\n"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "Sometimes, the trend of data is not really linear, and looks curvy. In this case we can use Polynomial regression methods. In fact, many different regressions exist that can be used to fit whatever the dataset looks like, such as quadratic, cubic, and so on, and it can go on and on to infinite degrees.\n",
- "\n",
- "In essence, we can call all of these, polynomial regression, where the relationship between the independent variable x and the dependent variable y is modeled as an nth degree polynomial in x. Lets say you want to have a polynomial regression (let's make 2 degree polynomial):\n",
- "\n",
- "\n",
- "$$y = b + \\theta_1 x + \\theta_2 x^2$$\n",
- "\n",
- "\n",
- "\n",
- "Now, the question is: how we can fit our data on this equation while we have only x values, such as __Engine Size__? \n",
- "Well, we can create a few additional features: 1, $x$, and $x^2$.\n",
- "\n",
- "\n",
- "\n",
- "__PolynomialFeatures()__ function in Scikit-learn library, drives a new feature sets from the original feature set. That is, a matrix will be generated consisting of all polynomial combinations of the features with degree less than or equal to the specified degree. For example, lets say the original feature set has only one feature, _ENGINESIZE_. Now, if we select the degree of the polynomial to be 2, then it generates 3 features, degree=0, degree=1 and degree=2: \n"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 7,
- "metadata": {
- "tags": []
- },
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "/home/jupyterlab/conda/envs/python/lib/python3.7/site-packages/sklearn/utils/validation.py:37: DeprecationWarning: distutils Version classes are deprecated. Use packaging.version instead.\n",
- " LARGE_SPARSE_SUPPORTED = LooseVersion(scipy_version) >= '0.14.0'\n",
- "/home/jupyterlab/conda/envs/python/lib/python3.7/site-packages/sklearn/linear_model/least_angle.py:35: DeprecationWarning: `np.float` is a deprecated alias for the builtin `float`. To silence this warning, use `float` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.float64` here.\n",
- "Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations\n",
- " eps=np.finfo(np.float).eps,\n",
- "/home/jupyterlab/conda/envs/python/lib/python3.7/site-packages/sklearn/linear_model/least_angle.py:597: DeprecationWarning: `np.float` is a deprecated alias for the builtin `float`. To silence this warning, use `float` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.float64` here.\n",
- "Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations\n",
- " eps=np.finfo(np.float).eps, copy_X=True, fit_path=True,\n",
- "/home/jupyterlab/conda/envs/python/lib/python3.7/site-packages/sklearn/linear_model/least_angle.py:836: DeprecationWarning: `np.float` is a deprecated alias for the builtin `float`. To silence this warning, use `float` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.float64` here.\n",
- "Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations\n",
- " eps=np.finfo(np.float).eps, copy_X=True, fit_path=True,\n",
- "/home/jupyterlab/conda/envs/python/lib/python3.7/site-packages/sklearn/linear_model/least_angle.py:862: DeprecationWarning: `np.float` is a deprecated alias for the builtin `float`. To silence this warning, use `float` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.float64` here.\n",
- "Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations\n",
- " eps=np.finfo(np.float).eps, positive=False):\n",
- "/home/jupyterlab/conda/envs/python/lib/python3.7/site-packages/sklearn/linear_model/least_angle.py:1097: DeprecationWarning: `np.float` is a deprecated alias for the builtin `float`. To silence this warning, use `float` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.float64` here.\n",
- "Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations\n",
- " max_n_alphas=1000, n_jobs=None, eps=np.finfo(np.float).eps,\n",
- "/home/jupyterlab/conda/envs/python/lib/python3.7/site-packages/sklearn/linear_model/least_angle.py:1344: DeprecationWarning: `np.float` is a deprecated alias for the builtin `float`. To silence this warning, use `float` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.float64` here.\n",
- "Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations\n",
- " max_n_alphas=1000, n_jobs=None, eps=np.finfo(np.float).eps,\n",
- "/home/jupyterlab/conda/envs/python/lib/python3.7/site-packages/sklearn/linear_model/least_angle.py:1480: DeprecationWarning: `np.float` is a deprecated alias for the builtin `float`. To silence this warning, use `float` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.float64` here.\n",
- "Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations\n",
- " eps=np.finfo(np.float).eps, copy_X=True, positive=False):\n",
- "/home/jupyterlab/conda/envs/python/lib/python3.7/site-packages/sklearn/linear_model/randomized_l1.py:152: DeprecationWarning: `np.float` is a deprecated alias for the builtin `float`. To silence this warning, use `float` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.float64` here.\n",
- "Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations\n",
- " precompute=False, eps=np.finfo(np.float).eps,\n",
- "/home/jupyterlab/conda/envs/python/lib/python3.7/site-packages/sklearn/linear_model/randomized_l1.py:320: DeprecationWarning: `np.float` is a deprecated alias for the builtin `float`. To silence this warning, use `float` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.float64` here.\n",
- "Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations\n",
- " eps=np.finfo(np.float).eps, random_state=None,\n",
- "/home/jupyterlab/conda/envs/python/lib/python3.7/site-packages/sklearn/linear_model/randomized_l1.py:580: DeprecationWarning: `np.float` is a deprecated alias for the builtin `float`. To silence this warning, use `float` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.float64` here.\n",
- "Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations\n",
- " eps=4 * np.finfo(np.float).eps, n_jobs=None,\n"
- ]
- },
- {
- "data": {
- "text/plain": [
- "array([[ 1. , 2. , 4. ],\n",
- " [ 1. , 2.4 , 5.76],\n",
- " [ 1. , 1.5 , 2.25],\n",
- " ...,\n",
- " [ 1. , 3. , 9. ],\n",
- " [ 1. , 3.2 , 10.24],\n",
- " [ 1. , 3.2 , 10.24]])"
- ]
- },
- "execution_count": 7,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "from sklearn.preprocessing import PolynomialFeatures\n",
- "from sklearn import linear_model\n",
- "train_x = np.asanyarray(train[['ENGINESIZE']])\n",
- "train_y = np.asanyarray(train[['CO2EMISSIONS']])\n",
- "\n",
- "test_x = np.asanyarray(test[['ENGINESIZE']])\n",
- "test_y = np.asanyarray(test[['CO2EMISSIONS']])\n",
- "\n",
- "\n",
- "poly = PolynomialFeatures(degree=2)\n",
- "train_x_poly = poly.fit_transform(train_x)\n",
- "train_x_poly"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "**fit_transform** takes our x values, and output a list of our data raised from power of 0 to power of 2 (since we set the degree of our polynomial to 2). \n",
- "\n",
- "The equation and the sample example is displayed below. \n",
- "\n",
- "\n",
- "$$\n",
- "\\begin{bmatrix}\n",
- " v_1\\\\\\\\\\\\\n",
- " v_2\\\\\\\\\n",
- " \\vdots\\\\\\\\\n",
- " v_n\n",
- "\\end{bmatrix}\\longrightarrow \\begin{bmatrix}\n",
- " [ 1 & v_1 & v_1^2]\\\\\\\\\n",
- " [ 1 & v_2 & v_2^2]\\\\\\\\\n",
- " \\vdots & \\vdots & \\vdots\\\\\\\\\n",
- " [ 1 & v_n & v_n^2]\n",
- "\\end{bmatrix}\n",
- "$$\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "$$\n",
- "\\begin{bmatrix}\n",
- " 2.\\\\\\\\\n",
- " 2.4\\\\\\\\\n",
- " 1.5\\\\\\\\\n",
- " \\vdots\n",
- "\\end{bmatrix} \\longrightarrow \\begin{bmatrix}\n",
- " [ 1 & 2. & 4.]\\\\\\\\\n",
- " [ 1 & 2.4 & 5.76]\\\\\\\\\n",
- " [ 1 & 1.5 & 2.25]\\\\\\\\\n",
- " \\vdots & \\vdots & \\vdots\\\\\\\\\n",
- "\\end{bmatrix}\n",
- "$$\n",
- "\n",
- "\n",
- "\n",
- "\n",
- "\n"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "It looks like feature sets for multiple linear regression analysis, right? Yes. It Does. \n",
- "Indeed, Polynomial regression is a special case of linear regression, with the main idea of how do you select your features. Just consider replacing the $x$ with $x_1$, $x_1^2$ with $x_2$, and so on. Then the 2nd degree equation would be turn into:\n",
- "\n",
- "$$y = b + \\theta_1 x_1 + \\theta_2 x_2$$\n",
- "\n",
- "Now, we can deal with it as a 'linear regression' problem. Therefore, this polynomial regression is considered to be a special case of traditional multiple linear regression. So, you can use the same mechanism as linear regression to solve such problems. \n",
- "\n",
- "\n",
- "\n",
- "so we can use __LinearRegression()__ function to solve it:\n"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 8,
- "metadata": {
- "tags": []
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Coefficients: [[ 0. 51.34464277 -1.64112566]]\n",
- "Intercept: [105.83262962]\n"
- ]
- }
- ],
- "source": [
- "clf = linear_model.LinearRegression()\n",
- "train_y_ = clf.fit(train_x_poly, train_y)\n",
- "# The coefficients\n",
- "print ('Coefficients: ', clf.coef_)\n",
- "print ('Intercept: ',clf.intercept_)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "As mentioned before, __Coefficient__ and __Intercept__ , are the parameters of the fit curvy line. \n",
- "Given that it is a typical multiple linear regression, with 3 parameters, and knowing that the parameters are the intercept and coefficients of hyperplane, sklearn has estimated them from our new set of feature sets. Lets plot it:\n"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "metadata": {
- "tags": []
- },
- "outputs": [
- {
- "data": {
- "text/plain": [
- "Text(0, 0.5, 'Emission')"
- ]
- },
- "execution_count": 9,
- "metadata": {},
- "output_type": "execute_result"
- },
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAGwCAYAAABPSaTdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAACFLUlEQVR4nO3dd3hURdsG8HuzJCGBEEgoSUgoYhQ1YEEEKVJFQCAUxYIKigUhQKi+gAUb+KKCCiJiAREpKqGoiAQJTVTaixT9FBAkQGKQkhBIIZv5/hh3yW62zG7O1ty/69przdk558xukH2YeWYenRBCgIiIiChABXm7A0RERETuxGCHiIiIAhqDHSIiIgpoDHaIiIgooDHYISIiooDGYIeIiIgCGoMdIiIiCmhVvN0BX1BaWopTp04hIiICOp3O290hIiIiBUIIXLhwAXFxcQgKsj1+w2AHwKlTp5CQkODtbhAREZELMjMzER8fb/N1BjsAIiIiAMgPq0aNGl7uDREREanIy8tDQkKC6XvcFgY7gGnqqkaNGgx2iIiI/IyjFBQmKBMREVFAY7BDREREAY3BDhEREQU0BjtEREQU0BjsEBERUUBjsENEREQBjcEOERERBTQGO0RERBTQGOwQERFRQGOwQ0RERAGNwQ4REREFNAY7REREFNAY7BAREZH7lJYCGRlASYnXuuAzwc706dOh0+mQmppqOjZkyBDodDqzR+vWrc3OKyoqwsiRI1G7dm1Uq1YNffr0wYkTJzzceyIiIjLzzz/AG28A114LdO4MfPON17riE8HOzp07MX/+fDRv3rzca927d0dWVpbpsXbtWrPXU1NTsXLlSixbtgzbtm1Dfn4+evXqBYPB4KnuExEREQAIAWzZAgwaBNSvD0yYABw+DEREAKdOea1bVbx253/l5+dj0KBB+OCDD/DKK6+Uez00NBQxMTFWz83NzcVHH32ETz/9FF27dgUALF68GAkJCdiwYQPuuusut/adiIiIAOTmAosWAfPmAb/+euV4ixbAsGHA/fcD1at7rXteH9kZMWIE7r77blOwYmnTpk2oW7currnmGjzxxBPIyckxvbZ7925cvnwZ3bp1Mx2Li4tDUlIStm/fbvOeRUVFyMvLM3sQERGRk/73P+CJJ4C4OGDUKBnohIcDjz8O7NolH48/7tVAB/DyyM6yZcuwZ88e7Ny50+rrPXr0wL333ouGDRvi6NGjeO6559C5c2fs3r0boaGhyM7ORkhICGrVqmV2Xr169ZCdnW3zvtOnT8eLL76o6XshIiKqFIqKgC+/BN59F/jxxyvHr78eePpp4OGHgchI7/XPCq8FO5mZmRg9ejTWr1+PqlWrWm1z3333mf47KSkJt956Kxo2bIhvvvkG/fv3t3ltIQR0Op3N1ydNmoSxY8eafs7Ly0NCQoIL74KIiKiSOHFCTlN98AFgnGWpUgUYMAAYPhxo3x6w893rTV4Ldnbv3o2cnBy0aNHCdMxgMGDLli2YM2cOioqKoNfrzc6JjY1Fw4YNcejQIQBATEwMiouLce7cObPRnZycHLRp08bmvUNDQxEaGqrxOyIiIgowxoTjOXOAlSsB4+Kf+vWBp56SU1g28mp9ideCnS5dumD//v1mxx599FE0bdoUzzzzTLlABwDOnDmDzMxMxMbGAgBatGiB4OBgpKenY+DAgQCArKwsHDhwADNmzHD/myAiIgpEly4BS5YAs2cD+/ZdOd6xI5CSAvTpAwQHe617zvJasBMREYGkpCSzY9WqVUN0dDSSkpKQn5+PqVOnYsCAAYiNjcWxY8cwefJk1K5dG/369QMAREZGYujQoRg3bhyio6MRFRWF8ePHo1mzZjYTnomIiMiG48eBuXPlVNXZs/JYeLjMwxkxAmjWzLv9c5HXl57botfrsX//fixatAjnz59HbGwsOnXqhOXLlyMiIsLUbtasWahSpQoGDhyIgoICdOnSBQsXLrQ6MkREREQWhAB++AF4+23zqarGjWWA89hjgMVCIH+jE0IIb3fC2/Ly8hAZGYnc3FzUqFHD290hIiJyv+Ji4IsvgLfekkvEjTp3lsvIe/UCfHzgQPX722dHdoiIiMgNzpwB3n9fLh037mocGiqnqkaN8tupKnsY7BARkRKDAdi6FcjKAmJj5UpjH/+HP5X1xx9yFGfhQqCgQB6LjZVTVU8+CdSp483euRWDHSIicigtDRg9Wm61YhQfL9M87Gx7Rt5mXDr+5pvAV19dOX7zzcCYMcB99wEhId7rn4cw2CEi8lHFxXJhzJEjQJMmct82b3wvpaUB99wjvzfLOnlSHv/ySwY8PqekBFixQlYdL5uP07s3MHYs0KGDz24A6A5MUAYTlInI90ycCMyceWVhDCCnjMaOBTy5jZjBADRqZD6iU5ZOJ0d4jh7llJZPyM8HPvoImDUL+OsveaxqVWDwYDmSc+213u2fxpigTETkpyZOBF5/vfxxg+HKcU8FPFu32g50ADnak5kp23Xs6Jk+kRV//y03AJw7Fzh3Th6rU0fm4wwfHtD5OCq8XvWciIiuKC6WIzr2zJwp23lCVpa27Uhjhw7Jsg0NGwKvvioDncREWcPqr7+AF16o9IEOwGCHiMinzJ1rPnVljcEg23nCv9V5NGtHGtm5UyZMXXstMH++rETeqpVMsPrtNxkAhYV5u5c+g9NYREQ+5MgRbdtVVPv2Mifn5MnyCcrAlZyd9u09059KTQhgwwbgtdeAjRuvHO/VS859tmtXqZKOncGRHSIiH9KggbbtKkqvl8vLgfLfo8af33qLycluZTDIJW8tWwLduslAp0oVuQng/v1ySXn79gx07GCwQ0REdvXvL79r69c3Px4fz2XnblVcDCxYANxwA3DvvcDu3bIo56hRcmhv0SLAoqA2WcdpLCIiH3L8uLbttNK/P5CczB2UPaKgQC4fnzFDLnUDgJo1gZEjZaBTu7ZXu+ePGOwQEfmQJk20baclvZ7Ly93qwgXgvffkcru//5bHYmKAceNkwnFEhHf758e4qSC4qSAR+Y7iYjlTYW9Fll4PXLpUKXb5rxzOnQPeeUcmRxn3yGnYEHjmGeDRR+WmgGSV6vc3c3aIiHxISIjcJdmesWMZ6ASEf/4BJk+Wgc3UqTLQufZaWajz0CHg6acZ6GiE01hERD7GuDuyL5SLIDf4+29Zs2ruXDlEBwDNmgHPPgsMGMBEKDfgNBY4jUVEagwGzybo+kohUNJIVpas9zFvnkxCBoAWLWSQ06cPEMTJFmexNhYRkYbS0oDRo83rRMXHyzQLdy29DgkBUlPdc23yoFOngP/+V+50XFgoj7VqBTz/PNCjB/fH8QAGO0Tk1zwx2pKWJnfmtxwHP3lSHudeM2SVMch5/31ZzgEA2rSR9aruvJNBjgdxzIyI/FZaGtCoEdCpE/Dgg/K5USN5XCsGgxzRsTbhbzyWmuq4nhVVIllZ8g9FkyZylVVRkSzlsGEDsG2b3AWZgY5HMdghIr9kHG0pO60EXBlt0Srg2bq1/D3KEkLu+7Z1qzb3Iz/2998yg/yqq+T8ZmEh0LatDHK2bAG6dGGQ4yUMdojI73hytCUrS9t2FIBOn5aFOBs3BmbNkkFOmzZAerqMghnkeB2DHSLyO54cbYmN1bYdBZBz54ApU2SQ8/rrcoXVbbcB330np6u6dmWQ4yOYoExEfseToy3t28tVVydPWh9J0unk6+3bV/xervD0cngCkJcnp6nefBPIzZXHbrkFeOkloGdPBjg+iMEOEfkdT4626PXye+2ee+R3WNmAx/id9tZb7gkwHO2z443l8JXapUvAu+/KFVZnzshjzZrJICc5mUGOD+OmguCmgkT+xmCQRaDz8223iYiQswxaBSHWAouEBBnouCOwmDjR/g7KtpbDG79vuRxeQ8XFwIcfAi+/DGRny2PXXgu8+CJw773cDNCLVL+/GeyAwQ6RvykuBsLCgNJS222CgmQKhZY7DntqymjiRJkCYsu4ccDy5bbzloxTa0ePckqrQgwG4LPP5L44x47JY40ayZ8fegiowskRb2Ow4wQGO0T+5a23gDFjHLebNcv/diBWqXoeFGQ/0DPKyAA6dtSsa5WHEMCqVbKMw6+/ymMxMcBzzwGPP86aHT6E5SKIKGAdOaJtO8B36lDNnet4ybxKoANwObxLNm4EJk0CduyQP9eqBfznP0BKioxCyS8x2CEiv9OkibbtrOXHjB/vnQrjf/yh3bW4HN4Ju3fLICc9Xf4cHi6HD8ePlwli5Nc4jQVOYxFpzd25LSpTPXq9XDzjaHTGUX7MhAn2Ax6t32u/fnIGxZGqVWUVAnvL4Zmzo+DQITld9fnn8ufgYGDYMLl/Tr163u0bOaT6/c0UciLSlCfqVYWEyFEXe8aOdRzoFBfLER17Zs6U7axxx3uNiVFr16GDfLZc7ezu5fABIztbzlVef70MdHQ6mXT8+++ynhUDnYDCYIeINOOpelWAHG2ZMKH8F7pe73g0xkglP8ZgkO0sueu9XnutWrvu3eXy8vr1zY/Hx3PZuV0XLgDPPy/nON97DygpkRsB7t0LfPqp3A2ZAg6nscBpLCItGAxyVMPTy6Erklg8ciQwZ47jdikpwOzZV35253t1doqOOygrunwZmD9f7o1z+rQ81qqV3CDQOExGfoersYjIo5ypV6XlcuiQENeXl7ua6OzO92qcorOXR1R2ik6v5/Jyu4QAVqyQyceHD8tjiYnA9Oly+Iu7HlcKnMYiIk34Y3Xw4cMdj4Lo9bJdWe5+r85M0RkMwKZNwNKl8lmLSu8BY/t2oG1bucvx4cNA3bpyGPDgQWDAAAY6lQiDHSLShD9WB3c10dkT73XGDDlVNWuWnEabNUv+XDbQ8UQyuF86dEgGM23bAj/+KOcFn39eBjxPPy1XXFGlwpwdMGeHSAvGPBZH1cF9cTm0ozpUlnzhvbI2lhX//COLchoTj4OCgMcek3k6cXHe7h25gd8tPZ8+fTp0Oh1Sy0y+CyEwdepUxMXFISwsDB07dsTBgwfNzisqKsLIkSNRu3ZtVKtWDX369MEJe5PpROQWxurggP8th1YZRSnL0XsVQlYV+Pxz90wtGQyyKKm1QMt4LDW1Ek1pFRbKJKerr5aZ5MYVVvv2AR98wECHAOEDduzYIRo1aiSaN28uRo8ebTr+2muviYiICLFixQqxf/9+cd9994nY2FiRl5dnajNs2DBRv359kZ6eLvbs2SM6deokbrzxRlFSUqJ8/9zcXAFA5Obmavm2iCqlFSuEiI8XQn7tykdCgjweaKy91+ho+Sh7LD5e2/efkWF+fVuPjAzt7umTSkuFWLZMiEaNrrzpG28UIj3d2z0jD1H9/vZ6sHPhwgWRmJgo0tPTRYcOHUzBTmlpqYiJiRGvvfaaqW1hYaGIjIwU8+bNE0IIcf78eREcHCyWLVtmanPy5EkRFBQk1q1bZ/OehYWFIjc31/TIzMxksEOkoZIS+UW7ZIl8duLfHj7N2vsqe+zFF4XQ6coHHTqdfGgV8CxZohbsLFmizf180k8/CXH77VfebFycEAsWBM4fNlKiGux4fRprxIgRuPvuu9G1a1ez40ePHkV2dja6detmOhYaGooOHTpg+/btAIDdu3fj8uXLZm3i4uKQlJRkamPN9OnTERkZaXokJCRo/K6IKjfjcugHHpDPvjh15SxbycCrV8v3OHCgnDHxxNSSPyaDa+b4cWDQIKB16yvJx1OnyqJiQ4YExh820pxXg51ly5Zhz549mD59ernXsrOzAQD1LLbsrlevnum17OxshISEoFatWjbbWDNp0iTk5uaaHpmZmRV9K0QUwFR2S3Zm752Kat9eJkDbWjmt0wEJCbJdwMjPlyuqrr0WWLJEvskhQ2SQ88ILQLVq3u4h+TCvBTuZmZkYPXo0Fi9ejKpVq9psp7P4v1kIUe6YJUdtQkNDUaNGDbMHEZE1qsnAJ0+qXU+LfYY8lQxeUCATtu+6Sz4XFFTsei4pLQUWLZJBzssvy2TkO+4Adu0CFiwoXy+DyAqvBTu7d+9GTk4OWrRogSpVqqBKlSrYvHkz3nnnHVSpUsU0omM5QpOTk2N6LSYmBsXFxTh37pzNNkREFaE6YmOsQOCIVlNL/fu7tzZW375yhujdd4H16+VzeLg87jHbt8uSDoMHA6dOybpVK1bIJW633OLBjpC/81qw06VLF+zfvx979+41PW699VYMGjQIe/fuxVVXXYWYmBikp6ebzikuLsbmzZvRpk0bAECLFi0QHBxs1iYrKwsHDhwwtSEiqgjVkZg6dTw/tdS/P3DsGJCRIWd2MjLk3j5aBDqrV1t/bfVqDwQ8J07IvJy2beUITkQE8NprwK+/ssQDucRrtbEiIiKQlJRkdqxatWqIjo42HU9NTcW0adOQmJiIxMRETJs2DeHh4XjwwQcBAJGRkRg6dCjGjRuH6OhoREVFYfz48WjWrFm5hGciIleojsTUry+nlu6558peO0bu3GdI69pYBQW2Ax2j1atlu7Aw7e5ruvkbb8jA5tIl+cE99hjwyitATIzGN6PKxKcLgU6cOBEFBQUYPnw4zp07h1atWmH9+vWIiIgwtZk1axaqVKmCgQMHoqCgAF26dMHChQuhZ0Y+EWnAmAzsaLdkY7XxL7+UOT5lp77i42Wg4w87Gk+YoN5OpWK8EiFklve4ccBff8ljbdvK6LFFC41u4hnFxbL81pEjsoDs8OHly42Q57FcBFgugojsM67GAqyP2FjmyBgMMtcnK0uODBkDIX9w110yR8eRbt2A777T4IYHDsjocONG+XN8vNwN+b77/G66ytmyI1RxflcugojIVzmbDOzP+wwlJmrbzqZz54BRo4CbbpKBTmioXFr+++/A/ff7ZaDz+uvl91EyGOTxiRO90y+SOLIDjuwQ+SpfGyHxtf64Q0GBXHXlyKVLLubsGAzAxx8DkyfLwp2AjBbfeEOutvJDxcXyM7O3YaReLz8zTmlpiyM7ROTXbO1YnJbmvT7584iNqrAwIDnZfpvkZBcDnZ9/ljsfP/mkDHSuvx7YsEEuJ/fTQAeQOTqOdsY2GGQ78g4GO0Tkc1R2LPYnBoPcGmbpUvdUQdfaqlW2A57kZPm6U3Jy5Kqq1q3lUvIaNWRp+b17gS5dKtZZH3DkiLbtSHsMdojIp6juWOzrAYORL45QqVi1Sk67jBghk5FHjJA/OxXolJTIJVvXXCN3OwaulHhITQWCgzXvtzc0aaJtO9Iec3bAnB0iX7JpkwwIHMnI0HZ/GRXO5uwYR6gs/5a1tYrLFfn5wMMPX1nq/OmnQPXqFbumJn74QUZIv/wif77lFhn43H67d/vlBszZ8R7m7BCRX1LdsViLGlPOcHaExhMjVLfdJjcXXrUK2L9fPkdEyONek5MjR2/atZOBTq1aMlllx46ADHQAGcCMHWu/zdixDHS8icEOEfkU1R2LtaoxZc/p0zJvtmpVYMAA9RwigwGYPbviVdDtFeK87TZg507r5+3c6YWAx5iBe+21wCefyGNDh8ql5E8/HZjZ3GXMmCE3WrR8m3q9PM59dryL01jgNBaRLzEY5IiJox2Ljx517/dnzZpAbq7jdpb9SUsrv4OyPUuWyNVdlmzVp0pOBhYvliM4jly44KEprZ07ZUCze7f8+eabZeDTurUHbu5buIOyZ6l+f/t0uQgiqnz0eu/UmCpLNdABzEdozp61nqNjj7URKkeFOK++Wu3aDz8MrFyp3hennTsn98t5/335piMjZR2rSjCSY0tIiJyeJN/CaSwi8jnO7lispdOn1QOdsk6etJ2jY4teD7RpY35MpRDn33+rXf/wYfW+OEUImQndtCkwb578+aGHgP/7PznfVkkDHfJdHNkhIp/Uv7+csvH0jsWu5rqcPq0+dWVkMADbt5uvKlMtxKkiMlK7a5n89pscudm8Wf583XVy3sbTS+OInMBgh4h8lnHHYk86fdq59sacnTp1XLuf5aqyQ4dcu441Q4dqdy0UFMgpqtdfBy5fllsoP/88lxmRX+A0FhFRGc4ELWVziCyn3FRZ5uxUuMBmGfHxGl3ou++ApCRg2jQZ6PTqBfz6K/Cf/zDQIb/AYIeIfJY3yizs2KHetmwOUfv28mfVYt06HZCQIM8r6/XX1e/vyP79FbxAVpasQN69O/Dnn/INrlwJrFkjl8wR+QkGO0Tkk7xVZqFOHce5LuHhcgfno0evJEsbV5EBagGPENZXlakU4lStmXn0qFq7ckpLZeLxddcBy5cDQUHAmDFyNKdvX/WIjshHMNghIq+wN2rj7UKg58/bDngiI4GLF61XPbe1isxZjgpxjhqldh2XajHt3y93P376abksrWVLWbxz5ky1zX2IfBA3FQQ3FSTyNGsb78XHy5GR5GQ5gmNrZZOnNhUEZLLybbfJ5zp15BSXSk6PMZAbOFDuvWONyvsoKJCrsw4dkrk8r78uR37cUoupoAB46SXgjTdkAc+ICODVV+WueFxKTj6KmwoSkU+yVRzTOGozdap6mQV3r9SqU8d8Kqi4WE49OdodV6+XD1uBDqD2PsLCZO1MS8ZaTPbye5xaJLVhA8RTw6D78wgA4HCzfmiw6h2EXKVVhjORd3Eai4g8RqU4pjHvxRFPFwKdOFGOpowZIwOQMWPkzxMnVqx/rr4PTWoxnTkji3beeSd0fx7BCdRHMlYhcX8awq+Jt/neiPwNgx0i8pitWx2P2tgbDSnLE4VAjdNRvXvLURTLaSODQR63FhR4oqDpjBmy/tWIEUC3bvL5wgWFQEcI4LPP5A7In3yCUugwGym4Hr9iDWSykL33RuRvmLMD5uwQecrSpXJllSNRUbLskjcLgTpT0NNafownCpray32yWVLjr7+AYcOAdesAAPuRhCfwAX6G9aKdTuf+EHmQ6vc3R3aIyGNURzFGj5bPliucPVUI1NZqMFsMBlkxoSx7S9G1eB9Or1gzGGSHbrhBBjqhofih56u4BXtsBjrG0yzfG5G/YbBDRB7jaOM940Z7U6Z4rxCovbwie779tvwSencVNFXJfUpNvdIXwy8HkNesrTx48SJE+zuAX37BsqsmowTBDu935Ihr/STyFQx2iMhjnBnt6N8fOHZMbt63ZEn5TfzcxVFekS3r11vf+NAd70Ml9ykzE9j2fRF+u28qDDfdghq//Yxc1MCTeB8N/8xA2sFrlffhcWm/HiIfwpwdMGeHyNOs5ZokJMhAx93BjC0GgwwiVqywvtxblTFoc+cIlEru0234GauihyL2zEEAwGr0wXDMxSnUN/Vx6VJg0CCN9+sh8iDm7BCRz/LWqI0tZUtTVCTQAaxPI2nNXu5TGC7hTYzFj7gdsWcOIgd1MBDL0RercAr1zfo4YYJcQm8Pi5pTIOCmgkTkFXq9a5sCGkdgsrLkl3779hVLVra1yWFFuLLxYXGxTAR2tGEhIN9z9epAfr758Y7IwId4HE3wJwBgER7GGMzCWUTb7OPdd8vRqDfflCWxjIKCgHHjFPfrIfJxHNkhIr+hdXFQV5ORValuGOjshoUGg5xaMopAHubiaWSgM5rgT2QiHj2xFoOxyGqgY9nH1q3LjxbFxsrjRIGAwQ4R+QV3FAd1NRlZlcpS+4kTnd+wcO7cK6Mw3fAdDiAJT2MeAGAensINOIhv0UOpj4cOyc/v5Enz46dOeaboKpEnMNghIp/n7FJrVe4qOWFcQt++vfzZVoX34mJZTNyeN96QU1pvvSXbA3KqKxLn8REew3fojgbIxBFchU7YiKcxDxcgEzWrVbO/zD8+HvjgA+0/VyJfw2CHiHye6lLrrVudu667Sk4IcWUJvb2pt7lzHQcSQgDvvWc+tdWl8BscxA14DAtQCh3exig0xz5sQiezc++9Vz7bWub/xBPu+VyJfA0TlInI51W0qKat5F/jJoe2SjpUlKMK7927O3e9CMM53PB6KvpiEQDgDyTiMXyMH9CuXFu9Hnj/fVnXy1pJibfeAoqK1O7r6aKrRFpjsENEPq8iRTUnTpRTRWVHUMaPl0uqZ8yQmxwOGKBNP410uislL+xNEf34o/o1e+IbzMeTqI9TKIUOW1qMRc/dL6EA4VbbG5eM9+8PJCdbX8G2aZPavT1RdJXInRjsEJHPs7XUuqyIiCs5MkbG5F9LxuRfFTfdJJOB9+1T7i6EUEt8Pn9eLvEuu+TbUiTO4y2kYgg+AQD8jmswBAtxXfPbUbDb9nllV1LZWubvaGTLmNdj+bkS+RvuoAzuoEzk64qLgbAw+0FBUBBQUHBlb5riYpnj4mh34NJS+1NYxh2Ev/5avQq6M3r2BNautf5ad3yLD/G4aTRnJsbiObyMQoQ5DP4SEtQqqhun2gDzz8ETO0ETVRR3UCYiv2dcxfT44/YDHUC+XrY6t0ryr8HgOFfHWPW77K7Pzz6r0ns1d94pdzIuG5REIA8f4HF8i56oj1P4A4loj62YgDdQiDAA9gMdQD2x2F3FSol8iVeDnffeew/NmzdHjRo1UKNGDdx+++349ttvTa8PGTIEOp3O7NHaYperoqIijBw5ErVr10a1atXQp08fnHDnxhlE5BFlVzF9+qnaOYcOXflvLSt1G69lnA6aOtVx9fZatdSuXaeOzB26dAmYNQuY1et77EczPI6PUAodZiEVN2EvtqOt0/223DvHFl8r30GkNa8GO/Hx8Xjttdewa9cu7Nq1C507d0ZycjIOHjxoatO9e3dkZWWZHmstxntTU1OxcuVKLFu2DNu2bUN+fj569eoFAzeGIPJbtjYQdKRs8KFlpW7La6lUb09NVbu2cUQl5PJFpB5OQerXXdEQx/EnGqMjNmEsZpVLQu7UycqFrDh9Wq0dcCWQe+AB+VyREhxEPkf4mFq1aokPP/xQCCHE4MGDRXJyss2258+fF8HBwWLZsmWmYydPnhRBQUFi3bp1yvfMzc0VAERubq7L/SYi20pKhMjIEGLJEvlcUmK/bXy8EHKCybnHwoVXrlNUJIReb7+9Xi+ETue4TVGR9b6uWFG+rwkJ8rjK+0hI+Pez+OEHIa6++soLw4aJKaMvlOu/Xi/EhAlCLF6s9nksXqzhL5HIB6l+f/tMzo7BYMCyZctw8eJF3H777abjmzZtQt26dXHNNdfgiSeeQE5Ojum13bt34/Lly+jWrZvpWFxcHJKSkrB9+3ab9yoqKkJeXp7Zg4jcw9l6VhUp4XDu3JX/DgmRy6/tGTtWLkN31MaY9Gy5E3Jysu3pH+Poj72prndeL4J+yn/kcqfDh+Xc2Pr1wHvv4ZW3qpumtlJS5POlS3LKyzK/xhbVdkSBzutLz/fv34/bb78dhYWFqF69OlauXInrr78eANCjRw/ce++9aNiwIY4ePYrnnnsOnTt3xu7duxEaGors7GyEhISglsXkeL169ZCdnW3zntOnT8eLL77o1vdFRI431bOWAFuRDezq1HH+HGNVb8u9ePT6K3vxAPK9WNuc7+23y78HY2X2oiKZ3/PBB+bnJSQAC0bvRZdXHgYOHJAHH3lEXqxmTVO7kBDr02HGJeP2gsKy5SqIKj0PjTTZVFRUJA4dOiR27twp/vOf/4jatWuLgwcPWm176tQpERwcLFasWCGEEOKzzz4TISEh5dp17dpVPPXUUzbvWVhYKHJzc02PzMxMTmMRaczRNI5OV2Yap4wNG1ybwgLkuUaq01jGKaqiIiFmzRIiJUU+FxUJceaMEElJQlSvbvs96HRy2srI2tRW/fpCvPiinMbbtOGyMLz8qhDBwfLFOnWEWLnS6c93xYor93fUJ6JA5TfTWCEhIbj66qtx6623Yvr06bjxxhvxtjHzz0JsbCwaNmyIQ/8uuYiJiUFxcTHOlR27BpCTk4N69erZvGdoaKhpBZjxQUTaclc9K1WqS8+Ny9WNoyizZ8vnBg2A6Gg58GJrmbdlsUxbidWnTskRnqizh9HhuTsQ9NwU4PJloG9feYO+fZ1+f1wyTqTO68GOJSEEimwUbDlz5gwyMzMR++/e5S1atEBwcDDS09NNbbKysnDgwAG0adPGI/0lIutcrWdVJi3PaWXPLbsM3R5r7WJigL//VjvfGLRt2mSvMrvAk+J9tB95o6wRUaMGsHChjI7q1lW7kRVcMk6kxqs5O5MnT0aPHj2QkJCACxcuYNmyZdi0aRPWrVuH/Px8TJ06FQMGDEBsbCyOHTuGyZMno3bt2ujXrx8AIDIyEkOHDsW4ceMQHR2NqKgojB8/Hs2aNUPXrl29+daIKj1X61lVpA5T2XNtJQZbsmx39qx6oFPWpk3WR7LqIRsfYSjuxlpAAJlXd0Lcdwugv6qh8zexorhYjuQcOgQkJgKtWsndpomoDI9Mqtnw2GOPiYYNG4qQkBBRp04d0aVLF7F+/XohhBCXLl0S3bp1E3Xq1BHBwcGiQYMGYvDgweL48eNm1ygoKBApKSkiKipKhIWFiV69epVr4wiXnhNpz5izY2tpt62cHUfnqV5r0SK1cxctMr9/UpJr+ULPPlv+WD+sEKcRLQQgChAqUjFT6GAQ8fHa5NQkJ1vvi50dO4gCiur3N2tjgbWxiNzFUd2lu+6SZR4SE2VhTuOIhK3zrLFVw2n9enl9R777DiizewWio+XojipjscwFCwDjgHIE8vA2RuNRLAQA/A834SEsxq+4wW6fndG3L7B6te3Xk5OBVatcuzaRv2BtLCLyOltJtFWryiBm3ToZlLz7rizaaczTtXWetekZIYA+fcoHDb/8otZHy3ZxcWrnAVeClrfekrsOx8cD7bANv+BGPIqFKIUO0/EftMLPpkDH2GfgSmKzswoK7Ac6gHy9oMD5axMFIgY7RKS54mIZAIwcCRw/Dvzxx5Uk2rZtbX8Jr15tHvCUTb697z77502caH7Mzr6idttt3qx2HmC+8klfehnprZ7FJnRAYxzDUTRCB2zGZEzHZYSUO7ciq9EmTNC2HVGgY7BDRJqaOFGO0owZA8yZI58jIoC1a2Ug88MP9s8vOyJhrNc0YIAMKuyZOVMGWUbVqqn117JdVBRgZ+cKAHIxldnKp99/B9q0QdMVr0KPUnwR/ghuwl5sg+Nd/VzZRPH337VtRxToGOwQeYll6QFfqF1b0T5NnChzbyzPMxjkcdUdISxHJJzdMwcAbrxR7V7W2mVn2w546tUDcnP/LZYZJID584FbbgF27ZKlzpcvR/+8T/DirEil+7uy+kx1eorTWEQSgx0iL3C2XpQ/9Km4WI6u2LN3r9q1LPe+OXJE7byy7VS3r7HVbu7c8q/VrVsmoPrnH6BfP+Cpp2TRqs6dgX37gIEDodfLKbz4ePu1sVwt6dCsmbbtiAIdgx0iD7O1y66xXpQ3Ah4t+qQy+qIqMdH85yZN1M4r227nTrVzrLUzfh6WGxyePi2Pb3t+vYwkVq8GgoOBN94A0tNldPMvYyFQoHzAUzaxWa9X62dZ116rbTuiQMdgh8iDDAZ7u+zKZ1dX6Hi7T6qjLypef9385+HDHQcFer1sZ6T6GVqbcrP1eQSLIrwpxqLdy3fJua7rrgN27ADGjQOCyv91amtVWf36FVt27srnQVSZMdgh8iBv14tyZ59UR1+Skuy/npxcfol5SIisQG7P2LGynZHqiIllO1ufR1P8hp/RCmMwCwBwMnm4zNO56SaH97AMnCq6u5krnwdRZcZgh8iDXK0X5U5a9Ul1tGH3bhnQWGO5EV7ZhOmePeUAiuU99HqZ0DxjhvnxVq3s98VWu/LvU+BJvI/daIGb8AtOozZ64Stsue/fzYHsME6HnTxpfvzUqYpPWc6YId+35YCSrc+DqDLzam0sosrG1XpR7qRVn4yjDZZTUGUZRxtWrZIrhSZMuFLTqewOyoAMBEaPNh9liY+Xe+6cOiWnzZo0kUGWtREM1c0BLduVfZ9ROIMP8Tj6YRUA4Dt0wxAsRDZiMd7B5+FoelCnk9ODycmu5e3Ywj3xiazwSPEKH8faWOQprtaL8qU+lZQIkZEhxJIl8tmyrxMmCKHXm19Dr5fHVa1YYb0/Op18vPii7fsbbdigVtNqwwbrn0dHZIhM1BcCEEUIFmPwptDBoPw7yshQu39Ghu1r2PusJ0ywf11nPm8if6X6/c1gRzDYIc8yfpFbfpkbj2lRINJdfVqxQgYCZdtYK2pZVCTErFlCpKTI56Ii9b4Ygw3VApy2imouWaJ2/pIlFicWF4vf+k8WBsgP4zdcK27CHqd/Ry7f/1/2PuuiovIBpeVDr3fucyfyRwx2nMBghzzN2hdZQoJ3Ah3VPjkabdGq76ojIo7u79LIyp9/CtG6tenFJeFDRTjyXfodVWRkx9Fn/eijateeNcuFXwCRH2HVcyew6jl5g8EgV/5kZck8kfbttc3d0LJPBoPcYNDWqi1j5e+jR9Xfg617LV0qNzV0hrX7G/t88qT86nd4zuefA088AeTlAZGRwPz5MAwY6PLvyOn7W5xn77OuVg3Iz3fch5QUYPZstf4S+SPV728mKBN5ibHuky+x1SdnlqervCdbycdvv+1acra1+xs39bvnHhkglA04zDb1K7okM4U/+EAevP12mQXdqBH0cP13pHx/xaXvZd+rSqADqG8HQBTouPSciExs1cbScsm8o92aT5+2X2bBmfvb2tTPVK08cT/QsqUMdHQ6YMoUYMsWObSiAYf3t7KpoFbbDuh03FSQyIgjO0QEQJvRFkftVJZjjxsHzJoFDBxYfkTElfv37y+Xd5tNR7UT0H80HxiUChQWyoOLF8v6Vhqzen8702Ge3HaAqLLgyA4RORxt+ecfoHp1+9eoXt1xUUvV6bData2PiNjiTFHNKvnnoXvgPmDYMBno9OwJ/PKLWwIdI+P04AMP/Fst3U7eT/v2jguI1qzp+J5CXClaWtFq9kT+jsEOUSWnWhvr4kX717l0yfGXqLPTYSqjOo6Kapat5j7rwR2o3/tmBH35BUqrBANvvgl89RVQp45axzxApYCo6u7Qhw5VvJo9USBgsENUyamMtthaUVRWaemVkQRbVKdoDh2yXmbBGnv5L6ZyDSdKMQ5v4Ae0RWMcw59ojNtLtiGt0VirBTy9zVGuz9VXq13nyJGKV7MnCgS+9385EXmUlnW4Dh2y/3qbNo6XbgcFAfPn2w+u6tSRKTYZGXLptrVAxzhiFSX+wRr0wRuYgGCU4HPci5vxP+zAbQ6ruefmAu3aAQ0ayOfcXPt911L//sCxY/I9Llli/l5VR3Z27HA8YscpLaoMmKBMVMlpmRDraAXV9u2Ov1xLSx2P6Jw+LUc97C0L37oVaHhiG5biASTgBAoRilS8hffxFADZUXvL5a++Wo6MGGVmylyZJk2Aw4ft908rtrYCSEhQO//cOduvObtdAJE/48gOUSWnkhBbq5batRyNOGg5imT3WqWliHzvNWxCRyTgBH7HNWiFn/E+hsEY6BhZC6wsA52yjhxRn0ZyF+PvzJ7oaLVrafk7IfJVDHaIKjmVhNjUVLVrORpxUFlFpMrmiNTp08Ddd+PmzyehCgz4FA+hBXZjH2602bys3FzbgY7RkSOendKyZPyd6XTWf2c6nVxspkLL3wmRr2KwQ0QOE2KnTHG89DwiwvHS7/ffV+tP1ar2R5psLjPftg24+WZg3TqUhIThMXyER7AIF2G785YLse6+W62Pqu0A9yz9dvQ7O3NG7Tpr1lS8L0S+jjk7RATA/uZ3xcVyabk9Fy/KL3F7Cch//qnWl7p1ZT6JcpmF0lJgxgzg2WdlJ5o2xY4xX2DBU0kO72UZ7Bw/rtZH1Xb2Nmu0lljtDHu/M9XAUvV3QuTPOLJDRCa2Nr+bO1fGE/aoLD1XrdV0yy1OlFk4cwbo3RuYNEkGOoMGATt34scLjgMdANi/3/znBg3U+qjSztFmjVos/bb1O0tMVDtftR2RP2OwQ0QOOcphUW336adq1/n0U/tLr01+/FFOW61dK+e+PvhAnly9Oo4dU7uXZbtvvlE7z1E71c0a3bX0+/XXtW1H5M84jUUUgIqL5SjLkSNyNOWpp4Cffzaf6jAYzNsMHw6EhFi/nuqIjKN21avLups7d9pu07Lllfwgm5XhhZDzQBMmACUlcnjiiy+AG68kIbva58hIecxe4NakiWwHyM/R2jSS1pXinRUWJqe4Vq+23SY5WbYjCniCRG5urgAgcnNzvd0VogqbMEEIvV4I+XVq/VG9uhBBQebH9Hp5rjVFRY6vqdfLdipatrR+jZYtFU4+f16I/v2vnHTvvUJY+X/3wgX7/TU+LlywfpsmTay3b9LkSpsVK4SIjzd/PT5eHl+yRO3+S5aofWauSk62ft/kZPfel8gTVL+/OY1FFEAmTpTTEo6mRvLzy+fgGAzy3IkTy7cPCQHGjrV/zbFjbY8MWdqxA7hwAejbF2jWTD5fuCCP27V3L9CihUx2CQ4GZs8Gli8HatQo1/TDD9X6Yqvd4cPA+fNA27Zy9VfbtvJn44aCjvJxHO0mbeTuKuerVsnk8hEjgG7d5POlS/I4UWWhE0Kl1F5gy8vLQ2RkJHJzc1HDyl+aRP6guBgID694DoheL78MrQUufftanxZJTvbAl+dHH8lv6qIimR38xRfAbbfZbD5yJDBnjuPLpqTImMkZBoMspmlrmkqnA+Li5NSWvcRue581ETmm+v3NkR0iL9F675W5c7VJdjXm8lhKS7O+J4tOJ4+7rajkpUvAY48Bjz8OFBVB9OiJbe/swdIjt9n93LTKM7JGtXiqoxVsBgPw8sva7b1DRNYx2CHygrQ0OTLQqRPw4IPyuVGjigUMqiumXLmW11YWHT4M3H47sGABEBSEgw++iob7vkL7vtEOP7dBg9RuodquLC1LLLzyija/fyKyjcEOkYe5a+8VV0YoVK/lzMoizaxeLfNz9u0D6tTB1ufWo9nSycg8af7Xlq3PrV8/tduotivLHXk2Wu69Q0TmXM7ZOX/+PHbs2IGcnByUWozVPvLII5p0zlOYs0OeopLrER8v95OxtxOxNe7M2Vm6VI5AObJkidzcrkJKSmR9ihkz5M9t28KwZDkata3v1OeWkGA/QDOKj5eBmjNUPmu9HqhXT44Cqf4tW5HfP1FlpPr97dI+O1999RUGDRqEixcvIiIiAroyRWx0Op3fBTtEnuLOvVeMK6YqukmctVVVqiMZFR7x+Ptv4P77ZRILAIwZA/z3v9j6Q7DTn1vNmmrBjiuFMLdvdxxUGgxyf6MXXlC/rrv33iGqrFyaxho3bhwee+wxXLhwAefPn8e5c+dMj7Nnz2rdR6KAoZrr4WpOyIwZcp89V0YF9Hp5rnFApaz27bUpBGrX9u2yTsSmTfJmn38OzJwJBAcrfx7ff38lCFGt1G6vXXGxrMM1cqR8Li6Wx1X7c+6cWjtLWuYEEZGLwc7JkycxatQohIeHV+jm7733Hpo3b44aNWqgRo0auP322/Htt9+aXhdCYOrUqYiLi0NYWBg6duyIgwcPml2jqKgII0eORO3atVGtWjX06dMHJ1T+OUfkBXXratvOmtat5fSJIzqdHNUYPhyYNUtOXVkLdAAZQKgWAnWaEHLtd4cOwKlTwHXXyS2W773X1ER1xOiVV64k+jZqpHaOrXYTJ8qpqjFj5BL2MWPkzxMnArVrq11btTyGJXfvvUNU2bgU7Nx1113YtWtXhW8eHx+P1157Dbt27cKuXbvQuXNnJCcnmwKaGTNmYObMmZgzZw527tyJmJgY3Hnnnbhw4YLpGqmpqVi5ciWWLVuGbdu2IT8/H7169YKB6zipEjImP5865bitEHKTvHvvlaMbISG2l8NrVQi0nIsXgYceAkaNkrk6990ndxZs2tSsWfv2MpelzIy5TSdOyM+gIsnStjZnNG68OG2a2nXOnHHuvjqdzDWq0AgZEZXnyvbMH374oWjQoIF44YUXxJdffilWr15t9qiIWrVqiQ8//FCUlpaKmJgY8dprr5leKywsFJGRkWLevHlCCCHOnz8vgoODxbJly0xtTp48KYKCgsS6dets3qOwsFDk5uaaHpmZmSwXQR7hzhICJSXlSxc4cy97pQ9SUtSulZLiRIf/+EOIpKQrtSZmzRKitNRm8xUrhNDp5EOlL9HRrn3WKqUx3PEwvrcVK5z+1RNVWqrlIlwKdnQ6nc1HUFCQSx0uKSkRS5cuFSEhIeLgwYPiyJEjAoDYs2ePWbs+ffqIRx55RAghxPfffy8AiLNnz5q1ad68uXj++edt3uuFF14QAMo9GOyQu2VkqH3xZWS479rW7mUMJGx9AQ8ZonatWbMUO7tmjRCRkfKkmBghtmxROs1aQFbRh+VnPWuW5wMdQIiEBAY6RM5ya22s0tJSmw9np4/279+P6tWrIzQ0FMOGDcPKlStx/fXXIzs7GwBQzyL5oF69eqbXsrOzERISglq1atlsY82kSZOQm5tremQ6u+6UyEWOpmMspzGc2WXZlaRWvR5o1crxhoHr1qldz+EGfQYD8PzzQJ8+QG6uLDi1e7fyvE3//sCxY8DkyWr9qVVL/bM20nJzRmNldFvq1AEWLwYyMuRy8/79tbs3EV3h9U0Fr732Wuzduxc//fQTnn76aQwePBi//vqr6XWdxd9UQohyxyw5ahMaGmpKijY+iDxBrwfeftt6YAHI42+9Jds5u8uyK0mtBgPw/vuOl8Pb+beDGbsb9J07B/TuLesjALIo1caNsoiUE/R6GSSoSE5W+6zL0nJzxtxc+6/PmycDxI4dua8OkTu5HOxs3rwZvXv3xtVXX43ExET06dMHW13ICAwJCcHVV1+NW2+9FdOnT8eNN96It99+GzExMQBQboQmJyfHNNoTExOD4uJinLNY31m2DZE/cmWX5fbtgapVnb+XliMZx4/beGHfPuDWW4FvvwXCwoBPP8Xp52ej8bUhqF4daNwYOH1a/T6qwY4r/44ZPtz5c1y1aFHFr6F1jTWiQORSsLN48WJ07doV4eHhGDVqFFJSUhAWFoYuXbpgyZIlFeqQEAJFRUVo3LgxYmJikJ6ebnqtuLgYmzdvRps2bQAALVq0QHBwsFmbrKwsHDhwwNSGyJcYa0zZM3q0a3WoiouBwkLn++TkwIpdDRpYObhsmaxv9eefcmhq+3bUTHkIdevKKamLF+Vz3brqG/z9+28hhxz9dWTtc/TkVmGrVwMFBa6f744aa0QByZWEoKZNm4qZM2eWO/7mm2+Kpk2bKl9n0qRJYsuWLeLo0aNi3759YvLkySIoKEisX79eCCHEa6+9JiIjI0VaWprYv3+/eOCBB0RsbKzIy8szXWPYsGEiPj5ebNiwQezZs0d07txZ3HjjjaKkpES5H6oJTkQV5WoSsUpi7YgRrl3n5puFqFPH9ionnU6I2Fi1a50/X6ZDly8LMXas6cUzt3YTX84/I6pVs3+NyEjHn+OGDe77HOvVUztPdVWYo8eIEa79WXKUVM5kZ6oM3LoaKyQkRBw6dKjc8UOHDonQ0FDl6zz22GOiYcOGIiQkRNSpU0d06dLFFOgIIURpaal44YUXRExMjAgNDRV33HGH2L9/v9k1CgoKREpKioiKihJhYWGiV69e4vjx4069HwY75CkLF2r3JW25ZLpbN+2ubfnF+cUXjpdj6/Vy+bsQQoicHCE6dTK9ODtikghCifJ9c3Lsf46LF2v3HhcvNr92aKj2n6O9R7duzv85crTNgE4nV3c58W8+Ir+k+v3tUm2shIQEfP/997j66qvNjn///fdISEhQvs5HH31k93WdToepU6di6tSpNttUrVoVs2fPxuzZs5XvS4HHYJCbyGVlyUTd9u21SfgsLpYb5R05IhNXhw8vXzfKGatWVbxPRpYJyYmJwPr12l0fkCvH3noLiIpSqwW1dSvQscYemal8/DguV62O+ws/QdoF55YZ3XabXJ1kizP5PY5YXis4GCgq0u76jiQmOn+OO2usEQUil4KdcePGYdSoUdi7dy/atGkDnU6Hbdu2YeHChXj77be17iORXWlpMsel7F/+8fFy1VNFlvJOnChLM5X9kh8/XhbKtFVWwZGLF9XahYbKQEuI8q8ZK2NbLpl+/XXg3Xdd61dZderI8hH1618JGpcuVTs35IvPgI8fBwoLIRITcVfeKmQUXu90HxwFM6oJyiosl4f3769N4rAqVwq3urvGGlGgcSlB+emnn8ayZcuwf/9+pKamYvTo0Thw4ACWL1+Op556Sus+EtnkyqolFY7KBUyc6Np1r7lGrV2nTvLZcgcF48/WlkyHhQEtW7rWr7JOn5aBTtnl0I6WtetRgjcxFm3mPiSzpHv2xA8zdyDjb+cDHcBxMFO/vkuXtWrNGvOfb75Zu2s7kpwsf2/O8lgVeqJA4aFpNZ/GnB3/5K68BZVyAXq9bOesS5fU8jguXbK+W7C9XXZdLRdh7bFokfpnEo3TYgM6Xznw7LNCGAzKpTFcydlRea+quTd33un87z8oSIj69SuWpJyc7PyfH8v3by+pnDk7VBm4dQdlIl/gTN6CM+bOVctPcbroJdRGX1q2lO2MuwVnZMgl1I522XX0eTjj55/Nf96+3fpn0hy/YCdaogs2Ih/VcODFFXLTwKAgl0cVIiMdj+wYN2e0tzuycXTMEcvRtpAQOVVpz7hxwDvvXLmX5b11OuDFF6/83i5cAEaMALp1k8+XLlUsf8v4/m3dH7A++kdUWSnn7ERFReGPP/5A7dq1UatWLbs7FJ/15EYVVGm5K29BdZM9VzbjMxiAvXvtt/nlF9lOr5cP1QRTLfMzLHOFrF37XnyOBXgU1XAJh9EEyViNZxNvQNK/r7dvD0RHO1f5OzJSVmJX0b8/8OWX5fO1EhLkF32PHkB4uOPrWMuZMeZkWeZs6fXmOVvW7h8fL8+rXfvK5xYWBsyZo/a+VNl6/8akcpaeILpCOdiZNWsWIiIiTP/tqGQDkbu5K29BtVyAK2UF1q8HLl+236a4WLbr0cO5a9et63x/bLFcIVT2MwyCAS/jOUzGdADAd+iG+7EM51HL6c86KEju+ly3LrBjh/OJx/37y7wXWyvxkpPlxn222MuZmTEDeOUV+6vxrN3/9GlgzBjtE+atcfT+iUjSCWFtvUflkpeXh8jISOTm5rJOlh8xGIB69eyPHERHA3//7dxf/sXF8guwtNR2m6AgufOts8vQW7YEdu1y3O7WW4GdO5279vffA127OneOLUVF5u/NYJA78144kYvFGIRe+AYAMAMTMAnTIXR6xMfLaTbjZ71pk9pUUt++QIcOFV/Wb+/61gKe5GRttwIAriTMW/6tavy34ZdfcsSFSEuq398u5ezs2bMH+/fvN/28evVq9O3bF5MnT0ZxcbErlyTyGXq94+mP8HDX/vX8zz/atisrJ8f5c2yx/N9Yrwc+euYP/IjW6IVvUICqeBCf4RnMQCn0EKJ8jojqtNqqVXIkJDzc9VVujq5//rwssJ6QIJ/Pn9c+0DGWArH2z0fjMWvlKYjI/VwKdp566in88ccfAIA///wT9913H8LDw/HFF19gojv+tiKyYutWx/kgZ844n6C8dSuQn2+/TX6+89cF1OtQuVKvSstlxg8/bHFg3Tq0H38brsP/IRPxaIdtWIoHzZr89FPF+qO6rN/ZwpcTJ8oRvh9+kAnrP/wgf9b6ryp3JcwTUcW5FOz88ccfuOmmmwAAX3zxBTp06IAlS5Zg4cKFWLFihZb9I7LJXQnK7tyw7ZFHtG1XVvv2MjdEC4cO/fsfQgBvvAFx990IK8rFD2iDltiJPWhR7pyZM81HhIz9cTa9z/I6ZTlb+LKi+yUVF8sRq5Ej5bO9gWtu9Efku1wKdoQQKP03oWHDhg3o2bMnAFlG4h9Xxt+JXOCuBGV3bti2bp227crS64EW5WMQl1y8CLk54ODBwIQJ0JWW4kMMRWdsxN+wXnLccjm+veXR9tha1u/sBpLFxTJwssdeYDVxopxaGzNGrqRyNNXmrY3+nB3pIqqUXNnEp1OnTuKRRx4RixYtEsHBwaaioJs2bRINGzZ05ZJexU0F/ZO7NlZz54ZtZWpj2n106uT8tVU2w1N93NP2lBCtWskf9HrxRfu3BVDq8LyUlPL9srY5orPXcWUDyVmz1O41a1b5Pk+YYP+cCRPKn+ONjf6sfbbx8ax4TpWHWzcVfOutt7Bnzx6kpKRgypQppoKgX375Jdq0aaNhKEZkm7s2VnP2us78y9pecUtX2pWlshmiihbYhbe3twR+/hmiVi1g3Tqc6D8KgOPhGWvL8ctujlguF0jxOq7kw7i6X5KrI0Ke3ujPXaVSiAKSlhFWQUGBKC4u1vKSHsGRHf82YUL5EQ293vq/vp2hUq7B2X9ZX3+92mjD9dc739+nn674iM5ALBOXUFUIQBzEdaIJDomWLbUroeHqdVRLTyxZcuUcV0d2KjIiJITzZT5c4a5SKUT+xq0jO5mZmThR5p8TO3bsQGpqKhYtWoTg4GCNwjAix9LSgDfesJ6A+sYbFfvXraNyDa78y9pysz5bVNuVVZHEVx1K8RKew3LcjzAU4mvcjdb4CUdwNXbuBNq1c1xCYexYx/vkqJRisHYdV/Jhhg93PIqi18t2ZVV0B21ny3y4giu/iJzkSiTVrl07sejfSoFZWVmiRo0a4vbbbxfR0dHixRdfdOWSXsWRHf/kzX/dunrvtWvVRg3WrrV/74wMOYqRkXHlHk895dpoTjjyxZfobzrwGiaKIJSUa3fhguujaJZ9HjfOueu4mg/jSu5NRUd2PMGVkS6iQKT6/e1SsFOzZk3xf//3f0IIId5++23Rpk0bIYQQ3333nWjcuLErl/QqBjv+KSND7S/8jAzfuXdFv6TsTZuNGOF8oJOAv8Re3Y1CAKIQIeJhfGKzbd++sg9FRfKLPiVFPjuaurLV5+XLnb+OTlc+4DEeszVN5GyA5s6q91rx5p99Il+i+v2tXBurrMuXLyM0NBSAXHrep08fAEDTpk2RxU0kyEO8ua+Jq/euyPJkW6UIjNNmKSlq1zZqjR+xCn1RT+Tgb9RFP6zEj7C9wMA4bRMSIncCVmGrzydOAPffL8snqF7LWPhy1Cj5no3i4mQFclvTRCo1rsoyTrVZKxBqpDJl507GPYxOniz/2QIyITo+XrYjIhf32bnhhhswb948bN26Fenp6ejevTsA4NSpU4iOjta0g0S2eGtfk4rcu1UrtfMs26mUIliyRO3aADAIi7EJHVEPOdiLG9ESO+0GOoDzhU/t9RmQx50tn/DTT+UDyKys8rs3WzIGaLNny2dHgcqMGcCECeVzfvR6edxY9dxbPL3yi8jvuTJslJGRIWrWrCmCgoLEo48+ajo+adIk0a9fP1cu6VWcxvJP3tjXpKL3djYfxJjr8uyzzk9RWe0XDOIVTDYdSENfUQ0XlM69cMG5z0jrqRZX8m8qytkpO0/zxMovIl/m1pwdIYQoKSkRZ8+eNTt29OhR8ffff7t6Sa9hsOO/Vqyw/wXozr/0XckhSUlRCwBSUlzbjM/eIxz5YgX6mQ68iklCB4PSuS1bOv/5LFqk1q9/1zrY5Q95NN5iK2GdqDJw69JzANDr9ahVq5bZsUaNGqFu3boVGmki8hfGHJL69c2Px8fL49ZySFSngvLzrS9rd1V9nMBWtEd/rEQRQvAwFmEKpkEozGS3bAns2OH8PX/+Wbt2Khsm2iozEej0eqBjR+CBB+Qzp66IylNOUL7lllvw/fffo1atWrj55puhs1PsZs+ePZp0jsgeY06ILTqdzM9ITnbfF0D//vL6W7fK3JHYWJkUaut+Tz0layw5sn69HK/QQgvswhr0QRyykIM66IeV2I62ds+JigLuuAP49FOgenXX7qvaf5V2Fd37xmBQ/x0RUeBRDnaSk5NNK7D69u3rrv4QKXNmY7WOHd3XD+O/rFWojnacOuVyd8wMwJdYhEcQjgIcwA3oha/xFxo5PO+664CVKyt2by03UFQdEbPWLi1NBsVl/6zEx8sEXy03+iMi36UTQqt/P/qvvLw8REZGIjc3FzVq1PB2d0jR0qXAgw86brdkiRzi9wWqfa44gUmYjmmYAgBYix64H8twAWp/vrt0ATZsqFgPiotllXB70096PXDpkuPVUa5ey9bSd0CO/NmabiQi/6D6/e1yzo5Rfn4+8vLyzB5EnqCaHuZLaWSe2JkhBEVYiCGmQOdtjEIfrFEOdAAgLEyDfrhYGkKra7lj6TsR+SeXNhU8evQoUlJSsGnTJhQWFpqOCyGg0+lg4N8e5KcsczvatAG2b9cu12P/fu36aqlKFaBGyRmsRD/cga0ogR6j8A7ew3DHJ1u4eNH2a87kvxj3o5k50zyo0OtlcOLMfjWtWzv3uqNpTsAz05xE5H0uBTuDBg0CAHz88ceoV6+e3WRlInfJzta2nbXcDr3e/Eu6orkeqom2rkgs/R2r0QuJOIxc1MBAfI71uMula9kaoHUl/8XZHYytcSUZvewuy/aotiMi/+VSsLNv3z7s3r0b1157rdb9IVJ2+rR27WzldlgOUp44Idu5muvhrmoqHZGBtNL+qIXzOIpG6IWv8StucPl6QgCbNpmP2jgqV2HvM3GmxIQ1riSja/nnw5dxpRmRYy7l7LRs2RKZmZla94XIKXXqaNPOUW6HpYrkekRFqbVzZrB0MBZiPbqhFs7jR7RGK/xcoUAHAPbsATp1Aho1kkGOSrkKd+a/uFKLTKs/H74sLU3+jjp1konvZX9nRHSFSyM7H374IYYNG4aTJ08iKSkJwcHBZq83b95ck84R2WO5mZ+r7VRyOyy5muvx++9q7VQCLx1K8TKewxRMAwAsw314FAtQCA2yi/9lHLWZOtW7y/xdqUWm1Z8PX1WRkTaiysalYOf06dM4cuQIHn30UdMxnU7HBGXyKGPlZ3tfwgkJjis/uzq15MrgplaVsquiAAvwKO7HcgDAK5iC5/GS0o7IzhBCjjK9845ae3dN07lS5VurPx++yNFImyc21CTyJy79zfjYY4/h5ptvxo8//og///wTR48eNXsm8gRj5WedznrlZ51OrfKzq1XRVTcILOvoUdfuVVZtnMb36IL7sRyXUQWP4mM8h1c0D3SMhADOnFFr644K84BrVb61+vPhi5zJYSIiF4Odv/76C//973/RqlUrNGrUCA0bNjR7EHmKK/WpLLVvD1jMxCpxZTvO8HDnzynrGvyOn9AabfAjzqEmumE9FuJRxydqICrKdi6RTuf+URJXftda/PnwRa7kMBFVZi5NY3Xu3Bm//PILrr76aq37Q+Q0Z+tTWSooAC5fdv6+quUQyrr6auDXX50/DwDaYwtWoS+icA5/ojF6Yi1+R1PXLuaCkSOBl16SgU3ZQM/WyIo7uPK7ruifD1/kSg4TUWXmUrDTu3dvjBkzBvv370ezZs3KJSj36dNHk84RqXKmPpWlhx927X7D/92rz5mlv23aAGvWOL5+eLgsfWD0ID7Dx3gMoSjGT2iFPliD0/Ds1tDt28vREGv77Lz1ludGSVz5XVfkz4cvciWHiagycynYGTZsGADgpZdeKvcaE5TJ3xw+7Pw5xtIEzm6yd+yY2vWv/C8kMAWv4hU8BwD4EgPwMD7VdMWVqlOnZGAYaKMk/siYj3TPPd4daSPyFy7l7JSWltp8OBPoTJ8+HS1btkRERATq1q2Lvn374neLtblDhgyBTqcze7S22Be+qKgII0eORO3atVGtWjX06dMHJ5xdS0x+zWCQm+AtXSqfnYm3IyPV2+r1wIQJcldg49Jfyz9qxqW/1vY6US0XUVQEVMFlfIjHTYHODEzAQHzulUAHuJKQbRwleeAB+cwvVO8I1HwkIndwKtjp2bMncnNzTT+/+uqrOH/+vOnnM2fO4Prrr1e+3ubNmzFixAj89NNPSE9PR0lJCbp164aLFoV5unfvjqysLNNj7dq1Zq+npqZi5cqVWLZsGbZt24b8/Hz06tWLI0yVREU3VntUMb934EA5tTRjhuub7IWGqt0rAnn4BndjKD6GAUF4GnPxDGa4bcWVCv7v5Hv695ejhRkZwJIl8vnoUQY6ROUIJwQFBYm///7b9HNERIQ4cuSI6efs7GwRFBTkzCXN5OTkCABi8+bNpmODBw8WycnJNs85f/68CA4OFsuWLTMdO3nypAgKChLr1q1Tum9ubq4AIHJzc13uO3nHihVC6HRCyBDD/KHTydcdmTXL+vmWj1mzrpyTkaF2TkaG+b3atnV8TjyOi1/QTAhAXEA10QPfKN3L3Y8RI7T7vQWSkhL5e16yRD6XlHi7R0SVh+r3t1P/TBQW/4y1/LmijKNGURZ76m/atAl169bFNddcgyeeeAI5OTmm13bv3o3Lly+jW7dupmNxcXFISkrC9u3brd6nqKgIeXl5Zg/yP47KPKiWdXClrICrS3+bNbPfvjl+wU9ojebYjyzE4A5swbfoWa5dUJDnd/5t0cKz9/MHLNdA5B+8NyZuQQiBsWPHol27dkhKSjId79GjBz777DNs3LgRb775Jnbu3InOnTujqKgIAJCdnY2QkBDUqlXL7Hr16tVDto1y19OnT0dkZKTpkZCQ4L43Rm6jUuZBZWM1V8oKuLr0117t3DuxHlvRHvVxCgdwA1rhZ/wPt1htW1oKRESo9UEru3d79n6+zpWcLSLyDqeCHWOCsOUxLaSkpGDfvn1YunSp2fH77rsPd999N5KSktC7d298++23+OOPP/DNN9/YvZ74t3SFNZMmTUJubq7pwaKm/umvv7Rp16aN4yRbvV62MzIu/XV2k73HH7fefggW4BvcjRq4gI3ohHbYhkw0sNun//s/+33WGnN2rvB2YVQico5TS8+FEBgyZAhC/82yLCwsxLBhw1CtWjUAMI22OGvkyJFYs2YNtmzZgvj4eLttY2Nj0bBhQxw6dAgAEBMTg+LiYpw7d85sdCcnJwdtyn47lREaGmp6D+S/Vq1Sbzd4sO3Xt293/KVkMMh2xr1aXF36++GHllcWeAEvYipeBAAsxiA8ho9xGRoV0dIQV11d4Uy5hkDa34fIXzk1sjN48GDUrVvXNP3z0EMPIS4uzvRz3bp18cgjjyhfTwiBlJQUpKWlYePGjWjcuLHDc86cOYPMzEzE/js/0KJFCwQHByM9Pd3UJisrCwcOHLAZ7FBgsFi053I71YE9y3auLP39N0YHIJeWf4ShpkDnVUzGw/gUlxGCatXsjxp5I1Zv2dLz9/RVLNdA5F+cGtlZsGCBpjcfMWIElixZgtWrVyMiIsKUYxMZGYmwsDDk5+dj6tSpGDBgAGJjY3Hs2DFMnjwZtWvXRr9+/Uxthw4dinHjxiE6OhpRUVEYP348mjVrhq5du2raX/It11wDlIlx7bazR7Wg588/l99t2dlSBMYApjou4Avci+747t+l5e/hAzxpate+PfDdd7ZHjTp2lK970rlznr2fL2O5BiI/4/Z1YXYAsPpYsGCBEEKIS5cuiW7duok6deqI4OBg0aBBAzF48GBx/Phxs+sUFBSIlJQUERUVJcLCwkSvXr3KtbGHS8/905kzakumz5yxf53hw9Wuk5xc8WXFixYJEYNTYjduFgIQ+QgXd+OrcvdatEgum4+PNz+ekCCPX7jg+aXnixdX7L0HkpIS+buxt+1BQgKXoRO5m+r3t0vlIrQiHCxdDwsLw3cK/3ytWrUqZs+ejdmzZ2vVNfIDzz+v3m7OHNuvqxb0XL1aLiu2VQpCxbWlv+FH9EAj/IUc1MHd+Aa7UH5+KCFBjt7YGjXatMm1+1eEp5e6+zKWayDyLz6z9JzIWWXzXyrSbvhw9S+lCi0r/uEHtBzTFo3wFw7hatyOH20GOsZVXLZKM3g6F8TayrLKjuUaiPwHgx3yW1ddpU27kBBZ2FOFy8uKV64EunaF7tw5nE1shTbYjj/RxGpTlRGBuh4seK7TcZTCFpZrIPIPDHbIb/Xpo107i9qydpVdVgwAxcUyGBg5Uj4XF1ucMHcuMGAAUFgI9OmDN+/eiH9ge9vmn35S74uWoqKA6GjzYwkJHKVwhIVRiXyfV3N2iCri7Flt2hk3iHNWVhYwcSIwc6b5KM/48XKkaMZ/BTBlCjB9unzhySdRPOtd/LeG/f/tZs4EXnlFjjjZYmNz8Ao5fx4YMwbo1UttZRkRkb9gsEN+6/RpbdqplJ2wZvVqYPny8scNBmDW65cxcO0TuPXgJ/Lgyy8DU6Zg7ts6pQ0M586VU2W2qL53Z5SWAm++KetuzZih/fWJiLyF01jkNQaDXFW0dKl8dnZrfdXaUI7aOVstRKeTSalffmn99WrIxxr0wa0HP4HQ64GPPwaefRbQ6TRLqlYtXuqKmTOtTMUREfkxBjvkFVpUi1bd49JRO9VNBY2EAO6803pwVhunsRGd0QPrcBHhWP3YGuDRR02vq5aSc9TOncvAjSNLRESBgsEOeZxW1aJzc9XanTxpf9TIwXZPVv39d/ljjfEntqMNbsNO/INodMZGfB/a06xNq1Zq13fUzliI1F2OHHHftYmIPI3BDnmUltWiGzVSu+exY/ZHjVSXsBvpdMCPP5ofuwn/w3a0QSIO4ygaoQ22YwdaoYnF6vKYGLV7OGpn3NROdaTIWZb9JiLyZwx2yKOcqRbtiGrgANgfNWrWTP06gOzj+fNXAo3O+B5bcAdi8Df+h5vQBttxCNcgKEhuWFjW/v1q91BpZ9zUTusRHr2+fL+JiPwZgx3yKC2rRf/5p/p97Y0aHT2qfp2yQkKAe/E5vkUPRCAfG9EJHbEJ2ZDVH8PDyy/bPnxY7dqq7cpuavf00+p9t2fsWPvL3omI/A2DHfIoLatFOxPsALZHjV54wbnrGD1eNAfLcD9CcBlf4B70wLfIQ6Tp9fz88vfSMtgzMm5qV1F6PTBhApedE1HgYbBDHmVMrLWVa6LTqddhCg11rQ+WgURenrNXEHgZz2IORiIIAnMwAvdjGYpRvkMnT5r/rFrmwZlyEMYdnNetUz+nrMaNgVmzgEuXGOgQUWBisEMeZUysBcoHPM5Wiz5/3rU+WI4aVa2qfq4eJZiPJ/EsXgUAPIuXMRKzUQrrHbbc/C9I8f841XYTJ8rpsjFjXJ+Oa9tWTu9x6oqIAhWDHfI4Y2JtXJz5ceNGfap1mCzrODlia9RI9X6hKMQXuBdP4EMYEIQnMB+v4lkAtpdEWW7+V7Om2r1U2k2cCLz+uvObMVp6+OGKnU9E5OsY7JDXVHTZdMOGzt/L2qhR06aOz6+BXKxDd/TDKhQiFPfgS3yIJxyeZ7n5XxXFAi2O2hUXy52OK6p6daBLl4pfh4jIlzHYIY+ztangiRPObSp47pz6PePjXa/eXQ/Z2IwO6IjNyEMEumMdVqGfw5wha6NIKrlIKu3mzq34iA4AfPIJC30SUeBjsEMeZW9TQUAeV91UULV4Z+3aMp/FVqDz11+2z70KR/AD2uIm/IJs1EMHbMZmdDRd116itbVRJNXAwlE77nBMRKSOwQ55lEqFcdVNBVXzX2Ji7AcPtnYLbo5f8APaogn+xJ9ojHbYhr242fR6bq71Tf0SEmyPIuXkqPXZUTstdjjW6dQDSyIif8ZghzzKcil2Rdo9+aTatRy1e+qp8sfaYhs2owNi8Dd+QXO0xQ84gqvN2lSpYr6p35Il8tneKJJqUrWjdsOHV3z6yZndqomI/BmDHfIoy6XYjtoZDMCmTcDSpfK57CjE/Plq13LUzrLqeU98g3TciZrIxVa0QwdsNu2KXJZxRMe4qd8DD8hne0GIVuUiQkLkTsdacGYDQyIif8RghzzKmZGNtDRZwLNTJ+DBB+Vz2YKeqvvsOGpXNmdnEBZjNZIRhkJ8hV64C98hFzWtnpeernb/so4d067djBlyx+OKjvCo7mpNROSvGOyQR505o9YuI8P6iq2yBT212rNm1Sr5PBLvYDEeRhUYsAgPoz/SUIBwm+ctW6Z2/7JUc21U282YIXc+njULSEpyri/O7FZNROTPGOyQR6mO7KxebX3FVtmCnqo5O8OG2X/9/DmBFzAV72A0AGAWUjEEC1GCYLvn/d//qd2/LJVcG2erjoeEyM9jxw71c5zdrZqIyJ8x2CG3sJVrozqyc/as7deMibWqOTtLl9p5sbQUQ/aMwlS8CECWfxiLmRAK/2scOCCfjbWpRo6Uz8XFts8JCQF69bJ/3V69XCvdEBYGJCerta3IvkNERP5GcT9XInVpaXIvnbJTUPHxsiaWsyUe7FHdVNBmu8uXgUcfxeALn6EUOqRgDt6D+pBK1aqyZMPMmeaJ0+PHy+Rha0U1DQZg2zb71922TbZzZcRl1Sqgb185MmapbVtgxAiZo9O+PUd0iKjyYLBDmjLujmw5BWXMtRk8WLt7Xbqk1s7qaFJBATBwIPD11yjRVcHDYhGW4QGn7n/mjKxNZclguHLcMuDZtMnx6NaZM7Kdq2UcVq2Sb2/CBODQISAxUfYnLMy16xER+TtOY5Fm7O2ObDxmbcTBmqgo+7sTJySUL7JpS2SkxYG8PKBHD+Drr4GqVVGwdLXTgQ4A/PKL/ddnziw/pbVxo9q1VdvZEhIig8shQ+QzK5oTUWXGYIc042h3ZCHUp55Gy1zhcgFP2cRae7kxZZm1++cfoHNnYPNmoEYNYP16fJTVU+1CZSQl2S55YWQwyBpWZR0/rnZ91XbWOFqyT0RU2TDYIc2obk5Xvbr916OjgSlTZAJtXJz5a/XrX0msveoqtfuZ2p04AdxxB7B7tyxslZEBtG/vdJ2p5GS5eaAKy2s3aKB2nmo7S7aKrJZdsk9EVNkw2CHNqG5OF+TEnzpbU1mAjFdU1K4N4PBhoF074LffZLb01q3ALbcAcC2wcHW/nM6d1c5TbVeWyjQia2ERUWXEYIc0076949VWNWrIlBl7zpwBXn3V8QjF55+r9evg5wdk5/76C7j6arncqWlTtZOtWL1a5tS4sl9Ox46OP6PoaPWRo7JUphFZC4uIKiMGO+RRqnk2M2faHqEQQo5QqGiJHdiCO4DsbKB5c/lN37ChWRtX8mO++kruq2PP2LHlE4P1esf7A82f79qycNVpRNbCIqLKhsEOaWbrVsfLqgsL1a6Vm2v/9cxMx9foiAx8jy6IwjmgdWu5njsmplw71SkpS5cvW69NpdfL49b22QFkvtGKFVcKiRrFx8vjrm70pzqNyFpYRFTZ6IRwtKYk8OXl5SEyMhK5ubmoUaOGt7vjt5Yulat/PKVJk/IJwEY98Q1WYACqogi7anTGrSdX28yMLi4GwsOdz2Xp0gXYsEGeP3eu7EuTJnLqSmWpt8EgA8SsLG02+jMY5Kqrkyetj4rpdDKgOnqUGwoSUWBQ/f7mpoKkGU+PGNjaJO9efI7PMAjBKMFq9MFnHZbj8+pVbV4nJEROOVnbINCev/++cr7qtFpZer1ruTn2rvf22zKnSaczD3hYC4uIKjNOY5Fm2reXIwf2NgPUcuDs9tvLH3sUH2MpHkAwSvAZHsQ9+BJ3D7Ad6Bi1bu38/evWdf4cd+vfXy7Nr1/f/DhrYRFRZebVYGf69Olo2bIlIiIiULduXfTt2xe///67WRshBKZOnYq4uDiEhYWhY8eOOHjwoFmboqIijBw5ErVr10a1atXQp08fnLC3LIXcwjiyYGtiVAhgzBjt7meRZ4yReAcfYyj0KMX7eBKPYBFKEIyoKPvXMS7ZdtZ11zl/jif07w8cOya3EVqyRD4fPcpAh4gqL68GO5s3b8aIESPw008/IT09HSUlJejWrRsuXrxoajNjxgzMnDkTc+bMwc6dOxETE4M777wTFy5cMLVJTU3FypUrsWzZMmzbtg35+fno1asXDNxQJKCVrWY+CdPwDmTE8gbGYRjmoRRyvua11+xfx9GSbVucnfbyJOMU2QMPyGdOXRFRpSZ8SE5OjgAgNm/eLIQQorS0VMTExIjXXnvN1KawsFBERkaKefPmCSGEOH/+vAgODhbLli0ztTl58qQICgoS69atU7pvbm6uACByc3M1fDeVT0mJEPHxxsXh5R86nRA1a9p+3dlHjRpCAKViGv5jOvgcXhRAqVm7uDj7/V60yPl7Jyd75CMlIiI7VL+/fSpnJ/ff9cZR/847HD16FNnZ2ejWrZupTWhoKDp06IDt27cDAHbv3o3Lly+btYmLi0NSUpKpjaWioiLk5eWZPajiVDa1O39eu/tdyi/F2xiNSZBDN2PxJl7G8wDMk4Yc/Xp//tn5e19zjfPnEBGRd/hMsCOEwNixY9GuXTskJSUBALKzswEA9erVM2tbr14902vZ2dkICQlBrVq1bLaxNH36dERGRpoeCQkJWr+dSsmTm9UFwYAPdY9jFGajFDo8hXmYhbFW21arZv9apaXO399aRXMiIvJNPhPspKSkYN++fVhaNhHjXzqL5T1CiHLHLNlrM2nSJOTm5poemSo71JFDnlp6XgWXsRgPYbBhAQwIwmB8gvl4ymb7c+fs76HjTK0uI2sVzYmIyDf5RLAzcuRIrFmzBhkZGYgvs61szL+73VqO0OTk5JhGe2JiYlBcXIxz587ZbGMpNDQUNWrUMHtQxbVp4/5E2BAU4QvciwewDMUIxkB8jsV42O45xcVysz1bFb9btnStL85WSyciIu/warAjhEBKSgrS0tKwceNGNG7c2Oz1xo0bIyYmBunp6aZjxcXF2Lx5M9q0aQMAaNGiBYKDg83aZGVl4cCBA6Y25Bnbt7u3onYYLmE1ktEXq1GIUPTFKqRhgNK5ZQuIWrKIk5W5WmaCiIg8y6s7KI8YMQJLlizB6tWrERERYRrBiYyMRFhYGHQ6HVJTUzFt2jQkJiYiMTER06ZNQ3h4OB78ty5BZGQkhg4dinHjxiE6OhpRUVEYP348mjVrhq5du3rz7VU67szZqY4LWIM+6IRNuIhw9MEabEQX5fOFkJsapqYCycnmI1B16jjfH2sVzZ2ldbkIT12biMjveGBlmE0ArD4WLFhgalNaWipeeOEFERMTI0JDQ8Udd9wh9u/fb3adgoICkZKSIqKiokRYWJjo1auXOH78uHI/uPRcG999p92y8rKPSJwTP+B2IQCRiwjRFlsFIESVKq5dLyPDvN8ZGc5fY8KEin1WK1aUX6YfHy+PV9SKFXK5veXyey2uTUTkS1S/v1kIFCwEqpU33wTGj9f2mlE4g/XohhbYg7OohbvwHXZBJtlUqQKUlDh/zSVL5GZ7RsYCms5sLFiR6uRpaXJKzfL/PGM+fUXKOqSlAQPszOxVpN9ERL5G9fvbJxKUKTD8+ae216uDHGSgE1pgD3JQB52QYQp0ANeWjAPlV43p9ebBjyPG6TBX8pOMpSms/RPDeKwi1x40yH6bQYPcm1dFROSLGOyQZhzsBuCUWJzCZnRAc+zHKcSiIzZhH240a+NssKPTAQkJMn+lLIPBvPSEI0IAmZkyJ8ZZKhsvunrt9HSgsNB+m8JC2Y6IqDJhsEOaadVKm+sk4Dg2owOuw/8hE/HogM34DdeXaxccrH5NYyD21lvlE3VdrY3lSkK26jmuXHvmTG3bEREFCgY7pBktNqJuhKPYjA5IxGEcRSPcgS04jESrbZ0JduLjbefCuLqKzJVNFFXPceXaqkvoXV1qT0TkrxjskGbat5dBhaua4DC24A40xjEcwtW4A1twDI1ttr/hBrXrvvYacPSo7cTcunWd76teLzdRdJbxM7I15Wdrqk2F6uaIrm6iSETkrxjskGb0eqBFC9fOvRb/hy24Awk4gd/QFHdgC07A/lBRs2Zq1z52TPs9ZgwGuYmis/R64O235X9bBjz2ptpUvPmmtu2IiAIFgx3STHEx8PXXzp93Aw5gMzogDlnYjyR0xCZkw/E8jurqrz/+sP96To7adSydPOnaef37yym1+vXNj9ubalMRFiY3TLQnOVm2IyKqTLy6gzIFlrlznV/W3By/YAO6og7+wf9wE+5EOs6gttK5v/yidg9HQZGrBUxPn3btPEAGNMnJ2u9yvGoV0LcvsHp1+deSk+XrRESVDYMd0sxvvznX/mbsQTruRDTOYiduxV34DucQpXy+6naY1arZf91YwNTZQM2VMhNl6fVAx44Vu4Y1q1YBBQXAhAnAoUNAYiLw+usc0SGiyovBDmnm4EH1trdiJ9ajG2rhPH5Ea3THOuQh0qn7RUYC5887bnfVVfZfd7WAqeU0lC8JCwPmzPF2L4iIfANzdkgzqiMHrfEjNqArauE8tqEt7sJ3Tgc6ANCvn1q7J5+0/7orS89dXTFFRESex2CHNNOwoeM2bbEN69ENkcjDZtyB7liHC3CtHlkVxXHJM2fsv+5Kzo6rK6aIiMjzGOyQZhxNY92BzViH7ohAPr5HZ/TEWlxEdZfv98MPau0cJeU62vvGHxUXy4Bs5Ej5XFzs7R4REXkPgx3SjL2SCx2wCWvRE9VxEetxJ3rjK1yCg8xhBy5cUGuXn2//dXt739jiarFOT5g4EQgPB8aMkXk7Y8bInydO9HbPiIi8g8EOaaZmTevHO+N7rEVPVMMlrMNdSMZqFCC8wveLVEzzqa4weGRr7xtbXC3W6W4TJ8qVV5aBmMEgjzPgIaLKiMEOaSY1tfyxLtiAr9EL4SjAN+iJvliFQlR8DbReDzz6qFrbvn3V2vXvL3db/s9/1NpnZqq185TiYsdFPmfO5JQWEVU+DHZIM02amP98J9bjK/RGGArxFXqhP9JQhKqa3MtgUJ/GUkmcNtLr1a/788/q1/UElU0dDQbZjoioMmGwQ5pp0wYI+vdP1F1YhzXogzAUYjX64B58iWKEanq/OnUcFx51ZYm46maFqu085cgRbdsREQUKBjukma1bgdJSGeisQl9URRFWIRn34gvNAx1A5tcYE4ttcWWJeGKitu08pVEjbdsREQUKBjukmU2bgO74FquRjKooQhr6YSA+x2WEOH0tW8nORtHR7tvUb/jwKyNUtgQFyXa+RLUKvGo7IqJAwWCHNJN4eC1WoS9CUYw09MN9WO5SoHPVVWqjMQYDMHq07dd1OteWiOv1cqm2PeHhvrepoKPNE51tR0QUKBjskDbWrsVDK/ohFMVYgf64D8tRgmCXLjV4sOMv5DNnZKKtvb19hHBtifjWrY735snP972l56o7Qbta5Z2IyF8x2KGKW7sW6NcPQZdloHM/lrkc6Oh0jvNwjA4dUmvnbO2rv/7Stp2nONoJWqdjTS8iqpwY7FDFfPutrMhZXIxDzSsW6AByNObsWbW2qrsdOzuS4ai8hLPtPMXeTtDGn1nTi4gqIwY75Lp160yBDvr3xzu3VyzQcdbNN6u1a9XKuetevKhtO0+ytRN0fLw83r+/d/pFRORNDHbINd99J7cmLiqSAc+yZRBVPBfoAMDq1Wrt3n3Xuetec4227TzNuBN0RgawZIl8PnqUgQ4RVV46IXxtazTPy8vLQ2RkJHJzc1GjRg1vd8f3rV8P9OljFuggJASffgo88kjFLq3TAbVqqU1lXXMN8Mcfjtu1a+dcMnFBgePVWABw6RIQVvHKF0RE5CLV72+O7JBzNmwAkpNloNO3rynQAYC4uIpfXghg5Ei1tlWqqF/TGWFh8i3ak5zMQIeIyF8w2CF1GzcCvXsDhYX4p00fLO+/HJu2hzi9j41WrrpKrV1SkvPXXrXKdsCTnOx7yclERGSb4r+NqdLbtAno1QsoLER61V64e/sXuLxdjujEx8tVQEVFFb+NTge8845a25gYtXbOJigbrVolp7QmTJDL3BMTgddf54gOEZG/4cgOObZlC3D33UBBAb5BT/Qq/NJsZ+STJ4F77lHf98YeIYBz59Ta/vSTWrvdu13vT1gYMGeOzMeeM4eBDhGRP2KwQ/b98APQsydw6RIyQrtjAFaUK+ppzIn54AO55Fl1/5uKKi1Va+etaTYiIvINDHbIth9/BLp3By5exNlb70SPopUoQlWrTYWQpRuefFL+7ImAx1GxTiNuokdEVLkx2CHrduyQgU5+PtC5MzakrLYZ6JSVmGh9UztVOp3jiudGt9+u1s7VnB0iIgoMDHbIjMEA7Hp/N4o7dQPy8iDu6AB89RXqNlRLVomNNd/U7tlnne9D375q7UIUC6onJDjfByIiChwMdsgkLQ3oGbcXVw27EyGXcrEV7dD08NdIWxfudJFJvR7o2BGYOtX+eWXp9cD48UDXrmr9bdVKXtseFr4kIiIGOwRABjovDDiAz3K6IgrnsB23oyfW4lBWddxzjyzN4EqRSXvFKS2VlgJvvAEcOaLW54QEeW17ARgLXxIREYMdgsEAzB7+GzagC2rjDHagJXrgW+QjwrTSKjVVbqbnSpFJW8UpLZVd1aU6YmO8tmX7hAQWviQiIsmrwc6WLVvQu3dvxMXFQafTYZXFtrRDhgyBTqcze7Ru3dqsTVFREUaOHInatWujWrVq6NOnD06cOOHBd+H/di09hM/+7oJ6yMEe3Iy78B3yEGl6XQggM1PWl3K1yKTxvFmz7Lczrup64gn1ERsWviQiInu8GuxcvHgRN954I+bMmWOzTffu3ZGVlWV6rF271uz11NRUrFy5EsuWLcO2bduQn5+PXr16wcDNVdT8+SeSRndGHLKwD83QDetxHrWsNs3Kqtit9HqgXj21tsZVXaojNsYcoQcekM+cuiIiIiOvlovo0aMHevToYbdNaGgoYmzUBcjNzcVHH32ETz/9FF3/zWpdvHgxEhISsGHDBtx1111WzysqKkJRmdoGeXl5Lr4DP/fXX0Dnzqh29gR+xXXoig04g9o2m8fGytye0aPl6IuRsVyEykhKbKxa12JjZdCSnCxHlLKy5LH27RnIEBGRc3w+Z2fTpk2oW7currnmGjzxxBPIyckxvbZ7925cvnwZ3bp1Mx2Li4tDUlIStm/fbvOa06dPR2RkpOmRUBnXJp88CXTpAvz1F0RiIu6t9T1Oo67N5tHRwD//yLIQlrOExnIRaWn2b2kwyEdUlO02tlZ1ORqxMRhk+a6lS+WzqwN7Wl2HiIh8h08HOz169MBnn32GjRs34s0338TOnTvRuXNn06hMdnY2QkJCUKuW+bRLvXr1kJ2dbfO6kyZNQm5urumRmZnp1vfhc7KzZaBz5AjQuDFK0zfi7yDHQy6pqVeSiMsqm8RsKzhISwMaNZLLys+etd7G3qoue4zX7tQJePBB+dyokePgy13XISIi3+LTVc/vu+8+038nJSXh1ltvRcOGDfHNN9+gv505EyEEdHbWOYeGhiI0NNTm6wHtn39kxPH770CDBsDGjdh6NB5nztg/zdHrxiTmqVNlHFV2uiktTY78WAuUyoqPl4GOM4nFtq5tHG1SXZGl1XWIiMj3+PTIjqXY2Fg0bNgQh/4trx0TE4Pi4mKcsyiTnZOTg3qqmbCVyblzwJ13AgcPAnFxwMaNQKNGFU48LuuVV8xHRAwGmeNjL9CJigI2bHB+BZW9a6uMNqleRwi16xARkW/yq2DnzJkzyMzMROy/Wa4tWrRAcHAw0tPTTW2ysrJw4MABtGnTxlvd9E15ebLW1d69QN26MtBp0gSAetKwM4wjIq++Wj7Hx9LZs3IUyNnE461b7V+77JL5ilwHULsOERH5Jq9OY+Xn5+Pw4cOmn48ePYq9e/ciKioKUVFRmDp1KgYMGIDY2FgcO3YMkydPRu3atdGvXz8AQGRkJIYOHYpx48YhOjoaUVFRGD9+PJo1a2ZanUUALl4E7r5bFveMjga+/x649lrTy8ZSECdPWh/d0OnkhoBCAKdOOZ6OAmQbnQ545x21LroyuqR6jqN2J0+qXUe1HRER+RavBju7du1Cp06dTD+PHTsWADB48GC899572L9/PxYtWoTz588jNjYWnTp1wvLlyxEREWE6Z9asWahSpQoGDhyIgoICdOnSBQsXLoSe65OlggK5fnvbNiAyEli/HkhKMmtiLOlwzz0yQCkbzBhTn4wlH6y1sUUIx7k+Rq6MLjmzjN2e06fVrqPajoiIfItOCJWvrcCWl5eHyMhI5ObmokaNGt7ujnaKi4F+/YC1a4Hq1YH0dMBiB+qyrO2hk5BgnjRsrY0jUVEyXcjWqFF8vMzXcTY+NRhkbpC9ESmVa3/2GfDQQ47vN2gQ8PHH6tXWiYjIvVS/v/0qZ4ecUFIiN6dZuxYICwO+/tpuoAOol11wNjwePVo+O1NAVIVxRMpWf4RQu7ajml1Gn30GhIcDEyc61U0iIvIyn156Ti4yGIAhQ+QwTEgIsGoV0KGD0qnGTfysUV1CbmQcWZkyRc6cWY4I1a+vvvOyOxlzllRGqwwG4PXX5X/PmOHefhERkTY4shNohACefloOQ1SpAnzxBVBmh2lXqSwhL8vaqI3luRWdQDX2yV4fVJaMG0eI7GzNVM7MmXKWkIiIfB+DnUAiBDBmDPDBB0BQELB4MdCnjyaXVlmeXVZ8/JWN+IwjQparmU6dUisz4WqfVJeeA7Kf1gqP2mIwAHPnqrUlIiLvYrATSJ577sqyqY8+AsrsQF1Rqsu8U1LMc3202vivIn1SbWfMWerbV639kSNq7YiIyLsY7ASK6dPlDn4A8O67MmdHQ6rLvAcMMC/YqeXoi6t9cmZZu16vnN5k3JORiIh8HIOdQDB7NjB5svzvGTOA4cM1v4UxiddWXotltXIjrUdftOiTI8OHO17Bpde75WMmIiI3YLDj7xYsAEaNkv/9/PPAhAluuY0xiRdwbgm5O0ZfKtonR0JCgH/3t7Rp7Fjut0NE5C8Y7Pizzz8HHn9c/veYMbLkuBsZk3gt96Upm4xsqaKjLwYDsGkTsHSpfLbM7XGlTyocbEnk8HUiIvId3EEZfrqD8tdfy92RS0qAJ58E5s1zbu10BRgMMscmK0uOyLRvb3/0xLgaC7BeisJWUGJtt+b4eOt78zjbJ0fvr1Ej27lGFdn1mYiItMMdlANZRoaMHkpKgAcflGugPRToAFc2HnzgAfNkZFtcGX0xBkiWAceJExVbrq7CnUnVRETkedxB2d/89BPQuzdQVCQLfC5c6BfDC/37y+6qjL442sBQCLlcPTlZnu/MCJAKdyZVExGR5zHY8Sf79gE9egAXLwJduwLLlgHBwd7ulVW2ppVslaIoS2UDQ+PIytmz1ktYnDwpj7uSt+POpGoiIvI8TmP5iz/+kGUfzp8H2rSR9a6qVvV2r6xKS5M5L506yVm2Tp3kz6pTT5Y7LduSmemeDQvdtaSdiIi8g8GOPzh+XI7k/P03cNNNwDffANWqebtXVtnKtTGOtKgEPKdPq93r55/dk1vjriXtRETkHQx2fN3ff8tAJzMTuPZa4LvvgJo1vd0rq7QqDVGnjtr9VNcRupJb464l7URE5HnM2fFl584Bd90FHDoENGgApKcDdet6u1c2ObOKyV7ujmWAYUtiolo7V3NrnEmqJiIi38Vgx1ddvAjcfTfwyy9AvXrAhg0yUcSHabWKyZgzYy9wSkiQ5RrefFNOkVkb5THuh1OR3BrVpGoiIvJdnMbyRUVFcsPAH38EatWSIzqqwxhepNUqJmPOjE5nPWdGp5M5MyEhzK0hIiLHGOz4mpISuVtferpMQl67FmjWzNu9UqLlKibVnBnm1hARkSMsFwEfKhdRWgoMHSo3CgwJkYFOly7e648LXC0NYYtqGQgty0UQEZF/UP3+ZrADHwl2hJCltI3zLl9+CfTt652+VJC1HY0TEuRb40gLERFpRfX7mwnKvuKVV2Q0AAAff+y3gQ7AVUxERORbGOz4gtmzgeefl//91lvAI494tTta4ComIiLyFUxQ9rbFi4FRo+R/v/CCnP8hIiIizTDY8aavvwaGDJH/PWqUDHaIiIhIU5zG8pYtW4B775XLiB56CJg1y/aabXKIq7GIiMgWBjve8L//Ab17A4WF8vnjj4EgDrK5ytrqr/h4ueEgV38RERG/YT3tjz9kvau8POCOO4Dly4HgYG/3yiMMBmDTJmDpUvnsqCCoCi2qrBMRUWBjsONJJ08C3boBp08DN98MrFkDhIV5u1cekZYGNGoEdOoEPPigfG7UqGLBiFZV1omIKLAx2PGUs2dloPPXX7LO1bp1QGSkt3vlEe4afXGmyjoREVVeDHY8IT8f6NkT+PVXWcQpPR2oW9fbvfIId46+aFVlnYiIAhuDHXcrLgYGDAB+/llWMP/uO6BhQ2/3ymPcOfqiVZV1IiIKbAx23MlgkLshr18PhIfLwp433ODtXnmUO0dftKyyTkREgYvBjrsIITcKNK62SksDWrf2dq88zp2jL3q9XF4OlA94jD8b66oSEVHlxWDHnRo0kPvnfPqpXG5eCbl79KV/f1kgvn598+Px8fI499khIiKdENZSRysX1RLxLvm//wOaNtX2mn7GuBoLME9UNgZAWgQl3EGZiKjyUf3+9urIzpYtW9C7d2/ExcVBp9Nh1apVZq8LITB16lTExcUhLCwMHTt2xMGDB83aFBUVYeTIkahduzaqVauGPn364IS9jFhPq+SBDuCZ0RdjlfUHHpDPDHSIiMjIq8HOxYsXceONN2LOnDlWX58xYwZmzpyJOXPmYOfOnYiJicGdd96JCxcumNqkpqZi5cqVWLZsGbZt24b8/Hz06tULBu4k51P69weOHQMyMoAlS+Tz0aOcZiIiIvfzmWksnU6HlStXom/fvgDkqE5cXBxSU1PxzDPPAJCjOPXq1cN///tfPPXUU8jNzUWdOnXw6aef4r777gMAnDp1CgkJCVi7di3uUsyTces0FhEREbmFX0xj2XP06FFkZ2ejW7dupmOhoaHo0KEDtm/fDgDYvXs3Ll++bNYmLi4OSUlJpjbWFBUVIS8vz+xBREREgclng53s7GwAQL169cyO16tXz/RadnY2QkJCUKtWLZttrJk+fToiIyNNj4SEBI17T0RERL7CZ4MdI53FmmUhRLljlhy1mTRpEnJzc02PzMxMTfpKREREvsdng52YmBgAKDdCk5OTYxrtiYmJQXFxMc6dO2ezjTWhoaGoUaOG2YOIiIgCk88GO40bN0ZMTAzS09NNx4qLi7F582a0adMGANCiRQsEBwebtcnKysKBAwdMbYiIiKhyq+LNm+fn5+Pw4cOmn48ePYq9e/ciKioKDRo0QGpqKqZNm4bExEQkJiZi2rRpCA8Px4MPPggAiIyMxNChQzFu3DhER0cjKioK48ePR7NmzdC1a1dvvS0iIiLyIV4Ndnbt2oVOnTqZfh47diwAYPDgwVi4cCEmTpyIgoICDB8+HOfOnUOrVq2wfv16REREmM6ZNWsWqlSpgoEDB6KgoABdunTBwoULoeeuckRERAQf2mfHm7jPDhERkf/x+312iIiIiLTAYIeIiIgCGoMdIiIiCmheTVD2Fca0JZaNICIi8h/G721H6ccMdgBTFXWWjSAiIvI/Fy5cQGRkpM3XuRoLQGlpKU6dOoWIiAiHpSickZeXh4SEBGRmZnKVlwfw8/Ycftaew8/ac/hZe45Wn7UQAhcuXEBcXByCgmxn5nBkB0BQUBDi4+Pddn2WpPAsft6ew8/ac/hZew4/a8/R4rO2N6JjxARlIiIiCmgMdoiIiCigMdhxo9DQULzwwgsIDQ31dlcqBX7ensPP2nP4WXsOP2vP8fRnzQRlIiIiCmgc2SEiIqKAxmCHiIiIAhqDHSIiIgpoDHaIiIgooDHYcaO5c+eicePGqFq1Klq0aIGtW7d6u0sBZ/r06WjZsiUiIiJQt25d9O3bF7///ru3u1UpTJ8+HTqdDqmpqd7uSkA6efIkHnroIURHRyM8PBw33XQTdu/e7e1uBZySkhI8++yzaNy4McLCwnDVVVfhpZdeQmlpqbe7FhC2bNmC3r17Iy4uDjqdDqtWrTJ7XQiBqVOnIi4uDmFhYejYsSMOHjyoeT8Y7LjJ8uXLkZqaiilTpuB///sf2rdvjx49euD48ePe7lpA2bx5M0aMGIGffvoJ6enpKCkpQbdu3XDx4kVvdy2g7dy5E/Pnz0fz5s293ZWAdO7cObRt2xbBwcH49ttv8euvv+LNN99EzZo1vd21gPPf//4X8+bNw5w5c/Dbb79hxowZeP311zF79mxvdy0gXLx4ETfeeCPmzJlj9fUZM2Zg5syZmDNnDnbu3ImYmBjceeedppqVmhHkFrfddpsYNmyY2bGmTZuK//znP17qUeWQk5MjAIjNmzd7uysB68KFCyIxMVGkp6eLDh06iNGjR3u7SwHnmWeeEe3atfN2NyqFu+++Wzz22GNmx/r37y8eeughL/UocAEQK1euNP1cWloqYmJixGuvvWY6VlhYKCIjI8W8efM0vTdHdtyguLgYu3fvRrdu3cyOd+vWDdu3b/dSryqH3NxcAEBUVJSXexK4RowYgbvvvhtdu3b1dlcC1po1a3Drrbfi3nvvRd26dXHzzTfjgw8+8Ha3AlK7du3w/fff448//gAA/PLLL9i2bRt69uzp5Z4FvqNHjyI7O9vsuzI0NBQdOnTQ/LuShUDd4J9//oHBYEC9evXMjterVw/Z2dle6lXgE0Jg7NixaNeuHZKSkrzdnYC0bNky7NmzBzt37vR2VwLan3/+iffeew9jx47F5MmTsWPHDowaNQqhoaF45JFHvN29gPLMM88gNzcXTZs2hV6vh8FgwKuvvooHHnjA210LeMbvQ2vflX/99Zem92Kw40Y6nc7sZyFEuWOknZSUFOzbtw/btm3zdlcCUmZmJkaPHo3169ejatWq3u5OQCstLcWtt96KadOmAQBuvvlmHDx4EO+99x6DHY0tX74cixcvxpIlS3DDDTdg7969SE1NRVxcHAYPHuzt7lUKnviuZLDjBrVr14Zery83ipOTk1MugiVtjBw5EmvWrMGWLVsQHx/v7e4EpN27dyMnJwctWrQwHTMYDNiyZQvmzJmDoqIi6PV6L/YwcMTGxuL66683O3bddddhxYoVXupR4JowYQL+85//4P777wcANGvWDH/99RemT5/OYMfNYmJiAMgRntjYWNNxd3xXMmfHDUJCQtCiRQukp6ebHU9PT0ebNm281KvAJIRASkoK0tLSsHHjRjRu3NjbXQpYXbp0wf79+7F3717T49Zbb8WgQYOwd+9eBjoaatu2bbktFP744w80bNjQSz0KXJcuXUJQkPlXoV6v59JzD2jcuDFiYmLMviuLi4uxefNmzb8rObLjJmPHjsXDDz+MW2+9Fbfffjvmz5+P48ePY9iwYd7uWkAZMWIElixZgtWrVyMiIsI0mhYZGYmwsDAv9y6wRERElMuFqlatGqKjo5kjpbExY8agTZs2mDZtGgYOHIgdO3Zg/vz5mD9/vre7FnB69+6NV199FQ0aNMANN9yA//3vf5g5cyYee+wxb3ctIOTn5+Pw4cOmn48ePYq9e/ciKioKDRo0QGpqKqZNm4bExEQkJiZi2rRpCA8Px4MPPqhtRzRd20Vm3n33XdGwYUMREhIibrnlFi6HdgMAVh8LFizwdtcqBS49d5+vvvpKJCUlidDQUNG0aVMxf/58b3cpIOXl5YnRo0eLBg0aiKpVq4qrrrpKTJkyRRQVFXm7awEhIyPD6t/RgwcPFkLI5ecvvPCCiImJEaGhoeKOO+4Q+/fv17wfOiGE0DZ8IiIiIvIdzNkhIiKigMZgh4iIiAIagx0iIiIKaAx2iIiIKKAx2CEiIqKAxmCHiIiIAhqDHSIiIgpoDHaIiIgooDHYISK/s3DhQtSsWdOrfejYsSNSU1O92gciUsMdlIlIM0OGDMEnn3xS7vhdd92FdevWaXafgoICXLhwAXXr1tXsms46e/YsgoODERER4bU+EJEaFgIlIk11794dCxYsMDsWGhqq6T3CwsK8Xug1KirKq/cnInWcxiIiTYWGhiImJsbsUatWLdPrOp0OH374Ifr164fw8HAkJiZizZo1ZtdYs2YNEhMTERYWhk6dOuGTTz6BTqfD+fPnAZSfxpo6dSpuuukmfPrpp2jUqBEiIyNx//3348KFC6Y2QgjMmDEDV111FcLCwnDjjTfiyy+/tPte5s6di8TERFStWhX16tXDPffcY3qt7DTWpk2boNPpyj2GDBliav/VV1+hRYsWqFq1Kq666iq8+OKLKCkpcfLTJSJXMNghIo978cUXMXDgQOzbtw89e/bEoEGDcPbsWQDAsWPHcM8996Bv377Yu3cvnnrqKUyZMsXhNY8cOYJVq1bh66+/xtdff43NmzfjtddeM73+7LPPYsGCBXjvvfdw8OBBjBkzBg899BA2b95s9Xq7du3CqFGj8NJLL+H333/HunXrcMcdd1ht26ZNG2RlZZkeGzduRNWqVU3tv/vuOzz00EMYNWoUfv31V7z//vtYuHAhXn31VWc/OiJyheZ11Imo0ho8eLDQ6/WiWrVqZo+XXnrJ1AaAePbZZ00/5+fnC51OJ7799lshhBDPPPOMSEpKMrvulClTBABx7tw5IYQQCxYsEJGRkabXX3jhBREeHi7y8vJMxyZMmCBatWplukfVqlXF9u3bza47dOhQ8cADD1h9LytWrBA1atQwu2ZZHTp0EKNHjy53/J9//hFNmjQRw4cPNx1r3769mDZtmlm7Tz/9VMTGxlq9NhFpizk7RKSpTp064b333jM7Zpnf0rx5c9N/V6tWDREREcjJyQEA/P7772jZsqVZ+9tuu83hfRs1amSWLBwbG2u65q+//orCwkLceeedZucUFxfj5ptvtnq9O++8Ew0bNsRVV12F7t27o3v37qapN1suX76MAQMGoEGDBnj77bdNx3fv3o2dO3eajeQYDAYUFhbi0qVLdq9JRBXHYIeINFWtWjVcffXVdtsEBweb/azT6VBaWgpA5tbodDqz14XColF71zQ+f/PNN6hfv75ZO1vJ0xEREdizZw82bdqE9evX4/nnn8fUqVOxc+dOm8ven376aRw/fhw7d+5ElSpX/notLS3Fiy++iP79+5c7p2rVqg7fGxFVDIMdIvIpTZs2xdq1a82O7dq1q0LXvP766xEaGorjx4+jQ4cOyudVqVIFXbt2RdeuXfHCCy+gZs2a2Lhxo9WgZebMmVi+fDl+/PFHREdHm712yy234Pfff3cYBBKRezDYISJNFRUVITs72+xYlSpVULt2baXzn3rqKcycORPPPPMMhg4dir1792LhwoUAUG7ER1VERATGjx+PMWPGoLS0FO3atUNeXh62b9+O6tWrY/DgweXO+frrr/Hnn3/ijjvuQK1atbB27VqUlpbi2muvLdd2w4YNmDhxIt59913Url3b9P7DwsIQGRmJ559/Hr169UJCQgLuvfdeBAUFYd++fdi/fz9eeeUVl94TEanjaiwi0tS6desQGxtr9mjXrp3y+Y0bN8aXX36JtLQ0NG/eHO+9955pNVZF9ut5+eWX8fzzz2P69Om47rrrcNddd+Grr75C48aNrbavWbMm0tLS0LlzZ1x33XWYN28eli5dihtuuKFc223btsFgMGDYsGFm73v06NEA5KaKX3/9NdLT09GyZUu0bt0aM2fORMOGDV1+P0SkjjsoE5HPe/XVVzFv3jxkZmZ6uytE5Ic4jUVEPmfu3Llo2bIloqOj8cMPP+D1119HSkqKt7tFRH6KwQ4R+ZxDhw7hlVdewdmzZ9GgQQOMGzcOkyZN8na3iMhPcRqLiIiIAhoTlImIiCigMdghIiKigMZgh4iIiAIagx0iIiIKaAx2iIiIKKAx2CEiIqKAxmCHiIiIAhqDHSIiIgpo/w9ncRyNRcDr2QAAAABJRU5ErkJggg==\n",
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "plt.scatter(train.ENGINESIZE, train.CO2EMISSIONS, color='blue')\n",
- "XX = np.arange(0.0, 10.0, 0.1)\n",
- "yy = clf.intercept_[0]+ clf.coef_[0][1]*XX+ clf.coef_[0][2]*np.power(XX, 2)\n",
- "plt.plot(XX, yy, '-r' )\n",
- "plt.xlabel(\"Engine size\")\n",
- "plt.ylabel(\"Emission\")"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "
\n",
- "\n",
- "IBM SPSS Modeler is a comprehensive analytics platform that has many machine learning algorithms. It has been designed to bring predictive intelligence to decisions made by individuals, by groups, by systems – by your enterprise as a whole. A free trial is available through this course, available here: SPSS Modeler\n",
- "\n",
- "Also, you can use Watson Studio to run these notebooks faster with bigger datasets. Watson Studio is IBM's leading cloud solution for data scientists, built by data scientists. With Jupyter notebooks, RStudio, Apache Spark and popular libraries pre-packaged in the cloud, Watson Studio enables data scientists to collaborate on their projects without having to install anything. Join the fast-growing community of Watson Studio users today with a free account at Watson Studio\n",
- "\n"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### Thank you for completing this lab!\n",
- "\n",
- "\n",
- "## Author\n",
- "\n",
- "Saeed Aghabozorgi\n",
- "\n",
- "\n",
- "### Other Contributors\n",
- "\n",
- "Joseph Santarcangelo\n",
- "\n",
- "\n",
- "##