfw2GOPYePGjcjKyoKmaQCA9PR0dOrUCWlpaejevTvi4uPg0TxQNRWa8J4jQcKYsWMwefJkLFmyBNdddx3eeecdXHjhhWjRosU5tbW6GOyIiIjqOUmSqjUcapS3334bHo8HTZo00Y8JIWA2m5GTk4P4+HjY7fZKX3+m5wBAluVy89kqWhwRGVn+sxo9ejSaNWuG//znP2jcuDE0TUOnTp3gcrkghIDV5p2L5/K4ICAgSRIUSYGAgBACFosF48ePx4IFC3DVVVfho48+wiuvvHKWTyTwuHiCiIiIap3H48F7772HF198EWlpafpj586dSE1NxYcffggA6NKlC7777rsKr9G5c2domoYff/yxwucbNmyI/Px8FBYW6sfS0tLO2rbs7Gzs2bMHjz76KC6++GJ06NABJ0+e9LZb88CpOnF+x/Oxc+dO5OTkQJEVyJIMlJk6d9ttt2H16tWYN28e3G6336KPusJgR0RERLXuyy+/RE5ODm699VZ06tTJ73HNNdfoK1tnzpyJRYsWYebMmdizZw927dqF5557DgDQokUL3HzzzZg4cSKWLl2KgwcP4ocffsAnn3wCAOjbty8iIiLw8MMPY//+/fjoo48qXHVbVnx8PBo0aID58+dj3759WLV6FaZNmwYAUDUVAHD9DdcjOSUZ1159Ldb/tB5//PEHlny+BBs3bNSv06FDB/Tr1w8PPfQQrr/++rP2MNYGBjsiIiKqdW+//TaGDRuG2NjYcs9dffXVSEtLw/bt2zF06FB8+umnWL58Obp164aLLroImzZt0s998803cc011+Duu+9G+/bt8Y9//EPvoUtISMAHH3yAFStWoHPnzli0aBFmzZp11rZJkoQPP/oQW7dtRefOnXH/tPvxzLPPAPAO78qSDIvFgq++/goNkxpizOgx6NmtJ55/7nl9Va3PrbfeCpfLhYkTJ57Dp1VzkqjL4ir1RF5eHmJjY5Gbm4uYmBijm0NERKQrLi7GwYMH0bJlS9hsNqObU69pQoMmNL+FELIkV6s8iRAlc+xMFsiSjKeffhoff/wxdu3aVa22nOn3tTq5hIsniIiIAkgIUad1y6h6hBDeMCdUaJrmtxCi7Jy56igoKMDe3/bi9ddfx5NPPhm4BlcTgx0REVEACCGQ58xDtiMbZtmMKEsUrCYrLIoFJpk/bo0khICAgKZp8AiPvnJWlrzDrIEwefJkfLzoY4wdO9awYViAwY6IiOicOT1OZBdlI6c4B2bFDLfqRp4zDwBgVaywm+2ItETColhgVaxQZOUsV6RA0HvnNBWq8C6CkCSpVj7/BQsW4N2F7wb8utXFYEdERFRDmtCQ58zDicITcKkuxFhj/EKDEAJO1YkCVwFyinMgQ4bVZEWEOQIR5ghv0DNZA9ZrRKfDnG+4tXTvXDgMkTPYERER1YDD7UBWURZynbmwm+yIt8eXO0eSJNhMNthM3snwvu2ncp25yHZkQ5EUWBSLHvR8Q7cMetVX0UKI2uqdC2YMdkRERNWgaipOFZ9CdlE2VKEizhZX5SAmS7Jf0FM1FS7V5b2eIxsmyQSz4p2fZzfbYVW8QS8ceppqorYWQtRnDHZERERVVOgqRFZRFvJd+YgwRyDKFHVO11NkBXbZDrvZW8jWF/SyHdkQRcLbo2eyeIOeyQ6LYim3ZVa4qYuFEPUZgx0REdFZeDQPchw5yC7KhoCoVi9ddZQNeh7NA5fqQlZRFjShwSybYVJN3sUAJUOOEqSw6NEr3Tvn2w0iHIdaz4bBjoiIqBJCCBS6C5FVmIUCdwEizZGwmqx19v4m2QSTbEKEOQIA4FbdcLgd0IQGt+qG4lH0oUdJ8ga8UOq1CveFEDXBYEdERFQBt+rGScdJZBdlQ5EVxNviDQ8TZsUMySLBI3kgy95wIyDg1twAgOP5LkiQoMgyJEi1HoCSY2pn54tQWQixcOFCTJ06FadOnaqz9wydWE9ERBQAvkLD6bnpOFF0ApGWSERbow0PdRXx9dApsgJFViDBG/Q8qgdu1Q2n6oLL44JH80DV1KCenyeE0OcYulQX3KobAt55hh3adcCqb1dV+VrPPvMsLhh0AeKi45DUICngbW3Xuh1ee/W1gF83EBjsiIiISrhUFzILMvFX3l/QhIZ4WzzMitnoZlWZJAGyJHk3ri/ptdNEmaCneoOepmmGB72hQ4finQXvwKN69ECnampJr6MCWZKxa9cunMw+iaEXDq3ydV0uF6665ircfsfttdb2YMVgR0REYU8TGnKLc5F+Kh3ZjmxEWaIQaYkMyl666pAkQJbLBD1N6EHKqKDn653z/erWSnrnfD2PpT73L5Z/geEjhsNqrfrcxsdnPY4pU6egU+dOFT7/9JNPo0WzFsjOztaPXTX2Klw89GJomnfo98nZT6JNyzaIjohGi2YtcN/U+wAAwy8ajkOHDuGB+x+A1WSFzXx6OHrhwoVo3rw5IiIicOWVV/pdv64w2BERUVgr9hQjIz8Dh/MOAxKQYE8I2b1dywY9AN6yIaWCnlt1e4OeCGzQ00Oc6oZTdcKluiDgvb6vd64iX375JUZfMTpg7QCA6Q9PR2pqKu68/U4AwPy35mPd2nV45913IMsyPv/sc7z26mv417x/4dfffsWnn32KTp28IXHx/y1G06ZNMXPWTBz66xD+PPwnAGDTpk2YOHEi7r77bqSlpeHCCy/EU089FdB2V0Vo/sklIiI6C18vXVZRFtyqG7HW2Ho3Of9cyZLkTXsAIAANQi8lAgCQJCgl9eEkSapRaZUzLYQ42/WOHDmCn3f+jEsuvaTa93YmiqJgwXsL0KdnHzwy4xHMe2Me5v17HlJTUwEA6enpSE5JxsXDLobZbEbz5s3Ru09vAEBCQgIURUFUdBRSUlK8dfWEwGuvvYaRI0di+vTpAIB27dph/fr1+OabbwLa9rNhjx0REYWdIncRjuQdwZH8I5AlGXH2uLALdeWUmZ/n60Hz9bK5PC64VDfcqlsPaZX16JXunSu9EOKFuS+gYXxDJMYlIiE2AevWrcM9d9+DhNgE/bFu7Tr9Ol9+8SUGDBiAhIQEAPA7b9Ldk87pdlu1aoVnn3sWLzz/AkZdPgrX33C9/tzV11yNYkcx2rdtj7vuuAvLli6Dx+M54/V+2/Mb+vfv73es7Pd1gT12REQUNlRN9RYadlR/O7CwIwEyTvfoCQEICKiaBhUqAAkuVdF3fPD1vJXtnZOl08O+/7jjH7j6b1frbzFh/ASMvWosxl45Vj/WpEkT/esvv/gSl19xuf795m2b9a9jYmLO+RbXrV0HRVFw6M9D8Hg8MJm8sahZs2bYtXsXVq9eje+/+x733nMvXnrhJaz+32qYzRUvpjF6IYoPgx0REYWFQlchThSeMKTQcCiQJECqIOh5NG9PllSyOau+X2sFPaAJCQl67xsA2O12JCUloU2bNuXOLSgowI8//IhXX39VP1bReTX16SefYumSpVj13SrceMONeOapZ/D4rMf92jZ69GiMHj0ad951J7p07IJfdv2C7j26w2wxQ1VVv+t1OL8DNm7c6Hes7Pd1gcGOiIhCmkfz6IWGJUkKikLDocBbWkUGfFP0Su0KEQgrv12JNm3boFWrVtV+bXp6OnJO5uBw+mGoqoqdaTsBAK3btEZUVBT++usvTJ40GU/PeRoDBw3Ef97+D8ZeMRYjLxmJvv364r1334OqqujTpw/sEXZ89MFHsNvtaJ7aHACQmpqKdWvX4dpx18JisaBBgwaYPHkyBg0chOeeew5jx47FypUr63x+HcBgR0REIUoIgQJXAbKKslDoLkSUJQoWxWJ0s2pVbe0EURWBDstfLP8Co0fXbDXsE7OewPvvva9/36dXHwDAytUrMeSCIbht4m3o1bsX7p50NwBg2PBhuOvuuzDh5gnYsm0LYuNi8cLcF/DgPx+Eqqro1KkTPl/6ORo0aAAAmDlrJibdPQkd2nWA0+mEw+VAv3798N///hczZ87ErFmzMGzYMDz66KN48sknz/GTqB5JBMugcBDJy8tDbGwscnNzAzKGT0REdculunDScRIni07CpJgQaa7/Nel8PC4P8jLz0LxFc9hsxgW52qSqKpo2aorlXy7XV6MGK9+qWIvJck69lcXFxTh48CBatmxZ7ve1OrmEPXZERBQyfNuBZRVlweFxINoSXa92jiCv7Oxs3DvlXvTq3cvoptQ7DHZERBQSnB4nsouykVOcA4tiQYI94ewvoqCUlJSEGY/MMLoZ9RKDHRER1Wua0JDnzMOJwhNwqS5EW6NDducIorPhn3wiIqq3HG4Hsh3ZyC3Ohc1kQ7w93ugmERmKwY6IAkIIAVWoUDUVqlDh0TxQNbVk/0knNE2D1WSF1WSFInk3+jbJJiiS99dQmdhOdUPVVJwqPoXsomx4NA9irDHcOYIIDHZEVA2+0KZqJcFNlGzo7XHCpbm8m4mXHBcQkCBBlmR9T8hiZzFUh/9zJtkEWZJhVsywKlZYFAsUWdEDn+9rBj/yKXIX4UThCeS78hFhjkCUNcroJhEFDQY7ItL5tgLyhTN9r0fNBZfH5dcTp0HTN/AuHcIsJkuVg5gmNP16xZ5iFLoKvftPlgQ/X8+eIiuwyBZYTVaYFXO5Hj/21IQHj+bBKccpZBVlQUBwOzCiCjDYEYUR33CpL0z5vnZ5vMOlpY+rQtW3CPKFKFmSYTfbA9aDJkuyt2BsJbnMFzI1oaHIU4Q8V563ZhQEZMh+PXsWkwUW2eINfmV6/PjDv/4rcBUgqzALBa4CRFq4HRhRZRjsiEJM2R43j+aBWysZLlVdeq+cKk7vc+gLQrIke+fABUkY8vXWVaR0SPUID5xOp75nJeDdt9IX7EyyyTvMW9KbWPo4h3mDm1t169uBKbKCeDu3AzsTVVOhCa3O3s831YKCB4MdUT1TevjSF+A8qgdO1akvUvAFHsC7Ibc+pCkpMCtm2Ey2ev8/Y0mSYJJMlZa1KD2s7FJdcHgcUB2nw2zp+X0WpWSYVzaXG+Jl8DOGEAL5rnycKDzBQsNVpGoq/sr7C07VWWfvaVWsaBrTtN7//6S2LFy4EFOnTsWpU6fq7D0Z7IiCTOketdJDo06PE06P0++4KPlPluRy89HCPZDIkgxZkSsNA6UXgjg8DhS4CvyHn0t69mRZhlWxwqpYYVJM5RZ18Ada4LlUl15o2CSbEG9jL11VaEKDU3Xq/zCpbapQvf+YFBqUyuZTBEi7Nu3w+r9ex8hLRlbp/KvGXoWfd/6M48ePIz4+HhddfBGenvM0GjduHJj2tG6He+69B/dOuTcg1wskBjuiOla6LEjpIVNfWRC36tZDh99CglJBwmaysUTIOVJkxfvDqIKfR6V/jzShocBVgFyRC9/W2r7fD98P0LLz+0r3+AXDkHZ94dsO7EThCRSrxYixxrDQcA34euZrnQp44Dn7eWcw/KLhGH/zeNx0802VnrPr5104mX0SQy8cWuXrXjD0Ajw0/SGkNErB0SNHMf3B6bj+2uvx47ofz6m99QH/xhDVEafHiZOOk94hQe10vbeKSn9YTBb9a6p7ZxvmLTu/r9hZDFXzDvPqQ98lwc6smGGRLfrvKcu4VKzYU6z30tlMNm4HRrovln+B4SOGw2qt+oKZKVOn6F+npqbinw/9E3+76m9wu90wm814+smn8Z/5/8G2tG1o0KABAG8vX+6pXKz6fhVkWcaTs5/EuwvfxbFjx9CgQQNcefWVePmVlzH8ouE4dOgQHrj/ATxw/wMAAIfLAcA79Pr4448jKysLI0eOxKBBgwL4SVQNgx1RLfNtd5RVmAWn6tR720Jhnlu4qs78PqfHiSJR5De/r+ywucVkgVk2+wU+39ehThMacotzkVWUBZfqQqw1Nizum6ruyy+/xD2T76nx60+ePImPP/oY/fv3h9ns7cmc/vB0rPx2Je68/U58+tmnmP/WfKxbuw5btm+BLMv4/LPP8dqrr+H9D9/H+R3Px7HMY/j5558BAIv/bzF69+iNW2+7FRNvm6j35G/atAkTJ07EM888g6uuugrffPMNZs6cee4fQDUx2BHVotK9EHaTndsdhYnqzO8rXcbFx9ezJ8sybCYbLLIFJsXkN8QbCj26DrcDWUVZyHXm8u8HVejIkSP4eefPuOTSS6r92oenP4w3572JoqIi9O3bF0uWL9GfUxQFC95bgD49++CRGY9g3hvzMO/f85CamgoASE9PR3JKMi4edjHMZjOaN2+O3n16AwASEhKgKAqioqOQkpLiLcEkBF577TWMHDkS06dPBwC0a9cO69evxzfffBOAT6Lq6vf/FYiClCY05DhycDj3MHKLcxFrjYXdbDe6WRQkFFmBRbHAbrYjyhKFOFsc4u3xiLfHI84W560VKCvQhIZ8Zz6OFR7DkbwjOHTqEA7mHMSfOX/qv2bkZ+Ck4yRyi3NR6CpEsacYbtXtFxSDjaqpyCrMQnpuOvJd+fo9U+ibO2cuEmIT9Me6detwz933+B9bu04//8svvsSAAQOQkOAdmi993qS7J53xvab9cxo2bd2Er77+CoqiYOKEiX5/L1q1aoVnn3sWLzz/AkZdPgrX33C9/tzV11yNYkcx2rdtj7vuuAvLli6Dx3Pm+YS/7fkN/fv39ztW9vu6wB47ogAr2wsRZ48zuklUj1R1mFcVKtyaG8XOYmgO7yIbAOW2abOZbEFVxqXQVYisoix9O7BoU3Sdt4GM8487/oGr/3a1/v2E8RMw9qqxGHvlWP1YkyZN9K+//OJLXH7F5fr3m7dt1r+OiYk543slJiYiMTER7dq1Q/sO7dG6RWts2rgJ/fr3089Zt3YdFEXBoT8PwePxwGTy/r1r1qwZdu3ehdWrV+P7777Hvffci5deeAmr/7daH84tK1j+McVgRxQgvk3Js4qyoAqV2x1RrdCHeXH2Yd7KtmnzlXEpu01bbZZx8Wge5DhykFWUBUmSWMIkTCUkJOi9bwBgt9uRlJSENm3alDu3oKAAP/7wI159/VX9WEXnVYUvdDmdp2v8ffrJp1i6ZClWfbcKN95wI5556hk8Putxv7aNHj0ao0ePxp133YkuHbvgl12/oHuP7jBbzFBV1e89OpzfARs3bvQ7Vvb7usBgRxQAZTclZy8EGaU6ZVwK3YV+8/tqo4yLEMK7HVhRFgrdhYiyRHm3kaNaowoVUM9+XkDepxat/HYl2rRtg1atWlXrdVs2b8GWLVswcOBAxMXH4eAfB/HErCfQqnUrvbfur7/+wuRJk/H0nKcxcNBA/Oft/2DsFWMx8pKR6NuvL9579z2oqoo+ffrAHmHHRx98BLvdjuapzQF4V9quW7sO1467FhaLBQ0aNMDkyZMxaOAgPPfccxg7dixWrlxZ5/PrAAY7onPCTcmpPqnrMi4u1YWTjpM4WXTSux0Ye+lqlSx5i2k7Vec515erKqtirbX/532x/AuMHj262q+z2+1YtmQZnpz9JAoLC5HSKAUjRo7A+x+9D6vVCiEEbpt4G3r17oW7J90NABg2fBjuuvsuTLh5ArZs24LYuFi8MPcFPPjPB6GqKjp16oTPl36ul0aZOWsmJt09CR3adYDT6YTD5UC/fv3w3//+FzNnzsSsWbMwbNgwPProo3jyyScD+rmcjSSCZVA4iOTl5SE2Nha5ublnHcOn8MVNySnclN7Ozve1b19SAQGTZPIr4+JUndwOrBZ4XB7kZeaheYvmsNlsfs+Fyl6xqqqiaaOmWP7lcn01arDyrYq1mCznFHKLi4tx8OBBtGzZstzva3VyCXvsiKrJo3n0TcklSeKm5BQ2fPvqVrZ7VNkyLrIks9BwHdOH4uu57Oxs3DvlXvTq3cvoptQ7DHZEVcS5QkRndqb5fUTVkZSUhBmPzDC6GfUSgx1RFbhVt95Lx7lCREQUrBjsiM5ACIF8Vz5OFJ7gXCEiIgp6DHZElXCpLn07MLNsZi8dEQUNAQFw6WNICdRaVgY7ojKEEMhz5iGrKAvFnmJEW6MrLQ9BRFTXZMW78tLhcMBmt53lbKovioqKAKDSnS2qij+tiEpxepx6L53VZOWm5EQUdGRFhiXSghMnTgDw1m0DBxOMI7wdAppJq1G5EyEEioqKcPz4ccTFxUFRzm31EYMdEbz1ufKceThReAIu1YUYa0yt1GYiIgqEqIQoFKAAx48fB+DdNYSMIeCtY2eSTec0XScuLg4pKSnn3B7Dg928efPw/PPPIyMjAx07dsQrr7yCwYMHn/V1P/30Ey644AJ06tQJaWlpfs999tlneOyxx3DgwAG0bt0aTz/9NK688spaugOq74o9xcgqykJucS5sJht76Ygo6EmShOgG0dDiNWieuitITOW5VTdcqgtNY5rWeHGd2Ww+5546H0OD3eLFizF16lTMmzcPAwcOxFtvvYVLL70Uu3fvRvPmzSt9XW5uLm666SZcfPHFOHbsmN9zGzZswLhx4/Dkk0/iyiuvxJIlS3Dttddi3bp16Nu3b23fEtUjmtD07cA8moe9dERU78iyDNnCbQyNJFQB1aPCZrMFRdUEQ7cU69u3L3r06IE333xTP9ahQweMHTsWc+bMqfR11113Hdq2bQtFUbB06VK/Hrtx48YhLy8PX3/9tX7skksuQXx8PBYtWlTh9ZxOJ5xOp/59Xl4emjVrxi3FQpjD7fD20jlzYTfZYTfbjW4SERHVQ27VDafHiZbxLWst2FVnSzHDYr7L5cK2bdswYsQIv+MjRozA+vXrK33dggULcODAAcycObPC5zds2FDumiNHjjzjNefMmYPY2Fj90axZs2rcCdUnqqYiqzAL6bnpyHflI84Wx1BHREQhw7Bgl5WVBVVVkZyc7Hc8OTkZmZmZFb5m3759mD59Oj788EOYTBWPImdmZlbrmgAwY8YM5Obm6o/Dhw9X826oPih0FeKvvL+QWZgJs2JGnC3unDZsJiIiCjaGL54ou4JECFHhqhJVVXHDDTdg9uzZaNeuXUCu6WO1WmG1WqvRaqpPPJoHOY4cZBdlQ0Aw0BERUcgyLNglJiZCUZRyPWnHjx8v1+MGAPn5+di6dSt27NiBe+65BwCgaZp3ibHJhJUrV+Kiiy5CSkpKla9Joa/AVYCswiwUuAoQaYmE1cQAT0REocuwbguLxYKePXti1apVfsdXrVqFAQMGlDs/JiYGu3btQlpamv648847cd555yEtLU1f8dq/f/9y11y5cmWF1zSaw+1AkbsIqqYa3ZSQ49E8OFZwDIdzD6NYLUa8PZ6hjoiIQp6hQ7HTpk3D+PHj0atXL/Tv3x/z589Heno67rzzTgDeuW9HjhzBe++9B1mW0alTJ7/XJyUlwWaz+R2fMmUKhgwZgrlz52LMmDFYtmwZVq9ejXXr1tXpvVVFVlEW8p35sJqsiDBHIMIcAYtigdVk5VBhDQkhvL10RVkodBciyhIFi2IxullERER1wtBgN27cOGRnZ+OJJ55ARkYGOnXqhBUrViA1NRUAkJGRgfT09Gpdc8CAAfj444/x6KOP4rHHHkPr1q2xePHioKxhJyCgyAokSUKuMxfZjmwokgKLYkGUJQp2sx1WxQqLYuHm81XgVt3IdmTjZNFJmBQT4m3x/NyIiCisGFrHLlhVp17MuUjPTYfT40SkJVI/pmoqXKoLTtUJTWgwSSZYTVZEWaJgM9lgNVlhls0MLKUIIZDvyseJwhNweByItkQHRZFIIiIKfcFWx87wVbHkT5EV2OXTBXM9mgcu1YXjhd79AM2yWe/Rs5ltsCrWsA4xLtWF7KJs5BTnwCybkWBPMLpJREREhmGwC3Im2QSTbEKEOQLA6T3pjhV6t1KzKBbYTDZ9LpnVZIVJDv3fViEE8px5OFF4AsVqMWKsMWFx30RERGfCn4T1jFkxw6yYEYlICCHgUl1weBzIc+YBAKyKFXaz3Vvao2R+Xqjtf+r0OJFVlIWc4hzYTDb20hEREZVgsKvHJEmC1WSFFd4yHkIIOFUn8l35OFV8ChIkvxW3VpM36NXXFbea0JBbnIusoiy4VBdirbEhF1qJiIjOBYNdCJEkCTaTDTaTDYA3CDk9TpwqPoVsRzZMkglmxVwvV9w63A5kO7KRW5wLm8mGeHu80U0iIiIKOgx2IUyWZNjNpxdi+FbcZjuyoRVpMMtmWBXviluryar36AUTTWj6dmAezYMYawx76YiIiCrBYBdGyq64datuuDU3jhcehwYNFtlSrrSKkQsSitxFyC7KRq4zF3aTHVHWKMPaQkREVB8w2IUx30IM34pbX/28goICAP4rbq0mK6yKtU56y1RN9fbSObKhChVxtrh6Oy+QiIioLjHYkc6iWPShWN+K2yJ3EXKduZAhw6JY/Fbc1sbWZ4WuQu9Wa658RJgjEG2KDuj1iYiIQhmDHVVIX3Fr8q641YQGl+pCvisfOcU55bY+sygWWBVrjRdieDSPPpcOErgdGBERUQ0w2FGVyJLst+LWtxDjpOMk1CIVJskEi6kk6Jns1dr6rMBVgKzCLBS4CxBpjtTDJBEREVUPgx3VSGVbn50oPAHAu2OGb8VtZVufuVU3TjpO4qTjJGRJZi8dERHROWKwo4CoytZnvhW3VsUKTWg4UXQCRe4ifTs0IiIiOjcMdlQrym595tbcKPYUI9+Z73cOe+mIiIgCh8GOap0kSeVW3AoIljAhIiIKMAY7qnOSJEECe+mIiIgCjV0mRERERCGCwY6IiIgoRDDYEREREYUIBjsiIiKiEMFgR0RERBQiGOyIiIiIQgSDHREREVGIYLAjIiIiChEMdkREREQhgsGOiIiIKEQw2BERERGFCAY7IiIiohDBYEdEREQUIhjsiIiIiEIEgx0RERFRiGCwIyIiIgoRDHZERERE1aRpAg6XBzlFLqOb4sdkdAOIiIiI6otitwqXR4PLo0IA8GgaAMnoZukY7IiIiIjOwK1qKHarcHpUCGF0a86MwY6IiIioDFUTcLpVFHtUqFqQp7lSGOyIiIiIAAgh4PR4e+fcqmZ0c2qEwY6IiIjCmtOjwuk+PW+uPmOwIyIiorDj0efNadCCfeJcNTDYERERBYimCahCwKywmlgw0jQBp0eFw12/5s1VB4MdERFRABS7VRQ43RDCW/zCpMiwKDJMigyzIkGSgqckRjjxzZtzelS4PVq9H2o9GwY7IiKic+BRNRQ4PX6T7QW8JTJ8x3xBz6zIMCkSLIrMoFfLXCVhrj6UKAkkBjsiIqIaEEKgyKXC4fKctReooqCn6D16DHqBompCrzcXqkOtZ8NgR0REVE1Oj4pCp6fG4UHA29PnKRP0zLIEkyLDamLQqyohBIrdGoo9qv55hjMGOyIioipSNYFCpwdOjxrQ654OegDcKvIBKLKkz9GzKDJkmUGvtFAqURJIDHZERERVUOT0oKgKw66BomoCDk0F3N4QqcgSzCXz9MI16LlVDc4QLFESSAx2REREZ+DyaChwug2fs6VqAqqmoriCoGdWZCghGvS0knlz9W1rL6Mw2BEREVVA0wQKamHYNVAqCnomuaRHz1S/g14obO1lFAY7IiKiMhwuFYUud70qk+ELek6PCjgBWSrdo+ddlBHsXCVhzqWGV4mSQGKwIyIiKuFRNeQ7PSGxulITQq/jBpQOelJJPb3gCHoeVdN75zhv7twx2BERUdgTwrvatdgduissTwc97/eSBH0hhq94cp21pWRrr2KPFhIhOpgw2BERUVgrdntr0oVbb5EQ3qFPl6ekll5J0DPLMsym2gl6xW615D1DN0AbjcGOiIjCkqoJFDjderAJd3rQgwa4ArffrVvV9N0gwiw7G4LBjoiIwooQAg6XWqc16eqjM+13az5L0FM1ASdLlBiCwY6IiMJGsNSkq4/Ott+tWZbhUlmixGgMdkREFPKCvSZdfVR2v1sKDgx2REQU0hwuDwpdHs7vorDAYEdERCHJrWooCJGadERVxWBHREQhRQjvsKtvqy2icMJgR0REISNca9IR+TDYERFRvecpGXblakwKdwx2RERUbwkhUORS4WBNOiIADHZEVIs0TUAVAqomIEsSFNn7IAoEp8c77MqadESn1d2Ov5WYN28eWrZsCZvNhp49e2Lt2rWVnrtu3ToMHDgQDRo0gN1uR/v27fHyyy/7nbNw4UJIklTuUVxcXNu3QhR2VE3A5fEWJC1yepBf7MapIhdOFjqRlV+M7EInThW5kF/sRq7De/xEfjGyC5zIKXIhz+FGodMDh8u73ZBH1SA4N4rOQtUE8hxu5DlYaJioLEN77BYvXoypU6di3rx5GDhwIN566y1ceuml2L17N5o3b17u/MjISNxzzz3o0qULIiMjsW7dOtxxxx2IjIzE7bffrp8XExODvXv3+r3WZrPV+v0QhRpV8/a2aSW9br6vNSGgaaLGQ1+aENBUAU8lz8uSBFmWoEgSZAlQ5NPfK3LN9quk0OBweVDo5LArUWUkYeA/j/v27YsePXrgzTff1I916NABY8eOxZw5c6p0jauuugqRkZF4//33AXh77KZOnYpTp07VuF15eXmIjY1Fbm4uYmJianyds0nPTYfT40SkJbLW3oOoMkIIaALwaBo0DXp48/0qRM2DW22TJG/4M8myHvykktBnYvALSdwKjIKVW3MjxiahZXxLmBVzrbxHdXKJYT12LpcL27Ztw/Tp0/2OjxgxAuvXr6/SNXbs2IH169fjqaee8jteUFCA1NRUqKqKbt264cknn0T37t0rvY7T6YTT6dS/z8vLq8adEAUn4etlEwKaBqiaBk2g5HtRr8tBiJL7ULWK65T5gp8iSyUB8HTwU0p6A6l+0DSBQhdr0hFVlWHBLisrC6qqIjk52e94cnIyMjMzz/japk2b4sSJE/B4PJg1axZuu+02/bn27dtj4cKF6Ny5M/Ly8vDqq69i4MCB2LlzJ9q2bVvh9ebMmYPZs2ef+00R1SFfcPOU9K55e9t8gUcL6+2TTge/ij8ECfAO7ZYEP1/Y84VABr/gUOxWUeB0h/WfZaLqMnxVbNkhEyHEWYdR1q5di4KCAmzcuBHTp09HmzZtcP311wMA+vXrh379+unnDhw4ED169MDrr7+O1157rcLrzZgxA9OmTdO/z8vLQ7NmzWp6S0QBUXpFaeneN99wKX/Y1ZzA6fmDFfEFP1nyD3tc2Vs3WJOOqOYMC3aJiYlQFKVc79zx48fL9eKV1bJlSwBA586dcezYMcyaNUsPdmXJsozevXtj3759lV7ParXCarVW8w6Izk3p4Ob7WmNwCwp68CuZZegs83zZ4KeUCX0MfjUjhEBhyVZg/ONPVDOGBTuLxYKePXti1apVuPLKK/Xjq1atwpgxY6p8HSGE3/y4ip5PS0tD586dz6m9ROfK5dHgcHv0IMcfXPVX2eBXkdIre33BT5bBlb2V4FZgRIFh6FDstGnTMH78ePTq1Qv9+/fH/PnzkZ6ejjvvvBOAd4j0yJEjeO+99wAAb7zxBpo3b4727dsD8Na1e+GFFzB58mT9mrNnz0a/fv3Qtm1b5OXl4bXXXkNaWhreeOONur9BInh75gqcHjg9nPwdTljSpWpUTaDA6YbLw2FXokAwNNiNGzcO2dnZeOKJJ5CRkYFOnTphxYoVSE1NBQBkZGQgPT1dP1/TNMyYMQMHDx6EyWRC69at8eyzz+KOO+7Qzzl16hRuv/12ZGZmIjY2Ft27d8eaNWvQp0+fOr8/IodLRaGLk7+pvLMFv3Ao6VLk9KCIW4ERBZShdeyCFevY0blyl0z+9nDyN9WS+lzShTXpKJSwjh1RCPNN/naw5hbVspqWdDEy+HFaAlHtY7AjChBO/qZgUp2SLqXDXm2VdOG0BKK6wWBHdI44+Zvqo9IreyvqYA5USRdOSyCqWwx2RDUkhIDDpXLyN4Wkcy3pIksSilyclkBU1xjsiGqAk7+Jzr6yl4jqHoMdUTVw8jcREQUz2egGENUXDpeKk0VOhjoiItJpQkN6bvrZT6wj7LEjOgtO/iYiorL2ndyLFfuX4av9y+DRXDg89XCt1bGrDgY7okqwJh0REZV2rCADXx/4Aiv2L8PvJ3/Tj0dborE3ey+6N+puYOu8GOyIKsCadEREBAD5rnx8d/AbfLVvKbZmbIIoWSluks0Y0vxCjGw1Cpe2vRDtG7Y3uKVeDHZEpbAmHRERuVUX1h3+EV/tX4Y16d/Bpbr053qk9MZlbcZgeMtLEWuLg1tzw2oKni38GOyIwJp0REThTgiBtGPbsGL/Mqz8YwVynaf051rFtcWotmNwaesr0Di6iXGNrAIGOwp7rElHRBS+/sjZjxX7l2HF/uU4WvCXfrxhRBIubT0al7Udi/MSOkCSgqdX7kwY7ChssSYdEVF4OlF0HN8c+BIr9i/Fnqxf9eMR5khc3GIkRrUdi96N+kGRFQNbWTMMdhSWuCE5EQWaJjR8d/BbHMk/jK7JPdCxYWdYFKvRzaISha4C/O/QKny1bxk2Hf0JmvDOpTZJJgxoNgSj2ozBkNSLYTfZDW7pual2sGvRogUmTpyICRMmoHnz5rXRJqJaw5p0RFQb9mT9gjk/zcLPx3foxyyKBZ0adkX3lF7okdIbXZN7IMoSbWArw49bc2PjX+vw1f5l+OHPVShWi/XnuiR1x6i2YzGi1WWItyUY2MrAkoSoXp/F66+/joULF2Lnzp248MILceutt+LKK6+E1Ro6/yrJy8tDbGwscnNzERMTU2vvk56bDqfHiUhLZK29B3mxJh0R1Ybc4lP419aX8H97PoKAgN0UgT6N+2PXiTScdGT7nStLMtoldECPRr3RI6U3eqT0QoI90aCWhy4hBH45sRNf7VuKb//4CjnFJ/XnUmNbYlSbMbi0zRVoFpMakPdza27E2CS0jG9ZawWKq5NLqh3sfHbu3Il33nkHixYtgsfjwQ033ICJEyeiR48eNWp0MGGwCy2sSUdEgaYJDUv3forXNj+PU84cAMAlrUfjvr7TkRyZAiEE0nP/xPbMLdieuQU7Mrfir/zy206lxrZEj5Te6J7SCz1T+qBxdNN6M0k/2BzKPYgV+5djxf5lOJx3SD+eYG+Aka0ux6i2Y9ExsXPAP9+QCXY+brcb8+bNw0MPPQS3241OnTphypQpuOWWW+rtH04Gu9DAmnREVBt+PfEz5vw0C7+c2AkAaB3fFtMHzELvxv3O+LpjhZnYkbkF2zO3YkfmFuw/+bte7NYnKTIFPVJ6oXuKt1evdXxbyBK3da/MSUcWvj3wFVYcWI5dx9P04zaTHRe1GIFRbcagb5OBMMm1t6QgZIKd2+3GkiVLsGDBAqxatQr9+vXDrbfeiqNHj+Jf//oXLrzwQnz00Uc1ugGj1VWw+/3EQThVJ+Lt0ZDl+hmCgxFr0hFRbThVnIPXt7yAz39bDAGBSHMU7uw5Bdd1HA+zXP0f6HnOXKRlbtN79Xaf2AWP8PidE2ONRffkXvo8vQ6JHWFWLIG6pXrJ4XHghz9X4av9y7Dhr7VQhXeKjSzJ6N9kEC5rOxYXpg5DhLluOk3qfbDbvn07FixYgEWLFkFRFIwfPx633XYb2rc/vZXGli1bMGTIEDgcjprdgcHqKtjtyjiAAlcRIsyRUGQJZkWGWZFhUWQGvRpiTToiCjRVU/H5b4vxr60v6kVrR7UZi6l9H0LDiKSAvY/D48Avx9OwPXMrtmduwc/HdsDhKfI7x6bY0DmpG7qXzNPrmtQddnNEwNoQrDyaB5uPbsCKfUvx/aFVKHIX6s91bNgFl7W5AiNbXY7EiIZ13rZgC3bV7pvs3bs3hg8fjjfffBNjx46F2Vz+Js4//3xcd9111b10WFM1AVVTUVwyuV+RJZhkGRaTN+wpDHpnxJp0RFQbfj62A8+un4XdWb8AANomnIcZA2ajR6PeAX8vu8mO3o37o3fj/gC8gWFv9h5sz9iM7ZlbkJa5DaecOdiSsRFbMjYC8JbqaJ/YUR++7Z7SC3G2+IC3zQhCCOzJ+gVf7V+Gbw98iSzHCf25JtHNMKrNGFzWZgxaxLUysJXBp9o9docOHUJqamBWkgQrI3rszsYX9MyKN+wx6J3GmnREFGgnHdl4bfPzWPr7pwCAKHMU7u51H649/8Zana91JprQcPDUAX2e3vaMzcgszCh3Xqu4tujZqHfJPL1eSIlqbEBra+5I3mGsOOBdBHHw1AH9eJw1HiNaj8KoNmPQJal70MzjD7Yeu2oHuy1btkDTNPTt29fv+KZNm6AoCnr16lX9FgeZYAx2ZclSqaHbMA16rElHRIGmaio+3fMR3tj6EvJdeQCAK9pdjSm9H0SDiOArTXI0/0hJ0POuvP3j1P5y5zSKanJ65W2jPmgR2ypoQpHPqeIcrPrja3y1fynSjm3Tj1sVK4amDsNlbcZgQNPBQTm/sN4Huz59+uDBBx/ENddc43f8888/x9y5c7Fp06bqtzjI1IdgV1bpoGdWJJiU0F1FxZp0RFQb0o5tw5yfZmFv9m4AwHkNzseMgbPQLbmnwS2rupOObKRlbtXn6e3N3q0vLvCJtyWgu77ythfOa3C+Ib2QxZ5irEn/Hiv2L8O6wz/Co7kBABIk9GkyAJe1uQIXtxgZ9EWd632wi4qKws8//4xWrfzHtA8ePIguXbogPz+/+i0OMvUx2JV1Ouh5fw2VoMeadEQUaNlFWXhl81x8se9zAEC0JQb39L4f17S/vl7uFVpaoasAPx9P03v1dh1Pg1N1+p0TYY5El6Tu6JnSG90b9Uanhl1hM9lqpT2qpmJbxias2L8cqw9+jQJ3gf7ceQ3Ox6g2YzCy9eVIjkyplfevDcEW7Kod0a1WK44dO1Yu2GVkZMBk4tazwUITAk6PCmfJynlJAiyKovfmmetZ0GNNOiIKNI/mweLd7+PNra/oAePK867F5N7/RIK9gcGtC4xISxT6Nx2E/k0HAQBcqhO7s37Bjgxvj96OY1tR4MrHxiPrsPHIOgCASTajY8POJcO3vdEtuSdirOfWyfF79m/4av9SfH3gCxwvzNSPN4pqjEvbjMFlra9Am4R25/Qe5FXtHrvrrrsOmZmZWLZsGWJjYwEAp06dwtixY5GUlIRPPvmkVhpal0Khx+5sJAl6aZVgDnqsSUdEtWFbxmY8u34W9p3cCwA4P7ETZgycjc5J3YxtWB1TNRX7c373m6d3oui43zkSJLRNaH+6cHKj3lUq85JZcBRf7/8CX+1fiv05v+vHoy0xGNHqMlzWZgy6p/Sq9wWYg63HrtrB7siRIxgyZAiys7PRvXt3AEBaWhqSk5OxatUqNGvWrOYtDxLhEOzK8gU9syzDbAqOoMeadEQUaCeKjuPlTc9ixf5lAIBYaxwm974fV543rt4PuwaCEAJ/5ad7Q15Jr1563p/lzmsW07xkjl4f9EjphWYxqZAkCXnOPKw++DW+2r8M2zM26ztrmGULhjS/EKPajMGg5kNhUUJnf/l6H+wAoLCwEB9++CF27twJu92OLl264Prrr6+wpl19FI7BriwJgKlUj57FVHdBjzXpiCjQ3JobH//yHv69/TUUugsgQcLV7a/DPb3vD5m6b7Ulq+hESW+et8zK79l7ym2FlmhviJZxrZF2bDvcmks/3rNRX4xqMwbDWl6CGGtsXTe9ToREsAt1DHbllQ16ZkWqleXyrElHRIG25ehGPLt+Fg7k7AMAdGrYFTMGzkLHhl0Mbln9lO/Kx85j27A9wzt8++uJXX5hrnV8W1ze5kpc0mY0GtWzGno1EWzBrsarHXbv3o309HS4XC6/41dccUVNL0lBTMBbN85dUjPOF/RKl1g5l6DHmnREFGjHCjPx8qY5+ObAlwC8ZT7u7f0Axpx3Tb2f12WkaEs0BjUbikHNhgIAnB4nfjmxEwdy9qFrcg+0S2gfdHXywkm1g90ff/yBK6+8Ert27YIkSfB1+Pl+E1WVw2fhoKKgp+g9ehIsilylv9isSUdEgeZWXfjglwWYv/1fcHiKIEsy/tbh77i751TE2uKMbl7IsZqs6NmoD3o26mN0Uwg1CHZTpkxBy5YtsXr1arRq1QqbN29GdnY27r//frzwwgu10UaqBwQAj6rpPW6+oGeWJZhNcoVBjzXpiCjQNh75CXPXz9a3ouqS1B0PD5yN9okdDW4ZUd2odrDbsGEDvv/+ezRs2BCyLEOWZQwaNAhz5szBvffeix07dtRGO6meOR30oPfGmUqCnkmR4fSorElHRAGTWXAUL2x8BqsPfg0ASLA3wNQ+D+Hytldy2JXCSrWDnaqqiIqKAgAkJibi6NGjOO+885Camoq9e/cGvIEUOnxBDxx2JaIAcalOvL/rHfxnxxso9jggSzLGnT8ed/Wces5FdYnqo2oHu06dOulbivXt2xfPPfccLBYL5s+fX243CiKiYk8xThQdQ4wlFjHWWE6qpoBZf3gNnl0/W6+z1j25F2YMnI12Ddob2zAiA1U72D366KMoLCwEADz11FO4/PLLMXjwYDRo0ACLFy8OeAOJKHgJIZDrPIWMgiPIKDjq/TX/KDILj+Jo/hFkFh7FSUe2fn6EORIpkY3RKLoxGkU2RqPoJkiJaozGUU3QKKoxEiOSDNmMnOqXo/lH8MLGp/D9nysBeGuo3dd3Oi5rM4b/cKCwV+3/g44cOVL/ulWrVti9ezdOnjyJ+Ph4/oUiCjEezYPjhceQ6QttJb96v/c+HJ6is17HqljhVJ0ochfij1P78MepfRWep0gKkiJT0CiqMRpFNUFKVCM0imqCxlHeANgoqjHs5ohA3ybVE06PE+/9/B+8nfYmitViKJKCGzpNwB09JiPKEm1084iCQrWCncfjgc1mQ1paGjp16qQfT0hICHjDiKj2FbkL/cLa0YKj3tBW0tt2vPAYVHH2OZEN7IloFNWk5NGoJJR5e+QaRTZGjDUWTtWJYwUZyCj0Xt8/KGYgszADHs1dcvwIgC0VvlecNR6NohuX9Pz53rOx/oi3NeA/MkPQmvT/4fkNT+BwXjoAoFejvpg+YBY3jicqo1rBzmQyITU1lbXqiOoBIQROOrIrDVIZBUeQ6zx11uuYZDMaRTXSg1TpodOUKG/AsprOvu+jzWRDalxLpMa1rPB5VVOR7cjSg52vR1DvLcw/ggJ3AU45c3DKmYM9Wb9WeB2rYi3p3Ssd+E63OykyGWbFctb2UnD4Ky8dz294Cj+mfwcAaBiRjPv7zcDIVpczwBNVoEZz7GbMmIEPPviAPXVEBnKrLhwrzPQLQRn5R/Qgl1l4FC7VddbrRFmiS4La6eFOXxhqFN0EDeyJdVIuQpEVJEUmIykyGV2Te1R4Tr4r33tvBUdxtCQAlh4Wzio6DqfqxKHcgziUe7DCa0iQ0DAyuVzoKx0EOaxnvGJPMRbsfAsLdv4bLtUFk2TC3zvfgtu734NIS5TRzSMKWtXeK7Z79+7Yv38/3G43UlNTERnpv8/p9u3bA9pAI3CvWAoGZUOM/zw3b4gpuxF3Wb4QkxLZCI2jm5QLMSlRjREdQiHGpTpxvPAYMgqOlHxmGTUKu9GWmDKhz5iwG46EEPgx/Ts8v+EpHMk/DADo23gAHhowE63i2xjcOqLy6v1esWPHjq1pu4iohCY0ZBWdOOuw49lUNOzo+z4chx0tihVNY5qjaUzzCp/XhIYcx8kyQdn/8891nkK+Kw/5J/Pw+8nfKryOWbYgJSqlwnl+1RmeJn/puX/iuQ1PYt3hHwAAyZEpuL/fIxje8lIOuxJVUbV77MIBe+wo0NyqCx/v/gA/Hlrtt1DgbOKs8ad7jEoWIpye58aFArWh0FWAzMIMvXSL3ttXEgSPFx2DJs6+a0pVFpTw987L4XHg7R3z8O7P/4Vbc8Ekm3FT51vxj+6TuAqagl6977EjourZdOQnPFtq70ofb2mP5IqH+0pKfTD0171ISxRaW9qidXzbCp93a26cKDxeaiVxmbl++UdQrBYj25GFbEcWfjmxs8LrRJgj9R6+xhXM82sYkQxFVmrzVg0nhMD3f67ECxufQkbBUQBA/yaD8dCAx9EijgXviWqi2sFOlstv5l4aV8wSeWUWHMWLG+dg1cEVAIB4WwL+0X0S2jfoiEbRTdCQxXjrJbNsRuPoJmgc3aTC54UQOOXM0cvGHC09xF7ya07xSRS5C3EgZx8O5Jy5pl/pFchle23tJntt3mqtOnTqIJ5dPxsbjqwFADSKaowH+j2KC1uMYE8m0Tmo9k+VJUuW+H3vdruxY8cOvPvuu5g9e3bAGkZUX7lVF97f9Q7m7/iXvnfltR3+jrt73YcYa6zRzaNaJkkS4m0JiLcloENipwrPcXgcOFaQUeGimIz8IzhemAmP8JSq6VexeFuC37zKsqVo4m0JQReSHO4i/GfHG3hv19vwaG6YZQsmdP0HJna7q14HVaJgEbA5dh999BEWL16MZcuWBeJyhuIcO6qp9X+txdz1s/VSG92Te2H6wFk4r0EHg1tG9YmqqcgqOl5qfl9GuSHfwiosrrEpttNDvGW2cWvkW1wj186coLKEEFh18Gu8uPFpHCvMBAAMajYUD/Z/DM1jW9RJG4hqQ8jOsevbty/+8Y9/BOpyRPXK0fwjeHHj0/juz28BeCfO39d3Oka1GRt0PSYU/BRZQXJUIyRHNUK35J7lnhdCeMvhlOrxO1oq9GUWHMWJouMoVovxZ+4f+DP3jwrfR5ZkNIxI8uvtS/Gb69k4IDXj/sjZj7nrZ2PT0fUAgCbRzfBg/8cwpPlF/PtBFGABCXYOhwOvv/46mjZtGojLEdUbFe1deV3Hm3BnzykhVR+OgoskSYixxiDGGlNpb7BLdXpXYJfeKq6gdF3EDLg1b5HrY4WZwLFtFV4nxhqLlMjGJXUQG5dZ5NEECfYGldb0K3QV4K0dr+OjXQvhER5YFStu6XonJnS9HTaTLWCfBxGdVu1gFx8f7/cvLCEE8vPzERERgQ8++CCgjSMKZmvT/4fnNjyJw3mHAAA9U/pg+sBZaJtwnsEtI/LW9Gse26LSYU5NaN4t5/y2mvP2+B0tKeac58zVH7+f3FPJ+1iQHNnIb2VvSlRjqMKDf297DSeKjgEAhqYOwz/7PVJpjUEiCoxqB7uXX37ZL9jJsoyGDRuib9++iI+PD2jjiILRkbzDeH7jU/jh0GoAQMOIJNzXdwYubT2aw0pUb8iSjMSIhkiMaIjOSd0qPKfQVVBuf+HSCz5OFB2HS3XhcN4h/R84ZTWLaY4H+z+Owc0vrMW7ISKfage7CRMm1EIziIJfsacYC3fOx4Kd/4ZTdcIkmXBDp5txe4/J3FuUQlKkJQptEtqhTUK7Cp93a24cLzzmt2OKd8HHUeQ6c3BhixG4qfNt3IWDqA5VO9gtWLAAUVFR+Nvf/uZ3/NNPP0VRURFuvvnmgDWOKFj8eOg7PLfhSX3vyt6N+mH6wFmVFrElCgdm2Ywm0U3RJJrzq4mCRbV3sX722WeRmJhY7nhSUhKeeeaZgDSKKFgczjuEyd/chikrb8eR/MNIikzB3Itew/xRHzDUERFR0Kl2j92hQ4fQsmXLcsdTU1ORnp4ekEYRGc3hcWBB2r+x8Of5cKnevSvHd56If3SfxLqDREQUtKod7JKSkvDzzz+jRYsWfsd37tyJBg0aBKpdRIYQQuB/f67E8xuf1iv+92syCA8NeBwt41ob3DoiIqIzq3awu+6663DvvfciOjoaQ4YMAQD8+OOPmDJlCq677rqAN5Corhw6dRBzN8zG+r+8e1emRDbCP/s/iotbjORqVyIi8iNLEqwmGZGyBE24jW6OrtrB7qmnnsKhQ4dw8cUXw2TyvlzTNNx0002cY0f1ksNdhP+kzcP7P78Nt+aCWbbgpi634rZud8NujjC6eUREFCQkCbAoCmxmBRaTd5mCW3XD6TG4YaVUO9hZLBYsXrwYTz31FNLS0mC329G5c2ekpqbWRvuIao0QAqsPfoMXNz6NzMIMAMDApkPw4IDHkRpbfh4pERGFHwmAxeQNclaTHPQjODXeUqxt27Zo25arAql+OnjqAJ5dPxubjvwEAGgU1QQP9n8MQ1OHBf1fWiIiql0SALNJhtWk1IswV1q1g90111yDXr16Yfr06X7Hn3/+eWzevBmffvppwBpHFGiFrgLM3/EvfLhrATzCA4tiwYSud+CWrnfAbrIb3TwiIjKQWTkd5mS5/oS50qod7H788UfMnDmz3PFLLrkEL7zwQkAaRRRoQgh8+8eXeHHjHH3vyiHNL8ID/R9FsxhOIyAiCleKLMFuVmAxKVDqaZgrrdoFigsKCmCxWModN5vNyMvLq3YD5s2bh5YtW8Jms6Fnz55Yu3ZtpeeuW7cOAwcORIMGDWC329G+fXu8/PLL5c777LPPcP7558NqteL888/HkiVLqt0uCh37T/6O27+6EdO/n4oTRcfQNLo5XhvxH7w28j8MdUREYUiRJURYTIiPsCAh0gq7xRQSoQ6oQbDr1KkTFi9eXO74xx9/jPPPP79a11q8eDGmTp2KRx55BDt27MDgwYNx6aWXVlroODIyEvfccw/WrFmDPXv24NFHH8Wjjz6K+fPn6+ds2LAB48aNw/jx47Fz506MHz8e1157LTZt2lS9G6V6r8CVjxc3PoPrPh+NLRkbYVWsuKvnVHx2zTcYknqR0c0johBkNSmIsppgNSmQ69G8rHAgS96eubiSMBdpNcGkVDsGBT1JCCGq84Lly5fj6quvxg033ICLLvL+cPzuu++waNEifPrppxg7dmyVr9W3b1/06NEDb775pn6sQ4cOGDt2LObMmVOla1x11VWIjIzE+++/DwAYN24c8vLy8PXXX+vnXHLJJYiPj8eiRYuqdM28vDzExsYiNzcXMTExVb6f6lh1YBX2ZR1G24T2SIpMqZX3CFdCCKw4sBwvb5yDLMcJAMDQ1GF4oN+jaBLTzODWEVEoUmQJUVazXgLDR9UE3KqmP1StWj9y6RxJEkrmzCnlfm8CxVvuxImW8S1hVsy18h7VySXVnmN3xRVXYOnSpXjmmWfwf//3f7Db7ejSpQtWr16NCy64oMrXcblc2LZtW7lFGCNGjMD69eurdI0dO3Zg/fr1eOqpp/RjGzZswH333ed33siRI/HKK69Ueh2n0wmn06l/X5Mh5ep6au1TWHNoDWRJRtuE9uiR0gvdU3qjR0pvJEY0rPX3D1X7Tu7Fsz/NwrbMzQCAZjGpeGjA4xjUbKixDSOikCRJQKTFDLtFqfB5RZagyN66Z4D3H54uVYNH9QY+j6qBUS+wfOVJrGbvQohwU6NyJ6NGjcKoUaPKHU9LS0O3bt2qdI2srCyoqork5GS/48nJycjMzDzja5s2bYoTJ07A4/Fg1qxZuO222/TnMjMzq33NOXPmYPbs2VVqd6B0atgJf+YcQnreIezN3o292bux6Nf3AADNY1qgR0pvdG/UCz1SeqNpdPN6tdTaCPmufLy57RUs/vV9qEKFTbHh1u534+Yut8GiWI1uHhGFGAmAzawg0mqq1v+fJUkq6UE6fcwX8NwlYU+r3kAaoX6XJwm0Gtex88nNzcWHH36I//73v9i5cydUVa3W68t++EKIs/6GrF27FgUFBdi4cSOmT5+ONm3a4Prrr6/xNWfMmIFp06bp3+fl5aFZs9odsntj1Bu4s8c0/HnqEH7L3o3tGZuxPXMr9p38Del5fyI9708s/d1bOqZhRJI36JX06LVJaAdZCr15ATWhCQ1f7luCVzbPxUlHNgBgWMtLMK3vw2gc3cTg1hFRKLKYZERaAjc/y6zIMCsyfAWXOHxbdaFQniTQahzsvv/+e7z99ttYsmQJUlNTcfXVV+Ptt9+u8usTExOhKEq5nrTjx4+X63Erq2VL764AnTt3xrFjxzBr1iw92KWkpFT7mlarFVarMb06iRENMSL2MoxodRkAIM+Zh53HtmFH5lZsz9yCX078jBNFx/HtH1/h2z++AgBEW2LQLbmn3qvXMbEzzEr5lcqh7rfs3Zjz00zsPLYdAJAa2xIPDZiJAU0HG9wyIgpFiiwhsmRhRG2/T+nhW03zDd9qcGsCapgP35oUGbaS3jmGufKqFez++usvLFy4EO+88w4KCwtx7bXXwu126+VFqsNisaBnz55YtWoVrrzySv34qlWrMGbMmCpfRwjhNz+uf//+WLVqld88u5UrV2LAgAHVap9RYqwxGNz8QgxufiEAoNhTjF9O7MSOjC3YnrkVO49vR74rD2sP/w9rD/8PAGBTbOiU1FXv1eua3B0R5kgjb6NW5Tlz8cbWl/Hpng+hCQ12UwRu734Pbux8S1gGXCKqXRKACIsJdotiyBCfLEuwyQpQap6eWxUlQc/bqxfqo7eKLMFmUmA1h0atudpU5WB32WWXYd26dbj88svx+uuv45JLLoGiKPj3v/9d4zefNm0axo8fj169eqF///6YP38+0tPTceeddwLwDpEeOXIE773nnXv2xhtvoHnz5mjfvj0Ab127F154AZMnT9avOWXKFAwZMgRz587FmDFjsGzZMqxevRrr1q2rcTuNZDPZ0KtRX/Rq1BcA4NE82Ju9G9szt2JH5hbsyNyKnOKT2JqxCVszvCVdFEnBeQ3OR89GfdA9pRe6p/RCvC3ByNsICE1oWP77Z3h183PIKT4JABjR6jLc3/dhJEc1Mrh1RBSKfOVLgqlnSJIkWEyS3yrP0nP0PFpoDN/KkgSrSYbNrIRkWZLaUuVgt3LlStx777246667ArZH7Lhx45CdnY0nnngCGRkZ6NSpE1asWIHUVG/R2IyMDL+adpqmYcaMGTh48CBMJhNat26NZ599FnfccYd+zoABA/Dxxx/j0UcfxWOPPYbWrVtj8eLF6Nu3b0DabDSTbELHhl3QsWEXjO88EUII/Jn7B7ZnbsGOjC3YlrkFGQVHsDtrF3Zn7cL7u7zD463i2qB7Si+9V6++zT/bfWIX5qyfhV3H0wB47+ehAY+jb5OBxjaMiEKSSZERZTXBXE8ChUmRYVIAO+r38G1dlCcJdVWuY7dhwwa88847+OSTT9C+fXuMHz8e48aNQ+PGjbFz585qD8UGs7qoYwcAuzIOoMBVFPBh08yCo3qP3vbMLTiQs6/cOY2iGpcsxvCWWWkV1yYoVxHlFp/Cv7a+iP/bswgCAhHmSNzRYzJu6Hgzh12JKOBkyTuPzje/LVSUK7OiBc/wrSQBFqX+licJtjp21S5QXFRUhI8//hjvvPMONm/eDFVV8dJLL2HixImIjo4+p4YHi/oe7Mo6VZyDHXrQ24o9Wb9AFf6rl+Os8eiW0hM9U/qge6PeaN/gfJjkc140XWOqpmLJ3k/wry0v4pQzBwBwSevRmNZ3BpIiz7y4hoiouiQAdosJEQbNozOCkWVWfLXmLCa53pcnqffBrrS9e/fi7bffxvvvv49Tp05h+PDhWL58eU0vFzRCLdiV5XAX4efjO7CtZPh21/E0FKvFfufYTRHoktwdPUp69ToldYPdZK/kioG16/hOzPlpJnZn7QIAtI5vi+kDZqF343518v5EFF4sJhlRVnPYT8qvizIrvvIkNnP9DnOlhVSw81FVFV988QXeeecdBrtqMCrYleVWXdiT9at3nl7mVuw4thV5zly/c0yyGecndioJer3RLaUnYqyxAW1HTvFJvLb5eSzd+ykEBKLMUbiz51SM63gjzHLt/GUhovBVV+VL6qtA7ZIR6uVJQjLYhZpwC3ZlaULDgZx9JUHPO3x7vNC/NqAECW0S2qF7Sm/0LFmQUdMhUlVT8dlvH+NfW1/UA+XlbcZiat/p3F6NiALOuw2YCXaLcdNN6itfwHOpZy6zEk7lSRjs6oFwD3ZlCSFwNP8vbMvcrBdOPpR7sNx5TaOb6ytve6T0RvPYFmftat95bDueXT8Le7J+BQC0S2iPGQNno3tKr1q5FyIKbzazgkhLcJUvqc9Kz9FThYBF8c6ZC6fyJAx29QCD3dllF2Vhx7Gteq/e3uw90ITmd04De6K+8rZHSm+0TWgPRfYOeZx0ZOHVzc9j2e//BwCIskRjUs/78Lfz/27oog0iCk1mRUZkPSpfQvUHg109wGBXfQWufOw8tl2fp/fLiZ1wqS6/c6LMUeia3AMt49pg6e+fosCVDwC4ot3VmNL7QTSISDSi6UQUwkK1fAkFj2ALduwaoYCIskRjYLMLMLDZBQAAp8eJX0/8rPfopR3bjgJ3AX76aw1++msNAKB9g46YMXAWuib3MLLpRBSCwrF8CRHAYEe1xGqyokej3ujRqDcA7wKJfSd/w/bMLfgteze6JHXHleddqw/NEhEFitWkINJqCvlJ+0QVYbCjOqHICtondkT7xI5GN4WIQpQiS4iymrkVFYU1BjsiIqrXvOVLzLBbOAJAxGBHRET1FsuXEPljsCOigJAAyLIERZYgSxIUSYJc8rUsAQLeLYuEEFA1AU0AqhDQNFGne1RSaDArMqKsprCql0ZUFQx2RHRWEgCpJKgpJUFNkSVIkgRTSZirysrDyipOCOENeh7NW8le1Xzhr+ShiRptZUShR5ElRFhYvoSoMgx2RARJ8tb7qqi3TSkJbrX7/hIUCWdcJa1pAmpJbx97/cKPBCDCYoKd5UuIzojBjijE+YZIvUOip8ObLAOKVPXeNqPJsgQZUqW9fkCZnr6SIKiJ08eY/eonli8hqjoGO6J6Tq5kiFSRT/e8hYuz9S76evq8vXzwC30c8g0+JkVGpMXE8iVE1cBgRxTEjB4iDTWSJMGkSGf8Hx+HfI3H8iVENcdgR2QQ34IERa7fQ6Sh5mxDvr6FHhzyDTwJJeVLrCb+2SeqIQY7ojpiUmTYzQrkkpWk4TREGkpOL/So6pBv+V4/ITjkW5bF5B12ZfkSonPDYEdUy2RJQqSV5RnCSVWGfLnQw0uRvX8/rCb+/SAKBAY7oloiAbBbTIhgeQaqQLgv9PDOozPBbuGPIaJA4t8oolrA8gx0rkJ5oYfVpCDKym3AiGoDgx1RACmyhCirmeUZqE7Ut9p+ppJtwMycR0dUaxjsiAKA5RkoWAXDkC/nmRLVHQY7onMgAbCaFURaOKxE9VNNh3xVveyLVmmvH+eZEtU9BjuiGjKXDCuxPAOFuqrW9vNomt7rJ4SA3cJ5pkR1jcGOqJoUWUKEhcNKRD6na/vx7wSR0RjsiKpIAhBhMcHOYSUiIgpSDHZEVcDyDEREVB8w2BGdAcszEBFRfcJgR1QBlmcgIqL6iMGOqBSWZyAiovqMwY6oBLcBIyKi+o7BjsIetwEjIqJQwWBHYcu7DZgJdgv/GhARUWjgTzQKSzZuA0ZERCGIwY7CCrcBIyKiUMZgR2GB24AREVE4YLCjkMZtwIiIKJww2FHI4jZgREQUbhjsDBRlM0HADIuiwKNpUDVhdJNCArcBIyKicMVgZyBFlmC3KIi0mAEAmibgUjV4VA1uTUBVNTDqVR23ASMionDHYBdEZFmCTVaAkmAihIBbFSVBT4Nb1SCY9MrhNmBEREReDHZBTJIkWEyS344IHlWDWxVwqxqHb8FtwIiIiEpjsKtnTIoMkwLY4e3VC9fhW24DRkREVB6DXT0XbsO33AaMiIiocvzpGGJCefiW24ARERGdGYNdGKjvw7fcBoyIiKhqGOzCUH0ZvuU2YERERNXDYEdBN3zLbcCIiIhqhsGOKmTU8C23ASMiIqo5BjuqktoevuU2YEREROeOwY5q5GzDt25Vg1aFpMdtwIiIiAKHwY4C5kzDty7Vf54etwEjIiIKPAY7qjUVDd+6VA2qKmA1K9wGjIiIKMAY7KjOSJIEq0nhnzoiIqJawpnqRERERCGCwY6IiIgoRDDYEREREYUIBjsiIiKiEMFgR0RERBQiGOyIiIiIQoThwW7evHlo2bIlbDYbevbsibVr11Z67ueff47hw4ejYcOGiImJQf/+/fHtt9/6nbNw4UJIklTuUVxcXNu3QkRERGQoQ4Pd4sWLMXXqVDzyyCPYsWMHBg8ejEsvvRTp6ekVnr9mzRoMHz4cK1aswLZt23DhhRdi9OjR2LFjh995MTExyMjI8HvYbLa6uCUiIiIiw0hCnMvW7eemb9++6NGjB9588039WIcOHTB27FjMmTOnStfo2LEjxo0bh8cffxyAt8du6tSpOHXqVI3blZeXh9jYWOTm5iImJqbG1zmb9Nx0OD1ORFoia+09iIiIqPa4VTecHidaxreEWTHXyntUJ5cY1mPncrmwbds2jBgxwu/4iBEjsH79+ipdQ9M05OfnIyEhwe94QUEBUlNT0bRpU1x++eXlevTKcjqdyMvL83sQERER1TeGBbusrCyoqork5GS/48nJycjMzKzSNV588UUUFhbi2muv1Y+1b98eCxcuxPLly7Fo0SLYbDYMHDgQ+/btq/Q6c+bMQWxsrP5o1qxZzW6KiIiIyECGL56QJP+N4IUQ5Y5VZNGiRZg1axYWL16MpKQk/Xi/fv1w4403omvXrhg8eDA++eQTtGvXDq+//nql15oxYwZyc3P1x+HDh2t+Q0REREQGMWw79sTERCiKUq537vjx4+V68cpavHgxbr31Vnz66acYNmzYGc+VZRm9e/c+Y4+d1WqF1WqteuOJiIiIgpBhPXYWiwU9e/bEqlWr/I6vWrUKAwYMqPR1ixYtwoQJE/DRRx9h1KhRZ30fIQTS0tLQqFGjc24zERERUTAzrMcOAKZNm4bx48ejV69e6N+/P+bPn4/09HTceeedALxDpEeOHMF7770HwBvqbrrpJrz66qvo16+f3ttnt9sRGxsLAJg9ezb69euHtm3bIi8vD6+99hrS0tLwxhtvGHOTRERERHXE0GA3btw4ZGdn44knnkBGRgY6deqEFStWIDU1FQCQkZHhV9PurbfegsfjwaRJkzBp0iT9+M0334yFCxcCAE6dOoXbb78dmZmZiI2NRffu3bFmzRr06dOnTu+NiIiIqK4ZWscuWLGOHREREVUF69gRERERUa1gsCMiIiIKEQx2RERERCGCwY6IiIgoRDDYEREREYUIBjsiIiKiEMFgR0RERBQiGOyIiIiIQgSDHREREVGIMHRLMSIiIqL6yKW6UOwphkfzIMIcAUmSjG4SAAY7IiIioiopHeYssgXRlmhEWaJgN9thkoMjUgVHK4iIiIiC0JnCnEWxGN28chjsiIiIiEpxepxwqs56E+ZKY7AjIiKisFdRmIu2RsNmsgV9mCuNwY6IiIjCUukwZ1Ws9TbMlcZgR0REFEBu1Q1FViBLrCgWjJweJ4o9xVCFGjJhrjQGOyIiogBwqS4Uugphkk3QhAZVqJAlGRbFArNshkk2BU1JjHAihNAXQPjCXKw1FlHWKNhNdpgVs9FNDCgGOyIionPg0TwocBZAlmQkRiQi1harhwmn6kSRqwhOjxMFWgEAwCSbYFbMMMtmKLJicOtDU0VhLs4Wh0hLZEiGudIY7IiIiGpAExoKXAXQNA1xtjjE2+NhN9v1531fiwgBt+aGS3XBrbpR5C5CsacYBa4Cv149k2yCWTazV6+GSoc5TWiwKJawCXOlMdgRERFVgxAChe5CuFQXYqwxSLAnINIcWWkgkyQJFsWiz9+Kt8dD1VQ97BV7ilHkKoLL40KhVgjA26tnkk2wKBb26p2BEAJO1Qmnx+kX5qIsUbCZbGET5kpjsCMiIqoih9sBh8eBSHMkUqJSEGWJqtEiCUVWoMgKbCYbYqwxEBECHs0Dl+qCS3XpvXqFrkKoQgUA71y9kiHccO7VKxvmfMOs4RzmSmOwIyIiOotiTzGK3EWwm+xoEt0EMdaYgPakSZLkDW2KGZGIRLw9HprQ9KDn9DhR6CqEW3Wj0FUIAaEP3YZDr54vzPmGWW2KTQ9zwbSdVzDgJ0FERFQJt+pGgasAZtmMlMgUxNpi66xHSJZk2Ew22Ew2wAo0jGwIt1oyV0/zztVzuB0odBXCIzyQIIVUr15FYS7eFs8wdxb8VIiIiMpQNRX5rnxIkNAgogHibHHegGUwX68eAMTZ4vRePbfq9vbqlcz9K9urZ1bM9SIIMcydO35CREREJTSh6fPaYq2xiLfHI8IcYXSzKlW6Vy/aGo1EJMKtuvWFGQ63A0XuIhS5iqAKFRIkmJTTQ7jB0KtXOswJIWBVrGhgb4AIcwTDXA3w0yIiorAnhECRuwhO1YloSzQS7AmIskQFRfCpLl+vXoQ5Qu/V8w3hOj1OFHm8dfUcbgcExOkiynXYqyeEQLGnGE7VyTAXYPzkiIgorDncDjjcDtjNdjSLaYZoa3RIbQcmSzKsJiusJiuirdEA4LcCt9hdjEJ3IRxuBzyaBwD0eXpmxRywz6KyMBdpiYTNZGOYCxB+ikREFJZ8c9KsihWNohsh1hYbNuHCVycvwhwB2E4X9/U9Ct2FcHm8Q7kaNCiScrqIcjUWj/jCXLGnGABgM9kY5moZP1EiIgorvi3AFFlBUmQS4mxxIbH5+7mQJEnv1QOABmgAj+bRh3AdbgeKPN7aer5FJb6hW4ti8evVqyjMJUYk6jtAhHppFqMx2BERUVhQNRUFrgIIISrcAoz8+Xr17Ga7vv+tb1GGb+Wt0+NEnjtPn6snhICAgM1kQ8PIht45cwxzdYrBjoiIQppvCzC36ta3AIswR9TLhRFGKrs1WoI9Aaqmnp6r5ymGJEkMcwZjsCMiopAkhIDD40CxpxhR5qhz2gKMKqbICuyy3durh1ijm0NgsCMiohBUeguwpjFNEW2JZg8ShQUGOyIiChku1YUCVwEssqXOtwAjCgYMdkREVO95NA8KXAWQIaNhREPE2eL0FZ5E4YTBjoiI6i1NaChwFUATWr3YAoyotjHYEVFACSGgCQ2qUKFqqv61EAKKrECRFMiSrH/NlYlUE2W3AGsQ0QCR5kj+eaKwx2BHRFUmhPALbKUDnIAAAEiQoEgKFFnR96C0KBZIkODWvJuT+0okqJoKDZr+urKBr/R1iHwcbgccHgcizBFoFhl6W4ARnQsGOyICUD60qaLkV03Vzykdvnz7T1pk7+bhvkBW9teyPShle/RK/+rRPHB5XHBpLmiaBrdw6wFSb0OZwMfwFz58W4DZFBsaRYXXFmBEVcW/EURhQO9dKxXafF8LCEgl/+lDpbIMm2KDRbbAYrJUGKRqOoyqBzMowBmqT5QOfaXb7NbccHlccGve0OdUnXoI9fUalg18pYd/qf5xq24UuApgkk1IjkxGrC027LcAI6oMgx1RPecLbL5wUzrA+ZQNbRFKBMyK2dvTVkEvmyzJhs9VUuSzh7/S9176V4/mgUt1wa26oQpVD3+qUCHBe1++gClLst8QMMNf8PBtAQZ4dzmIt8fDZrIZ3Cqi4MZgRxTEyoY239dCCP2c0j1Sek+byQKzbK6wly0YQlugyJIMWZFhRuV1yioKf5rQ4FE9cGkuuDwuqEKFW3WjWCuGKlS/11e04COUPsNgpAkNha5CeDQPtwAjqiYGOyKDVNTL5gttvuHR0qHMJJlgt9i9PW2y/5y20ueRv+qEv7Jz/zyqR9/03KN5/MKf7/cI8A9/XPFbc2W3AGsc3RhRlih+jkTVwGBHVEdcqguFrkL9+9K9QCbJhAhrBCyyxRsKKliIwMUBtccX/s6k9OKSsr+6VTdcmnfo1zcMXHqlMIAK5/sx/J3mW+nKLcCIzg2DHVEt82geFDgLoMgKEiMSEWGOKDeni6Et+EmSBJNkOuMqzLLhr3RPrG+1r0fz+JV7ESjTQ1tm6NfXCxiqfP/gsSjcAowoEBjsiGqJb+K3EAJxtjjE2+NhN9uNbhbVoqqGv6qUeykb/nxKD/fW53Ivvn/wyJKMxIhEbgFGFCAMdkQBxonfdCZVKfdSUfjz9f75yr24NBeEEPWu3Iu+BZimIdYWiwR7Av/BQxRADHZEAcKJ3xQo1an1V1Hv37mUe6mtFb9CCBS6C+FSXfo/eLgFGFHgMdgRBYDD7YDD7YDdzInfVHd8tf5qo9yLb95fIMq9+BZGRJojkRKVgihLVL0bOiaqLxjsiM6B3xZH0dziiIJPVcu9VBQAfeVe3JobbtVdpVp/pQOgS3Xpfz+aRDdBjDWG/+AhqmX8CURUA6W3OEqKTEKcLY5bHFG95Qtk1VnxW3oY2Dfnr2y5F24BRlT3GOyIqkHVVOS78iFB4hZHFFaqW+5FExpkSeZKV6I6xmBHVAW+la6qUBFjjUG8LR6Rlkijm0UUVKoS/oiodvFvH9EZCCFQ5C6CS3UhyhKFBHsCV7oSEVHQYrAjqoRvJV+EOQJNI5si2hrNlXxERBTUGOyIyij2FKPIXaSv5Iu2RnNoiYiI6gX+tCIq4VJdKHAVwCJzz0oiIqqfGOwo7Hk0DwpdhZAgoWFEQ+5ZSURE9RaDHYWtsntWxtvjEWGOMLpZRERENcZgR2GHe1YSEVGoYrCjsCGEgMPjQLGnmHtWEhFRSGKwo7DgK11iN9nRNKYpoi3R3LOSiIhCDoMdhTSX6kKhqxAWhStdiYgo9DHYGUwVKoQQnN8VYB7NgwJnARRZQWJEIle6EhFRWDB8ctG8efPQsmVL2Gw29OzZE2vXrq303M8//xzDhw9Hw4YNERMTg/79++Pbb78td95nn32G888/H1arFeeffz6WLFlSm7dQY1bFCkVScKr4FHIcOcgtzoXD7YBH8xjdtHpL1VTkFueiwFmAOFscmsc2R3JUMkMdERGFBUOD3eLFizF16lQ88sgj2LFjBwYPHoxLL70U6enpFZ6/Zs0aDB8+HCtWrMC2bdtw4YUXYvTo0dixY4d+zoYNGzBu3DiMHz8eO3fuxPjx43Httddi06ZNdXVbVZYclYwWcS3QMr4lmsQ0QZwtDoB3PthJx0nkOHJQ4CpAsacYmtCMbWyQ04SGfGc+8px5iLJEITUuFY2iG8FuthvdNCIiojojCSGEUW/et29f9OjRA2+++aZ+rEOHDhg7dizmzJlTpWt07NgR48aNw+OPPw4AGDduHPLy8vD111/r51xyySWIj4/HokWLqnTNvLw8xMbGIjc3FzExMdW4o3MnhIBLdcGtufX5YU6PE27NDVWokCUZFsUCk2yCWTaH/RCuEAJF7iI4VSeizFFoENEAUZaosP9ciIgodFQnlxg2x87lcmHbtm2YPn263/ERI0Zg/fr1VbqGpmnIz89HQkKCfmzDhg247777/M4bOXIkXnnllUqv43Q64XQ69e/z8vKq9P61QZIkWE1WWOEdOkywJ0DVVD3sFXuKUeQqgsvjQpEoghACiqzALJthVsxhtaepw+2Aw+2A3cyVrkRERICBwS4rKwuqqiI5OdnveHJyMjIzM6t0jRdffBGFhYW49tpr9WOZmZnVvuacOXMwe/bsarS+bimyArtshx12xFhjICIEPJoHLtUFl+qCw+MNOEWuIqhChQQJJsWkh71Qq9Pm9DhR6C6ETbGhUXQjxNpiwyrQEhERVcbwn4Zlh8yqukJ00aJFmDVrFpYtW4akpKRzuuaMGTMwbdo0/fu8vDw0a9asKs03hCRJMCve0BaJSMQjHprQ4Fa9w7dOjxNFHm+vnsPtgAYNiqR4X1MS9uojt+pGgasAJtmE5MhkxNpiYVEsRjeLiIgoaBgW7BITE6EoSrmetOPHj5frcStr8eLFuPXWW/Hpp59i2LBhfs+lpKRU+5pWqxVWa/1eNSlLsncI12RFtDUaAPRePbfqHcItdHvn6xW4CiAgYJa9Q7cWxRLUQ5iqpiLflQ8JEhLsCYi3x8NmshndLCIioqBj2BidxWJBz549sWrVKr/jq1atwoABAyp93aJFizBhwgR89NFHGDVqVLnn+/fvX+6aK1euPOM1Q5VJNiHCHIFYWyySo5LRMq4lWsS3QGpcKppEN0GUJQoAUOAqQI4jBzmOHBS6vHuoGrimRudb6ZrvykeMNUZf6cpQR0REVDFDh2KnTZuG8ePHo1evXujfvz/mz5+P9PR03HnnnQC8Q6RHjhzBe++9B8Ab6m666Sa8+uqr6Nevn94zZ7fbERsbCwCYMmUKhgwZgrlz52LMmDFYtmwZVq9ejXXr1hlzk0FEkiRYFIs+fBlv9w7h+ubquTwuFLoL9dW4APRVuHW5MKP0StdoSzQS7Alc6UpERFQFhpY7AbwFip977jlkZGSgU6dOePnllzFkyBAAwIQJE/Dnn3/ihx9+AAAMHToUP/74Y7lr3HzzzVi4cKH+/f/93//h0UcfxR9//IHWrVvj6aefxlVXXVXlNhlZ7iQYuFW3Xm7Ft8eq75gEyVtqRTHDolgCvjDD934R5gg0sDdAtDU65BZ/EBERVUd1conhwS4YhXuwK6suausVe4pR5C6CTbGhQYQ30HGlKxERUT2pY0f1R3Vr62lC00Pe2YZwXaoLBa4CWGQLUiJTEGuLrberdomIiIzGYEc1crbaer4euMpq62lCQ4GzALIko2FEQ8TZ4rifKxER0TlisKOAKFtbD8AZa+sBQKwtFvH2eESYI4xsOhERUchgsKNaU1ltPbfqhoCA3WTnSlciIqIAYrCjOmWSTVwUQUREVEtYR4KIiIgoRDDYEREREYUIBjsiIiKiEMFgR0RERBQiGOyIiIiIQgSDHREREVGIYLAjIiIiChEMdkREREQhgsGOiIiIKEQw2BERERGFCAY7IiIiohDBYEdEREQUIhjsiIiIiEIEgx0RERFRiGCwIyIiIgoRJqMbEIyEEACAvLw8g1tCRERE4c6XR3z55EwY7CqQn58PAGjWrJnBLSEiIiLyys/PR2xs7BnPkURV4l+Y0TQNR48eRXR0NCRJqpX3yMvLQ7NmzXD48GHExMTUynsEq3C993C9byB87z1c7xsI33sP1/sGwvfe6+K+hRDIz89H48aNIctnnkXHHrsKyLKMpk2b1sl7xcTEhNVfgNLC9d7D9b6B8L33cL1vIHzvPVzvGwjfe6/t+z5bT50PF08QERERhQgGOyIiIqIQwWBnEKvVipkzZ8JqtRrdlDoXrvcervcNhO+9h+t9A+F77+F630D43nuw3TcXTxARERGFCPbYEREREYUIBjsiIiKiEMFgR0RERBQiGOyIiIiIQgSDXR1bs2YNRo8ejcaNG0OSJCxdutToJtWJOXPmoHfv3oiOjkZSUhLGjh2LvXv3Gt2sOvHmm2+iS5cuevHK/v374+uvvza6WXVuzpw5kCQJU6dONboptW7WrFmQJMnvkZKSYnSz6sSRI0dw4403okGDBoiIiEC3bt2wbds2o5tV61q0aFHu91ySJEyaNMnoptUqj8eDRx99FC1btoTdbkerVq3wxBNPQNM0o5tW6/Lz8zF16lSkpqbCbrdjwIAB2LJli9HN4s4Tda2wsBBdu3bFLbfcgquvvtro5tSZH3/8EZMmTULv3r3h8XjwyCOPYMSIEdi9ezciIyONbl6tatq0KZ599lm0adMGAPDuu+9izJgx2LFjBzp27Ghw6+rGli1bMH/+fHTp0sXoptSZjh07YvXq1fr3iqIY2Jq6kZOTg4EDB+LCCy/E119/jaSkJBw4cABxcXFGN63WbdmyBaqq6t//8ssvGD58OP72t78Z2KraN3fuXPz73//Gu+++i44dO2Lr1q245ZZbEBsbiylTphjdvFp122234ZdffsH777+Pxo0b44MPPsCwYcOwe/duNGnSxLiGCTIMALFkyRKjm2GI48ePCwDixx9/NLophoiPjxf//e9/jW5GncjPzxdt27YVq1atEhdccIGYMmWK0U2qdTNnzhRdu3Y1uhl17qGHHhKDBg0yuhlBYcqUKaJ169ZC0zSjm1KrRo0aJSZOnOh37KqrrhI33nijQS2qG0VFRUJRFPHll1/6He/atat45JFHDGqVF4diyRC5ubkAgISEBINbUrdUVcXHH3+MwsJC9O/f3+jm1IlJkyZh1KhRGDZsmNFNqVP79u1D48aN0bJlS1x33XX4448/jG5SrVu+fDl69eqFv/3tb0hKSkL37t3xn//8x+hm1TmXy4UPPvgAEydOhCRJRjenVg0aNAjfffcdfv/9dwDAzp07sW7dOlx22WUGt6x2eTweqKoKm83md9xut2PdunUGtcqLQ7FU54QQmDZtGgYNGoROnToZ3Zw6sWvXLvTv3x/FxcWIiorCkiVLcP755xvdrFr38ccfY/v27UEx76Qu9e3bF++99x7atWuHY8eO4amnnsKAAQPw66+/okGDBkY3r9b88ccfePPNNzFt2jQ8/PDD2Lx5M+69915YrVbcdNNNRjevzixduhSnTp3ChAkTjG5KrXvooYeQm5uL9u3bQ1EUqKqKp59+Gtdff73RTatV0dHR6N+/P5588kl06NABycnJWLRoETZt2oS2bdsa2zhD+wvDHMJ0KPbuu+8Wqamp4vDhw0Y3pc44nU6xb98+sWXLFjF9+nSRmJgofv31V6ObVavS09NFUlKSSEtL04+Fy1BsWQUFBSI5OVm8+OKLRjelVpnNZtG/f3+/Y5MnTxb9+vUzqEXGGDFihLj88suNbkadWLRokWjatKlYtGiR+Pnnn8V7770nEhISxMKFC41uWq3bv3+/GDJkiAAgFEURvXv3Fn//+99Fhw4dDG0Xe+yoTk2ePBnLly/HmjVr0LRpU6ObU2csFou+eKJXr17YsmULXn31Vbz11lsGt6z2bNu2DcePH0fPnj31Y6qqYs2aNfjXv/4Fp9MZFgsKACAyMhKdO3fGvn37jG5KrWrUqFG5nugOHTrgs88+M6hFde/QoUNYvXo1Pv/8c6ObUiceeOABTJ8+Hddddx0AoHPnzjh06BDmzJmDm2++2eDW1a7WrVvjxx9/RGFhIfLy8tCoUSOMGzcOLVu2NLRdDHZUJ4QQmDx5MpYsWYIffvjB8D/4RhNCwOl0Gt2MWnXxxRdj165dfsduueUWtG/fHg899FDYhDoAcDqd2LNnDwYPHmx0U2rVwIEDy5Ux+v3335GammpQi+reggULkJSUhFGjRhndlDpRVFQEWfafrq8oSliUO/GJjIxEZGQkcnJy8O233+K5554ztD0MdnWsoKAA+/fv178/ePAg0tLSkJCQgObNmxvYsto1adIkfPTRR1i2bBmio6ORmZkJAIiNjYXdbje4dbXr4YcfxqWXXopmzZohPz8fH3/8MX744Qd88803RjetVkVHR5ebQxkZGYkGDRqE/NzKf/7znxg9ejSaN2+O48eP46mnnkJeXl7I92Dcd999GDBgAJ555hlce+212Lx5M+bPn4/58+cb3bQ6oWkaFixYgJtvvhkmU3j8eB09ejSefvppNG/eHB07dsSOHTvw0ksvYeLEiUY3rdZ9++23EELgvPPOw/79+/HAAw/gvPPOwy233GJswwwdCA5D//vf/wSAco+bb77Z6KbVqoruGYBYsGCB0U2rdRMnThSpqanCYrGIhg0biosvvlisXLnS6GYZIlzm2I0bN040atRImM1m0bhxY3HVVVeF/JxKny+++EJ06tRJWK1W0b59ezF//nyjm1Rnvv32WwFA7N271+im1Jm8vDwxZcoU0bx5c2Gz2USrVq3EI488IpxOp9FNq3WLFy8WrVq1EhaLRaSkpIhJkyaJU6dOGd0sIQkhhDGRkoiIiIgCiXXsiIiIiEIEgx0RERFRiGCwIyIiIgoRDHZEREREIYLBjoiIiChEMNgRERERhQgGOyIiIqIQwWBHREREFCIY7IgoaPz555+QJAlpaWlGN0X322+/oV+/frDZbOjWrVutv1+LFi3wyiuvVPn8qnxmCxcuRFxc3Dm3LVCys7ORlJSEP//8s8qvOX78OBo2bIgjR47UXsOIQgCDHRHpJkyYAEmS8Oyzz/odX7p0KSRJMqhVxpo5cyYiIyOxd+9efPfddxWeE8jPbcuWLbj99ttr3N76YM6cORg9ejRatGgBoOJwmp+fj6FDh6J9+/Y4fPgwkpKSMH78eMycOdOYRhPVEwx2ROTHZrNh7ty5yMnJMbopAeNyuWr82gMHDmDQoEFITU1FgwYNKj0vUJ9bw4YNERERcU7XqCtut7var3E4HHj77bdx2223VXrOiRMncOGFF6KgoADr1q1Ds2bNAAC33HILPvzww5D6s0kUaAx2RORn2LBhSElJwZw5cyo9Z9asWeWGJV955RW9Bwbw9mKNHTsWzzzzDJKTkxEXF4fZs2fD4/HggQceQEJCApo2bYp33nmn3PV/++03DBgwADabDR07dsQPP/zg9/zu3btx2WWXISoqCsnJyRg/fjyysrL054cOHYp77rkH06ZNQ2JiIoYPH17hfWiahieeeAJNmzaF1WpFt27d8M033+jPS5KEbdu24YknnoAkSZg1a9Y5fW4AsH79egwZMgR2ux3NmjXDvffei8LCQv35skOxv/32GwYNGgSbzYbzzz8fq1evhiRJWLp0qd91//jjD1x44YWIiIhA165dsWHDhnLvvXTpUrRr1w42mw3Dhw/H4cOH/Z5/88030bp1a1gsFpx33nl4//33/Z6XJAn//ve/MWbMGERGRuKpp55CTk4O/v73v6Nhw4aw2+1o27YtFixYUOn9f/311zCZTOjfv3+Fzx8+fBiDBw9GdHQ0/ve//yExMVF/rnPnzkhJScGSJUsqvT5RuGOwIyI/iqLgmWeeweuvv46//vrrnK71/fff4+jRo1izZg1eeuklzJo1C5dffjni4+OxadMm3HnnnbjzzjvLBYwHHngA999/P3bs2IEBAwbgiiuuQHZ2NgAgIyMDF1xwAbp164atW7fim2++wbFjx3Dttdf6XePdd9+FyWTCTz/9hLfeeqvC9r366qt48cUX8cILL+Dnn3/GyJEjccUVV2Dfvn36e3Xs2BH3338/MjIy8M9//rPSe63K57Zr1y6MHDkSV111FX7++WcsXrwY69atwz333FPh+ZqmYezYsYiIiMCmTZswf/58PPLIIxWe+8gjj+Cf//wn0tLS0K5dO1x//fXweDz680VFRXj66afx7rvv4qeffkJeXh6uu+46/fklS5ZgypQpuP/++/HLL7/gjjvuwC233IL//e9/fu8zc+ZMjBkzBrt27cLEiRPx2GOPYffu3fj666+xZ88evPnmm35hrKw1a9agV69eFT63d+9eDBw4EO3bt8c333yD6Ojocuf06dMHa9eurfT6RGFPEBGVuPnmm8WYMWOEEEL069dPTJw4UQghxJIlS0Tp/13MnDlTdO3a1e+1L7/8skhNTfW7VmpqqlBVVT923nnnicGDB+vfezweERkZKRYtWiSEEOLgwYMCgHj22Wf1c9xut2jatKmYO3euEEKIxx57TIwYMcLvvQ8fPiwAiL179wohhLjgggtEt27dznq/jRs3Fk8//bTfsd69e4u7775b/75r165i5syZZ7xOVT+38ePHi9tvv93vtWvXrhWyLAuHwyGEECI1NVW8/PLLQgghvv76a2EymURGRoZ+/qpVqwQAsWTJEiHE6c/sv//9r37Or7/+KgCIPXv2CCGEWLBggQAgNm7cqJ+zZ88eAUBs2rRJCCHEgAEDxD/+8Q+/tv3tb38Tl112mf49ADF16lS/c0aPHi1uueWWM34+pY0ZM0b/fHx892CxWMTQoUOFx+Op9PX33XefGDp0aJXfjyjcsMeOiCo0d+5cvPvuu9i9e3eNr9GxY0fI8un/zSQnJ6Nz587694qioEGDBjh+/Ljf60oP05lMJvTq1Qt79uwBAGzbtg3/+9//EBUVpT/at28PwDsfzqeyXiGfvLw8HD16FAMHDvQ7PnDgQP29auJMn9u2bduwcOFCv7aPHDkSmqbh4MGD5c7fu3cvmjVrhpSUFP1Ynz59KnzfLl266F83atQIAPw+V9/n6NO+fXvExcXp97pnz54qfRZlP9e77roLH3/8Mbp164YHH3wQ69evr7B9Pg6HAzabrcLnxowZg3Xr1uGzzz6r9PV2ux1FRUVnfA+icGYyugFEFJyGDBmCkSNH4uGHH8aECRP8npNlGUIIv2MVTaQ3m81+30uSVOExTdPO2h7f6lJN0zB69GjMnTu33Dm+QAMAkZGRZ71m6ev6CCHOaQXwmT43TdNwxx134N577y33uubNm5c7Vp22lP5cS39WpVV0rdLHqvJZlP1cL730Uhw6dAhfffUVVq9ejYsvvhiTJk3CCy+8UGE7ExMTK1388PDDD6NLly74+9//DiEExo0bV+6ckydPomHDhhW+nog4x46IzuDZZ5/FF198Ua4XpmHDhsjMzPQLd4GsPbdx40b9a4/Hg23btum9cj169MCvv/6KFi1aoE2bNn6PqoY5AIiJiUHjxo2xbt06v+Pr169Hhw4dzqn9lX1uvraXbXebNm1gsVjKXad9+/ZIT0/HsWPH9GNbtmypUZs8Hg+2bt2qf793716cOnVK/1w7dOhQ48+iYcOGmDBhAj744AO88sormD9/fqXndu/e/Yy9wI8++iiefPJJ/P3vf8eiRYvKPf/LL7+ge/fuZ20TUbhisCOiSnXu3Bl///vf8frrr/sdHzp0KE6cOIHnnnsOBw4cwBtvvIGvv/46YO/7xhtvYMmSJfjtt98wadIk5OTkYOLEiQCASZMm4eTJk7j++uuxefNm/PHHH1i5ciUmTpwIVVWr9T4PPPAA5s6di8WLF2Pv3r2YPn060tLSMGXKlHNqf2Wf20MPPYQNGzZg0qRJSEtLw759+7B8+XJMnjy5wusMHz4crVu3xs0334yff/4ZP/30k754orq9imazGZMnT8amTZuwfft23HLLLejXr58+tPvAAw9g4cKF+Pe//419+/bhpZdewueff37GBSMA8Pjjj2PZsmXYv38/fv31V3z55ZdnDIMjR47Er7/+esaSJdOnT8ecOXMwfvx4fPjhh/rxoqIibNu2DSNGjKjWvROFEwY7IjqjJ598stywa4cOHTBv3jy88cYb6Nq1KzZv3nzWAFAdzz77LObOnYuuXbti7dq1WLZsmb7SsnHjxvjpp5+gqipGjhyJTp06YcqUKYiNjfWbz1cV9957L+6//37cf//96Ny5M7755hssX74cbdu2Ped7qOhz69KlC3788Ufs27cPgwcPRvfu3fHYY4/5DSGXpigKli5dioKCAvTu3Ru33XYbHn30UQCodJ5aZSIiIvDQQw/hhhtuQP/+/WG32/Hxxx/rz48dOxavvvoqnn/+eXTs2BFvvfUWFixYgKFDh57xuhaLBTNmzECXLl0wZMgQKIrid92yOnfujF69euGTTz4543UfeOABPPfcc7j55pv1sivLli1D8+bNMXjw4KrfOFGYkUTZ//MQEVHQ+umnnzBo0CDs378frVu3Nro5NbJixQr885//xC+//FKtMN6nTx9MnToVN9xwQy22jqh+4+IJIqIgtmTJEkRFRaFt27bYv38/pkyZgoEDB9bbUAcAl112Gfbt24cjR47ou0qczfHjx3HNNdfg+uuvr+XWEdVv7LEjIgpi7733Hp588kkcPnwYiYmJGDZsGF588cUzbm9GROGLwY6IiIgoRHDxBBEREVGIYLAjIiIiChEMdkREREQhgsGOiIiIKEQw2BERERGFCAY7IiIiohDBYEdEREQUIhjsiIiIiELE/wMUQ3NqQ3ZIDgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(range(1,Ks),mean_acc,'g')\n", + "plt.fill_between(range(1,Ks),mean_acc - 1 * std_acc,mean_acc + 1 * std_acc, alpha=0.10)\n", + "plt.fill_between(range(1,Ks),mean_acc - 3 * std_acc,mean_acc + 3 * std_acc, alpha=0.10,color=\"green\")\n", + "plt.legend(('Accuracy ', '+/- 1xstd','+/- 3xstd'))\n", + "plt.ylabel('Accuracy ')\n", + "plt.xlabel('Number of Neighbors (K)')\n", + "plt.tight_layout()\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The best accuracy was with 0.34 with k= 9\n" + ] + } + ], + "source": [ + "print( \"The best accuracy was with\", mean_acc.max(), \"with k=\", mean_acc.argmax()+1) " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Thank you for completing this lab!\n", + "\n", + "## Author\n", + "\n", + "Saeed Aghabozorgi\n", + "\n", + "### Other Contributors\n", + "\n", + "Joseph Santarcangelo\n", + "\n", + "##

© IBM Corporation 2020. All rights reserved.

\n", + "\n", + "\n", + "\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python", + "language": "python", + "name": "conda-env-python-py" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.12" + }, + "prev_pub_hash": "5363c84665c2ea4c62cd198411b6c0935cac4acc844e6f1b323a6313f712f535" + }, + "nbformat": 4, + "nbformat_minor": 4 +}