{ "cells": [ { "cell_type": "code", "execution_count": 2, "id": "02e1d686-6bb5-42ad-87a2-40036c54b9e0", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Sedang memproses data...\n", "Sedang melatih model Polynomial Regression (Degree 2)...\n", "\n", "========================================\n", "HASIL EVALUASI (POLYNOMIAL DEGREE 2)\n", "========================================\n", "1. Single Split Test:\n", " - R2 Score (Akurasi) : -0.3654\n", " - RMSE (Error Kuadrat): 2.8060\n", " - MAE (Rata-rata Error): 1.6331 poin\n", "\n", "2. Cross Validation (5-Fold):\n", " - Skor per tes : [-1.46479088e+04 7.39100795e-02 1.21529017e-01 1.10146144e-01\n", " 5.71513075e-02]\n", " - Rata-rata R2 : -2929.5092\n", " - Kestabilan : +/- 5859.1998\n", "\n", "========================================\n", "Contoh Prediksi: Rating Asli 7.0 | Prediksi Poly 5.28\n" ] } ], "source": [ "import pandas as pd\n", "import numpy as np\n", "from sklearn.model_selection import train_test_split, cross_val_score\n", "from sklearn.linear_model import LinearRegression\n", "from sklearn.preprocessing import PolynomialFeatures, LabelEncoder\n", "from sklearn.pipeline import make_pipeline\n", "from sklearn.metrics import mean_squared_error, r2_score, mean_absolute_error\n", "\n", "# ==========================================\n", "# 1. LOAD DATA & PREPROCESSING\n", "# ==========================================\n", "print(\"Sedang memproses data...\")\n", "df = pd.read_csv('Latest 2025 movies Datasets.csv')\n", "# take a look at the dataset\n", "df.head()\n", "\n", "df = df.dropna(subset=['release_date', 'vote_average', 'popularity', 'vote_count'])\n", "df['release_date'] = pd.to_datetime(df['release_date'], errors='coerce')\n", "df = df.dropna(subset=['release_date'])\n", "\n", "df['release_year'] = df['release_date'].dt.year\n", "df['release_month'] = df['release_date'].dt.month\n", "\n", "le = LabelEncoder()\n", "df['original_language_encoded'] = le.fit_transform(df['original_language'])\n", "\n", "features = ['popularity', 'vote_count', 'release_year', 'release_month', 'original_language_encoded']\n", "X = df[features]\n", "y = df['vote_average']\n", "\n", "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n", "\n", "# ==========================================\n", "# 2. TRAINING MODEL (POLYNOMIAL DEGREE 2)\n", "# ==========================================\n", "degree = 2\n", "print(f\"Sedang melatih model Polynomial Regression (Degree {degree})...\")\n", "# Pipeline: Buat fitur pangkat -> Lalu Regresi Linear\n", "model = make_pipeline(PolynomialFeatures(degree), LinearRegression())\n", "model.fit(X_train, y_train)\n", "\n", "# ==========================================\n", "# 3. EVALUASI LENGKAP\n", "# ==========================================\n", "print(\"\\n\" + \"=\"*40)\n", "print(f\"HASIL EVALUASI (POLYNOMIAL DEGREE {degree})\")\n", "print(\"=\"*40)\n", "\n", "# Prediksi data test\n", "y_pred = model.predict(X_test)\n", "\n", "r2 = r2_score(y_test, y_pred)\n", "rmse = np.sqrt(mean_squared_error(y_test, y_pred))\n", "mae = mean_absolute_error(y_test, y_pred)\n", "\n", "print(f\"1. Single Split Test:\")\n", "print(f\" - R2 Score (Akurasi) : {r2:.4f}\")\n", "print(f\" - RMSE (Error Kuadrat): {rmse:.4f}\")\n", "print(f\" - MAE (Rata-rata Error): {mae:.4f} poin\")\n", "\n", "# Cross Validation (5-Fold)\n", "print(f\"\\n2. Cross Validation (5-Fold):\")\n", "# Hati-hati: Polynomial CV bisa agak lambat dibanding Linear biasa\n", "cv_scores = cross_val_score(model, X, y, cv=5, scoring='r2')\n", "\n", "print(f\" - Skor per tes : {cv_scores}\")\n", "print(f\" - Rata-rata R2 : {cv_scores.mean():.4f}\")\n", "print(f\" - Kestabilan : +/- {cv_scores.std():.4f}\")\n", "\n", "# Contoh Prediksi\n", "print(\"\\n\" + \"=\"*40)\n", "print(f\"Contoh Prediksi: Rating Asli {y_test.iloc[0]} | Prediksi Poly {y_pred[0]:.2f}\")" ] }, { "cell_type": "code", "execution_count": 1, "id": "8d83a184-b95f-4b73-a67d-1d523923ee1f", "metadata": {}, "outputs": [ { "ename": "NameError", "evalue": "name 'pd' is not defined", "output_type": "error", "traceback": [ "\u001b[31m---------------------------------------------------------------------------\u001b[39m", "\u001b[31mNameError\u001b[39m Traceback (most recent call last)", "\u001b[36mCell\u001b[39m\u001b[36m \u001b[39m\u001b[32mIn[1]\u001b[39m\u001b[32m, line 1\u001b[39m\n\u001b[32m----> \u001b[39m\u001b[32m1\u001b[39m df = \u001b[43mpd\u001b[49m.read_csv(\u001b[33m\"\u001b[39m\u001b[33mLatest 2025 movies Datasets.csv\u001b[39m\u001b[33m\"\u001b[39m)\n\u001b[32m 3\u001b[39m \u001b[38;5;66;03m# take a look at the dataset\u001b[39;00m\n\u001b[32m 4\u001b[39m df.head()\n", "\u001b[31mNameError\u001b[39m: name 'pd' is not defined" ] } ], "source": [ "df = pd.read_csv(\"Latest 2025 movies Datasets.csv\")\n", "\n", "# take a look at the dataset\n", "df.head()" ] }, { "cell_type": "code", "execution_count": null, "id": "9c933e26-cbc2-47e4-9f25-efbb65ef1d92", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.0" } }, "nbformat": 4, "nbformat_minor": 5 }