{ "cells": [ { "cell_type": "code", "execution_count": 2, "id": "7d1ad2c6-b86a-48f3-be70-4223a592e8f8", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Sedang memproses data...\n", "Sedang melatih model Random Forest (100 pohon)...\n", "\n", "========================================\n", "HASIL EVALUASI MODEL\n", "========================================\n", "1. Single Split Test:\n", " - R2 Score (Akurasi) : 0.8569 (85.69%)\n", " - RMSE (Error Kuadrat): 0.9084\n", " - MAE (Rata-rata Error): 0.5492 poin\n", "\n", "2. Cross Validation (5-Fold):\n", " - Skor per tes : [0.54879999 0.77793875 0.82384791 0.84153289 0.8144776 ]\n", " - Rata-rata R2 : 0.7613\n", " - Kestabilan : +/- 0.1083\n", "\n", "========================================\n", "FAKTOR PENENTU RATING (Feature Importance)\n", "========================================\n", " Fitur Kepentingan\n", " vote_count 0.833263\n", " popularity 0.066340\n", " release_year 0.048906\n", " release_month 0.027821\n", "original_language_encoded 0.023670\n", "\n", "========================================\n", "Contoh Prediksi: Rating Asli 7.0 | Prediksi Model 5.17\n" ] } ], "source": [ "import pandas as pd\n", "import numpy as np\n", "from sklearn.model_selection import train_test_split, cross_val_score\n", "from sklearn.ensemble import RandomForestRegressor\n", "from sklearn.preprocessing import LabelEncoder\n", "from sklearn.metrics import mean_squared_error, r2_score, mean_absolute_error\n", "\n", "# ==========================================\n", "# 1. LOAD DATA & PREPROCESSING\n", "# ==========================================\n", "print(\"Sedang memproses data...\")\n", "df = pd.read_csv('Latest 2025 movies Datasets.csv')\n", "\n", "# Membersihkan nilai kosong (NaN)\n", "df = df.dropna(subset=['release_date', 'vote_average', 'popularity', 'vote_count'])\n", "df['release_date'] = pd.to_datetime(df['release_date'], errors='coerce')\n", "df = df.dropna(subset=['release_date'])\n", "\n", "# Feature Engineering: Mengambil Tahun & Bulan\n", "df['release_year'] = df['release_date'].dt.year\n", "df['release_month'] = df['release_date'].dt.month\n", "\n", "# Mengubah Bahasa (teks) menjadi Angka\n", "le = LabelEncoder()\n", "df['original_language_encoded'] = le.fit_transform(df['original_language'])\n", "\n", "# Menentukan Fitur (X) dan Target (y)\n", "features = ['popularity', 'vote_count', 'release_year', 'release_month', 'original_language_encoded']\n", "X = df[features]\n", "y = df['vote_average']\n", "\n", "# Membagi Data (80% Latih, 20% Uji)\n", "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n", "\n", "# ==========================================\n", "# 2. TRAINING MODEL (RANDOM FOREST)\n", "# ==========================================\n", "print(\"Sedang melatih model Random Forest (100 pohon)...\")\n", "# Kita menggunakan algoritma JUARA kita\n", "model = RandomForestRegressor(n_estimators=100, random_state=42)\n", "model.fit(X_train, y_train)\n", "\n", "# ==========================================\n", "# 3. EVALUASI LENGKAP\n", "# ==========================================\n", "print(\"\\n\" + \"=\"*40)\n", "print(\"HASIL EVALUASI MODEL\")\n", "print(\"=\"*40)\n", "\n", "# Prediksi data test\n", "y_pred = model.predict(X_test)\n", "\n", "# Menghitung Metrik\n", "r2 = r2_score(y_test, y_pred)\n", "rmse = np.sqrt(mean_squared_error(y_test, y_pred))\n", "mae = mean_absolute_error(y_test, y_pred)\n", "\n", "print(f\"1. Single Split Test:\")\n", "print(f\" - R2 Score (Akurasi) : {r2:.4f} ({r2*100:.2f}%)\")\n", "print(f\" - RMSE (Error Kuadrat): {rmse:.4f}\")\n", "print(f\" - MAE (Rata-rata Error): {mae:.4f} poin\")\n", "\n", "# Cross Validation (5-Fold)\n", "print(f\"\\n2. Cross Validation (5-Fold):\")\n", "cv_scores = cross_val_score(model, X, y, cv=5, scoring='r2')\n", "print(f\" - Skor per tes : {cv_scores}\")\n", "print(f\" - Rata-rata R2 : {cv_scores.mean():.4f}\")\n", "print(f\" - Kestabilan : +/- {cv_scores.std():.4f}\")\n", "\n", "# ==========================================\n", "# 4. FEATURE IMPORTANCE (RAHASIA MODEL)\n", "# ==========================================\n", "print(\"\\n\" + \"=\"*40)\n", "print(\"FAKTOR PENENTU RATING (Feature Importance)\")\n", "print(\"=\"*40)\n", "\n", "importances = model.feature_importances_\n", "feature_importance_df = pd.DataFrame({'Fitur': features, 'Kepentingan': importances})\n", "feature_importance_df = feature_importance_df.sort_values(by='Kepentingan', ascending=False)\n", "\n", "print(feature_importance_df.to_string(index=False))\n", "\n", "# Contoh Prediksi\n", "print(\"\\n\" + \"=\"*40)\n", "print(f\"Contoh Prediksi: Rating Asli {y_test.iloc[0]} | Prediksi Model {y_pred[0]:.2f}\")" ] }, { "cell_type": "code", "execution_count": null, "id": "af168121-0540-4186-a725-e6c493397535", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.0" } }, "nbformat": 4, "nbformat_minor": 5 }