{ "cells": [ { "cell_type": "code", "execution_count": 3, "id": "c0efb2f2-b8bd-43a3-bef6-b8ffbd5b8844", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Sedang memproses data...\n", "Sedang melatih model KNN (15 Tetangga)...\n", "\n", "========================================\n", "HASIL EVALUASI (KNN)\n", "========================================\n", "1. Single Split Test:\n", " - R2 Score (Akurasi) : 0.2060 (20.60%)\n", " - RMSE (Error Kuadrat): 2.1397\n", " - MAE (Rata-rata Error): 1.5157 poin\n", "\n", "2. Cross Validation (5-Fold):\n", " - Skor per tes : [0.10580954 0.07685483 0.12809619 0.14718973 0.0873096 ]\n", " - Rata-rata R2 : 0.1091\n", " - Kestabilan : +/- 0.0258\n", "\n", "========================================\n", "Contoh Prediksi: Rating Asli 7.0 | Prediksi KNN 5.32\n" ] } ], "source": [ "import pandas as pd\n", "import numpy as np\n", "from sklearn.model_selection import train_test_split, cross_val_score\n", "from sklearn.neighbors import KNeighborsRegressor\n", "from sklearn.preprocessing import StandardScaler, LabelEncoder\n", "from sklearn.metrics import mean_squared_error, r2_score, mean_absolute_error\n", "\n", "# ==========================================\n", "# 1. LOAD DATA & PREPROCESSING\n", "# ==========================================\n", "print(\"Sedang memproses data...\")\n", "df = pd.read_csv('Latest 2025 movies Datasets.csv')\n", "\n", "# Membersihkan data\n", "df = df.dropna(subset=['release_date', 'vote_average', 'popularity', 'vote_count'])\n", "df['release_date'] = pd.to_datetime(df['release_date'], errors='coerce')\n", "df = df.dropna(subset=['release_date'])\n", "\n", "# Feature Engineering\n", "df['release_year'] = df['release_date'].dt.year\n", "df['release_month'] = df['release_date'].dt.month\n", "\n", "# Encoding Bahasa\n", "le = LabelEncoder()\n", "df['original_language_encoded'] = le.fit_transform(df['original_language'])\n", "\n", "# Fitur & Target\n", "features = ['popularity', 'vote_count', 'release_year', 'release_month', 'original_language_encoded']\n", "X = df[features]\n", "y = df['vote_average']\n", "\n", "# Split Data\n", "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n", "\n", "# --- SCALING (Wajib untuk KNN) ---\n", "scaler = StandardScaler()\n", "X_train_scaled = scaler.fit_transform(X_train)\n", "X_test_scaled = scaler.transform(X_test)\n", "\n", "# Kita juga perlu scale X full untuk Cross Validation nanti\n", "X_scaled = scaler.transform(X)\n", "\n", "# ==========================================\n", "# 2. TRAINING MODEL (KNN)\n", "# ==========================================\n", "print(\"Sedang melatih model KNN (15 Tetangga)...\")\n", "model = KNeighborsRegressor(n_neighbors=15)\n", "model.fit(X_train_scaled, y_train)\n", "\n", "# ==========================================\n", "# 3. EVALUASI LENGKAP\n", "# ==========================================\n", "print(\"\\n\" + \"=\"*40)\n", "print(\"HASIL EVALUASI (KNN)\")\n", "print(\"=\"*40)\n", "\n", "# A. Single Split Test\n", "y_pred = model.predict(X_test_scaled)\n", "\n", "r2 = r2_score(y_test, y_pred)\n", "rmse = np.sqrt(mean_squared_error(y_test, y_pred))\n", "mae = mean_absolute_error(y_test, y_pred)\n", "\n", "print(f\"1. Single Split Test:\")\n", "print(f\" - R2 Score (Akurasi) : {r2:.4f} ({r2*100:.2f}%)\")\n", "print(f\" - RMSE (Error Kuadrat): {rmse:.4f}\")\n", "print(f\" - MAE (Rata-rata Error): {mae:.4f} poin\")\n", "\n", "# B. Cross Validation (5-Fold)\n", "print(f\"\\n2. Cross Validation (5-Fold):\")\n", "# Kita gunakan X_scaled (data penuh yang sudah di-scale)\n", "cv_scores = cross_val_score(model, X_scaled, y, cv=5, scoring='r2')\n", "\n", "print(f\" - Skor per tes : {cv_scores}\")\n", "print(f\" - Rata-rata R2 : {cv_scores.mean():.4f}\")\n", "print(f\" - Kestabilan : +/- {cv_scores.std():.4f}\")\n", "\n", "# Contoh Prediksi\n", "print(\"\\n\" + \"=\"*40)\n", "print(f\"Contoh Prediksi: Rating Asli {y_test.iloc[0]} | Prediksi KNN {y_pred[0]:.2f}\")" ] }, { "cell_type": "code", "execution_count": null, "id": "784b48b0-d367-47da-912e-b75c91541665", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "id": "ffe5d513-95fe-452f-ba94-2ccd24e455b9", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "id": "fab61e94-fe4a-425f-81c8-ea32d2738733", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.0" } }, "nbformat": 4, "nbformat_minor": 5 }